Please wait a minute...
浙江大学学报(医学版)  2017, Vol. 46 Issue (2): 211-217    DOI: 10.3785/j.issn.1008-9292.2017.04.15
综述     
肿瘤过继T细胞免疫治疗应用进展
邹继霞(),章程燕,王苹莉*()
浙江大学医学院附属第二医院呼吸科, 浙江 杭州 310009
Advances in application of adoptive T-cell therapy for cancer patients
ZOU Jixia(),ZHANG Chengyan,WANG Pingli*()
Department of Respiratory Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
 全文: PDF(493 KB)   HTML
摘要:

肿瘤过继T细胞免疫治疗是指利用肿瘤患者自身或供者的T淋巴细胞,经体外诱导筛选或基因修饰使其获得肿瘤杀伤活性,再通过体外扩增后回输患者体内,从而发挥肿瘤杀伤效应的一种治疗方法。从最早的淋巴因子激活的杀伤细胞,肿瘤浸润淋巴细胞,到后来的基因修饰T淋巴细胞和肿瘤抗原特异性T细胞,过继T细胞免疫治疗正朝着更为精准的肿瘤靶向性和更强的肿瘤细胞杀伤力方向发展。本文概述了三十年来肿瘤过继T细胞免疫治疗应用进展。

关键词: 肿瘤/治疗动物,基因修饰免疫疗法淋巴细胞,肿瘤浸润/免疫学综述    
Abstract:

Adoptive T-cell therapy is the administration of tumor cytotoxic T-cells derived from either patient himself or donors, which were induced or genetically engineered and expanded in vitro, and then injected into patients. Several strategies for adoptive T-cell therapy have been developed since last 30 years. From lymphokine-activated killer cells, tumor-infiltrating lymphocytes, cytokine-induced killer cells, to gene-modified T-cells and tumor associated antigen (TAA)-specific cytotoxic T-cells, the adoptive T-cell therapy has been moving forward to more precise tumor targeting and more effective in elimination of cancer cells. This article reviewed the advances of therapeutic approaches of adoptive T-cell therapy for cancer patients.

Key words: Neoplasms/therapy    Animals, genetically modified    Immunotherapy    Lymphocytes, tumor-infiltrating/immunology    Review
收稿日期: 2017-03-13 出版日期: 2017-08-07
基金资助: 浙江省重点研发计划(2015C03043);浙江省自然科学基金(LR14H010001)
通讯作者: 王苹莉     E-mail: zoujixia@sina.cn;w_pl77@163.com
作者简介: 邹继霞(1991—),女,硕士,住院医师,主要从事呼吸疾病的诊断与治疗,E-mail: zoujixia@sina.cn;http://orcid.org/0000-0001-5009-559
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邹继霞
章程燕
王苹莉

引用本文:

邹继霞,章程燕,王苹莉. 肿瘤过继T细胞免疫治疗应用进展[J]. 浙江大学学报(医学版), 2017, 46(2): 211-217.

ZOU Jixia,ZHANG Chengyan,WANG Pingli. Advances in application of adoptive T-cell therapy for cancer patients. J Zhejiang Univ (Med Sci), 2017, 46(2): 211-217.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2017.04.15        http://www.zjujournals.com/xueshu/med/CN/Y2017/V46/I2/211

