综述 |
|
|
|
|
病原菌对NOD样受体及Toll样受体信号通路介导的固有免疫逃逸机制研究进展 |
何玉洁1,2( ),潘建平1,*( ) |
1. 浙江大学城市学院医学院, 浙江 杭州 310015 2. 浙江大学医学院病原生物学系, 浙江 杭州 310058 |
|
Progress on mechanisms for pathogensto evade NOD-like receptor and Toll-like receptor signaling pathways |
HE Yujie1,2( ),PAN Jianping1,*( ) |
1. School of Medicine, Zhejiang University City College, Hangzhou 310015, China 2. Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou 310058, China |
1 |
BROZ P , MONACK D M . Newly described pattern recognition receptors team up against intracellular pathogens[J]. Nat Rev Immunol, 2013, 13 (8): 551- 565
doi: 10.1038/nri3479
|
2 |
NG T M , KORTMANN J , MONACK D M . Policing the cytosol—bacterial-sensing inflammasome receptors and pathways[J]. Curr Opin Immunol, 2013, 25 (1): 34- 39
doi: 10.1016/j.coi.2012.11.009
|
3 |
FRANCHI L , MUNOZ-PLANILLO R , NUNEZ G . Sensing and reacting to microbes via the inflammasomes[J]. Nat Immunol, 2012, 13 (4): 325- 332
doi: 10.1038/ni.2231
|
4 |
JIMENEZ-DALMARONI M J , GERSWHIN M E , ADAMOPOULOS I E . The critical role of toll-like receptors-from microbial recognition to autoimmunity:a comprehensive review[J]. Autoimmun Rev, 2016, 15 (1): 1- 8
doi: 10.1016/j.autrev.2015.08.009
|
5 |
KAGAN J C , MAGUPALLI V G , WU H . SMOCs:supramolecular organizing centres that control innate immunity[J]. Nat Rev Immunol, 2014, 14 (12): 821- 826
doi: 10.1038/nri3757
|
6 |
DE NARDO D . Toll-like receptors:activation, signalling and transcriptional modulation[J]. Cytokine, 2015, 74 (2): 181- 189
doi: 10.1016/j.cyto.2015.02.025
|
7 |
PEREZ-LOPEZ A , ROSALES-REYES R , ALPUCHE-ARANDA C M et al. Salmonella downregulates nod-like receptor family CARD domain containing protein 4 expression to promote its survival in B cells by preventing inflammasome activation and cell death[J]. J Immunol, 2013, 190 (3): 1201- 1209
doi: 10.4049/jimmunol.1200415
|
8 |
PHA K , NAVARRO L . Yersinia type Ⅲ effectors perturb host innate immune responses[J]. World J Biol Chem, 2016, 7 (1): 1- 13
doi: 10.4331/wjbc.v7.i1.1
|
9 |
LAROCK C N , COOKSON B T . The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing[J]. Cell Host Microbe, 2012, 12 (6): 799- 805
doi: 10.1016/j.chom.2012.10.020
|
10 |
GE J , GONG Y N , XU Y et al. Preventing bacterial DNA release and absent in melanoma 2 inflammasome activation by a Legionella effector functioning in membrane trafficking[J]. Proc Natl Acad Sci U S A, 2012, 109 (16): 6193- 6198
doi: 10.1073/pnas.1117490109
|
11 |
WALDHUBER A , PUTHIA M , WIESER A et al. Uropathogenic escherichia coli strain CFT073 disrupts NLRP3 inflammasome activation[J]. J Clin Invest, 2016, 126 (7): 2425- 2436
doi: 10.1172/JCI81916
|
12 |
BRODSKY I E , PALM N W , SADANAND S et al. A Yersinia secreted effector protein promotes virulence by preventing inflammasome recognition of the type Ⅲ secretion system[J]. Cell Host Microbe, 2010, 7 (5): 376- 387
doi: 10.1016/j.chom.2010.04.009
|
13 |
ZWACK E E , SNYDER A G , WYNOSKY-DOLFI M A et al. Inflammasome activation in response to the Yersinia type Ⅲ secretion system requires hyperinjection of translocon proteins YopB and YopD[J]. mBio, 2015, 6 (1): e02095- 14
|
14 |
SHIMADA T , PARK B G , WOLF A J et al. Staphylococcus aureus evades the lysozyme-based digestion of peptidoglycan that links phagocytosis and macrophage IL-1β secretion[J]. Cell Host Microbe, 2010, 7 (1): 38- 49
doi: 10.1016/j.chom.2009.12.008
|
15 |
PUSHKARAN A C , NATARAJ N , NAIR N et al. Understanding the structure-function relationship of lysozyme resistance in staphylococcus aureus by peptidoglycan o-acetylation using molecular docking, dynamics, and lysis assay[J]. J Chem Inf Model, 2015, 55 (4): 760- 770
doi: 10.1021/ci500734k
|
16 |
DUESBERY N S , WEBB C P , LEPPLA S H et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor[J]. Science, 1998, 280 (5364): 734- 737
doi: 10.1126/science.280.5364.734
|
17 |
MUKHERJEE S , KEITANY G , LI Y et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation[J]. Science, 2006, 312 (5777): 1211- 1214
doi: 10.1126/science.1126867
|
18 |
MA K W , MA W . YopJ family effectors promote bacterial infection through a unique acetyltransferase activity[J]. Microbiol Mol Biol Rev, 2016, 80 (4): 1011- 1027
doi: 10.1128/MMBR.00032-16
|
19 |
PAQUETTE N , CONLON J , SWEET C et al. Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling[J]. Proc Natl Acad Sci U S A, 2012, 109 (31): 12710- 12715