1 ROSENBERG S A , LOTZE M T , MUUL L M et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer[J]. N Engl J Med, 1985, 313 (23): 1485- 1492
2 ROSENBERG S A , LOTZE M T , MUUL L M et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone[J]. N Engl J Med, 1987, 316 (15): 889- 897
doi: 10.1056/NEJM198704093161501
3 KIMURA H , YAMAGUCHI Y . Adjuvant immunotherapy with interleukin 2 and lymphokine-activated killer cells after noncurative resection of primary lung cancer[J]. Lung Cancer, 1995, 13 (1): 31- 44
doi: 10.1016/0169-5002(95)00478-J
4 KIMURA H , YAMAGUCHI Y . A phase Ⅲ randomized study of interleukin-2 lymphokine-activated killer cell immunotherapy combined with chemotherapy or radiotherapy after curative or noncurative resection of primary lung carcinoma[J]. Cancer, 1997, 80 (1): 42- 49
doi: 10.1002/(ISSN)1097-0142
5 YANO T , SUGIO K , YAMAZAKI K et al. Postoperative adjuvant adoptive immunotherapy with lymph node-LAK cells and IL-2 for pathologic stage Ⅰ non-small cell lung cancer[J]. Lung Cancer, 1999, 26 (3): 143- 148
doi: 10.1016/S0169-5002(99)00082-3
6 ROSENBERG S A , PACKARD B S , AEBERSOLD P M et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma: a preliminary report[J]. N Engl J Med, 1988, 319 (25): 1676- 1680
doi: 10.1056/NEJM198812223192527
7 DUDLEY M E , WUNDERLICH J R , ROBBINS P F et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes[J]. Science, 2002, 298 (5594): 850- 854
doi: 10.1126/science.1076514
8 SCHMIDT-WOLF I G , NEGRIN R S , KIEM H P et al. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity[J]. J Exp Med, 1991, 174 (1): 139- 149
doi: 10.1084/jem.174.1.139
9 SCHMIDT-WOLF I G , FINKE S , TROJANECK B et al. Phase Ⅰ clinical study applying autologous immunological effector cells transfected with the interleukin-2 gene in patients with metastatic renal cancer, colorectal cancer and lymphoma[J]. Br J Cancer, 1999, 81 (6): 1009- 1016
doi: 10.1038/sj.bjc.6690800
10 M?RTEN A , ZISKE C , SCH?TTKER B et al. Interactions between dendritic cells and cytokine-induced killer cells lead to an activation of both populations[J]. J Immunother, 2001, 24 (6): 502- 510
doi: 10.1097/00002371-200111000-00007
11 CHEN R , DENG X , WU H et al. Combined immunotherapy with dendritic cells and cytokine-induced killer cells for malignant tumors: a systematic review and meta-analysis[J]. Int Immunopharmacol, 2014, 22 (2): 451- 464
doi: 10.1016/j.intimp.2014.07.019
12 SCHMEEL L C , SCHMEEL F C , COCH C et al. Cytokine-induced killer (CIK) cells in cancer immunotherapy: report of the international registry on CIK cells (IRCC)[J]. J Cancer Res Clin Oncol, 2015, 41 (5): 839- 849
13 CLAY T M , CUSTER M C , SACHS J et al. Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity[J]. J Immunol, 1999, 163 (1): 507- 513
14 MORGAN R A , DUDLEY M E , WUNDERLICH J R et al. Cancer regression in patients after transfer of genetically engineered lymphocytes[J]. Science, 2006, 314 (5796): 126- 129
doi: 10.1126/science.1129003
15 GROSS G , WAKS T , ESHHAR Z . Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity[J]. Proc Natl Acad Sci U S A, 1989, 86 (24): 10024- 10028
doi: 10.1073/pnas.86.24.10024
16 ESHHAR Z , WAKS T , GROSS G et al. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors[J]. Proc Natl Acad Sci U S A, 1993, 90 (2): 720- 724
doi: 10.1073/pnas.90.2.720
17 DOTTI G , SAVOLDO B , BRENNER M . Fifteen years of gene therapy based on chimeric antigen receptors: "are we nearly there yet?"[J]. Hum Gene Ther, 2009, 20 (11): 1229- 1239
doi: 10.1089/hum.2009.142
18 WHILDING L M , MAHER J . CAR T-cell immunotherapy: The path from the by-road to the freeway?[J]. Mol Oncol, 2015, 9 (10): 1994- 2018
doi: 10.1016/j.molonc.2015.10.012
19 KALOS M , LEVINE B L , PORTER D L et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia[J]. Sci Transl Med, 2011, 3 (95): 5ra73-
doi: 10.1126/scitranslmed.3002842
20 KOCHENDERFER J N , DUDLEY M E , KASSIM S H et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor[J]. J Clin Oncol, 2015, 33 (6): 540- 549
doi: 10.1200/JCO.2014.56.2025
21 TILL B G , JENSEN M C , WANG J et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results[J]. Blood, 2012, 119 (17): 3940- 3950
doi: 10.1182/blood-2011-10-387969
22 KERSHAW M H , WESTWOOD J A , PARKER L L et al. A phase Ⅰ study on adoptive immunotherapy using gene-modified T cells for ovarian cancer[J]. Clin Cancer Res, 2006, 12 (20 Pt 1): 6106- 6115
23 LAMERS C H , SLEIJFER S , VULTO A G et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase Ⅸ: first clinical experience[J]. J Clin Oncol, 2006, 24 (13): e20- e22
doi: 10.1200/JCO.2006.05.9964
24 AHMED N , BRAWLEY V S , HEGDE M et al. Human epidermal growth factor receptor 2 (HER2) -specific Chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive-sarcoma[J]. J Clin Oncol, 2015, 33 (15): 1688- 1696
doi: 10.1200/JCO.2014.58.0225
25 BROWN C E , ALIZADEH D , STARR R et al. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy[J]. N Engl J Med, 2016, 375 (26): 2561- 2569
doi: 10.1056/NEJMoa1610497
26 NEWICK K , O'BRIEN S , MOON E et al. CAR T Cell Therapy for Solid Tumors[J]. Annu Rev Med, 2017, 68 139- 152
doi: 10.1146/annurev-med-062315-120245
27 DAVILA M L , RIVIERE I , WANG X et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia[J]. Sci Transl Med, 2014, 6 (224): 224ra25-
doi: 10.1126/scitranslmed.3008226
28 PORTER D L , LEVINE B L , KALOS M et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia[J]. N Engl J Med, 2011, 365 (8): 725- 733
doi: 10.1056/NEJMoa1103849
29 BRUDNO J N , KOCHENDERFER J N . Toxicities of chimeric antigen receptor T cells: recognition and management[J]. Blood, 2016, 127 (26): 3321- 3330
doi: 10.1182/blood-2016-04-703751
30 PAPADOPOULOS E B , LADANYI M , EMANUEL D et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation[J]. N Engl J Med, 1994, 330 (17): 1185- 1191
doi: 10.1056/NEJM199404283301703
31 SMITH C , COOPER L , BURGESS M et al. Functional reversion of antigen-specific CD8+ T cells from patients with Hodgkin lymphoma following in vitro stimulation with recombinant polyepitope[J]. J Immunol, 2006, 177 (7): 4897- 4906
doi: 10.4049/jimmunol.177.7.4897
32 BOLLARD C M , GOTTSCHALK S , LEEN A M et al. Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer[J]. Blood, 2007, 110 (8): 2838- 2845
doi: 10.1182/blood-2007-05-091280
33 HESLOP H E , SLOBOD K S , PULE M A et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients[J]. Blood, 2010, 115 (5): 925- 935
doi: 10.1182/blood-2009-08-239186
34 BOLLARD C M , GOTTSCHALK S , TORRANO V et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins[J]. J Clin Oncol, 2014, 32 (8): 798- 808
doi: 10.1200/JCO.2013.51.5304
35 TRAN E , TURCOTTE S , GROS A et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer[J]. Science, 2014, 344 (6184): 641- 645
doi: 10.1126/science.1251102
36 TRAN E , ROBBINS P F , LU Y C et al. T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer[J]. N Engl J Med, 2016, 375 (23): 2255- 2262
doi: 10.1056/NEJMoa1609279
[1] 刘馨刚,吴敏,李素莹,李忠宝,胡青莲,周峻,汤谷平. 氟硼二吡咯类光敏剂的制备及对肿瘤细胞的光动力学影响[J]. 浙江大学学报(医学版), 2017, 46(2): 135-143.
[2] 郭峰亮,汤谷平,胡青莲. 纳米材料靶向肿瘤相关巨噬细胞用于肿瘤成像及治疗的研究进展[J]. 浙江大学学报(医学版), 2017, 46(2): 167-172.
[3] 何玉洁,潘建平. 病原菌对NOD样受体及Toll样受体信号通路介导的固有免疫逃逸机制研究进展[J]. 浙江大学学报(医学版), 2017, 46(2): 218-224.
[4] 卢伸,王青青. 第14届国际树突状细胞会议热点解读[J]. 浙江大学学报(医学版), 2017, 46(1): 106-109.
[5] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[6] 陈立颖,汪仪,陈忠. 颞叶癫痫与海马成体神经再生[J]. 浙江大学学报(医学版), 2017, 46(1): 22-29.
[7] 王颖,汪仪,陈忠. 中枢胆碱能系统与癫痫关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 15-21.
[8] 高思倩,沈咏梅,耿福能,李艳华,高建青. 糖尿病溃疡动物模型的建立及相关治疗研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[9] 李文龙,瞿海斌. 近红外光谱应用于中药质量控制及生产过程监控的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 80-88.
[10] 封盛 等. 糖皮质激素受体信号通路在膀胱癌治疗中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 655-660.
[11] 夏光发 等. 新辅助化疗前后激素受体变化的乳腺癌患者辅助内分泌治疗的疗效[J]. 浙江大学学报(医学版), 2016, 45(6): 614-619.
[12] 李统宇 等. 杜氏肌营养不良疾病模型及基因治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 648-654.
[13] 曹鹏 等. 双氢青蒿素抗肿瘤分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 501-507.
[14] 李亭亭 等. 中性粒细胞在哮喘中作用的研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 544-549.
[15] 王雪 等. TANK结合激酶1在抗病毒免疫应答中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 550-557.