doi: 10.1073/pnas.1008203109
|
20 |
WU H X , JONES R M , NEISH A S . The Salmonella effector AvrA mediates bacterial intracellular survival during infection in vivo[J]. Cell Microbiol, 2012, 14 (1): 28- 39
doi: 10.1111/cmi.2012.14.issue-1
|
21 |
REITERER V , GROSSNIKLAUS L , TSCHON T et al. Shigella flexneri type Ⅲ secreted effector OspF reveals new crosstalks of proinflammatory signaling pathways during bacterial infection[J]. Cell Signal, 2011, 23 (7): 1188- 1196
doi: 10.1016/j.cellsig.2011.03.006
|
22 |
KIM D W , CHU H , JOO D H et al. OspF directly attenuates the activity of extracellular signal-regulated kinase during invasion by shigella flexneri in human dendritic cells[J]. Mol Immunol, 2008, 45 (11): 3295- 3301
doi: 10.1016/j.molimm.2008.02.013
|
23 |
ARBIBE L , KIM D W , BATSCHE E et al. An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses[J]. Nat Immunol, 2007, 8 (1): 47- 56
doi: 10.1038/ni1423
|
24 |
HOU M , CHEN R , YANG D et al. Identification and functional characterization of EseH, a new effector of the type Ⅲ secretion system of edwardsiella piscicida[J]. Cell Microbiol, 2017, 19 (1): e12638-
doi: 10.1111/cmi.12638
|
25 |
SANADA T , KIM M , MIMURO H et al. The shigella flexneri effector ospI deamidates UBC13 to dampen the inflammatory response[J]. Nature, 2012, 483 (7391): 623- 626
doi: 10.1038/nature10894
|
26 |
ZHOU Y , DONG N , HU L et al. The Shigella type three secretion system effector OspG directly and specifically binds to host ubiquitin for activation[J]. PLoS One, 2013, 8 (2): e57558-
doi: 10.1371/journal.pone.0057558
|
27 |
RANA R R , ZHANG M , SPEAR A M et al. Bacterial TIR-containing proteins and host innate immune system evasion[J]. Med Microbiol Immunol, 2013, 202 (1): 1- 10
doi: 10.1007/s00430-012-0253-2
|
28 |
PATTERSON N J , WERLING D . To con protection:TIR-domain containing proteins (Tcp) and innate immune evasion[J]. Vet Immunol Immunopathol, 2013, 155 (3): 147- 154
doi: 10.1016/j.vetimm.2013.06.017
|
29 |
CIRL C , WIESER A , YADAV M et al. Subversion of toll-like receptor signaling by a unique family of bacterial toll/interleukin-1 receptor domain-containing proteins[J]. Nat Med, 2008, 14 (4): 399- 406
doi: 10.1038/nm1734
|
30 |
SNYDER G A , CIRL C , JIANG J S et al. Molecular mechanisms for the subversion of MyD88 signaling by TcpC from virulent uropathogenic escherichia coli[J]. Proc Natl Acad Sci U S A, 2013, 110 (17): 6985- 6990
doi: 10.1073/pnas.1215770110
|
31 |
YADAV M , ZHANG J Y , FISCHER H et al. Inhibition of TIR domain signaling by TcpC: MyD88-dependent and independent effects on escherichia coli virulence[J]. PLoS Pathog, 2010, 6 (9): e1001120-
doi: 10.1371/journal.ppat.1001120
|
32 |
SCHUBERT S , NORENBERG D , CLERMONT O et al. Prevalence and phylogenetic history of the TcpC virulence determinant in escherichia coli[J]. Int J Med Microbiol, 2010, 300 (7): 429- 434
doi: 10.1016/j.ijmm.2010.02.006
|
33 |
WALDHUBER A , SNYDER G A , ROMMLER F et al. A comparative analysis of the mechanism of toll-Like receptor-disruption by TIR-containing protein c from uropathogenic escherichia coli[J]. Pathogens, 2016, 5 (1): 25-
doi: 10.3390/pathogens5010025
|
34 |
SNYDER G A , DEREDGE D , WALDHUBER A et al. Crystal structures of the toll/interleukin-1 receptor (TIR) domains from the brucella protein tcpB and host adaptor TIRAP reveal mechanisms of molecular mimicry[J]. J Biol Chem, 2014, 289 (2): 669- 679
doi: 10.1074/jbc.M113.523407
|
35 |
SALCEDO S P , MARCHESINI M I , LELOUARD H et al. Brucella control of dendritic cell maturation is dependent on the TIR-containing protein btp1[J]. PLoS Pathog, 2008, 4 (2): e21-
doi: 10.1371/journal.ppat.0040021
|
36 |
ALAIDAROUS M , VE T , CASEY L W et al. Mechanism of bacterial interference with TLR4 signaling by brucella toll/interleukin-1 receptor domain-containing protein TcpB[J]. J Biol Chem, 2014, 289 (2): 654- 668
doi: 10.1074/jbc.M113.523274
|
37 |
SENGUPTA D , KOBLANSKY A , GAINES J et al. Subversion of innate immune responses by brucella through the targeted degradation of the TLR signaling adapter, mal[J]. J Immunol, 2010, 184 (2): 956- 964
doi: 10.4049/jimmunol.0902008
|
38 |
ZOU J , BAGHDAYAN A S , PAYNE S J et al. A TIR domain protein from E. faecalis attenuates MyD88-mediated signaling and NF-kB activation[J]. PLoS One, 2014, 9 (11): e112010-
doi: 10.1371/journal.pone.0112010
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|