Please wait a minute...
浙江大学学报(医学版)  2017, Vol. 46 Issue (2): 179-185    DOI: 10.3785/j.issn.1008-9292.2017.04.10
原著     
尼克酰胺降低妊娠期糖尿病大鼠的血糖水平以及调控线粒体超氧水平研究
王莉(),王瑜,武海英
河南省人民医院产科, 河南 郑州 450000
Nicotinamide regulates blood glucose level and affects mitochondrial superoxide level in gestational diabetic rats
WANG Li(),WANG Yu,WU Haiying
Department of Obstetrics, Henan Province People's Hospital, Zhengzhou 450000, China
 全文: PDF(1980 KB)   HTML
摘要:

目的:探讨尼克酰胺对妊娠期糖尿病的潜在治疗效果及其可能的抗氧化作用机制。方法:取妊娠第0天的9~11周龄雌性SD大鼠以链脲佐菌素35 mg/kg进行单次腹腔注射,构建妊娠期糖尿病大鼠模型;从妊娠第6天至第20天分别给予不同剂量(0、50、100、200 mg/kg)尼克酰胺灌胃。将大鼠分为无妊娠糖尿病的正常对照组、未给药的妊娠糖尿病对照组(0 mg/kg)和给尼克酰胺小(50 mg/kg)、中(100 mg/kg)、大(200 mg/kg)剂量各组,每组8只。在妊娠第21天检测各组大鼠空腹血糖。检测各组胎鼠脑组织和大鼠骨骼肌组织的线粒体超氧水平和抗氧化酶活性。分别应用实时荧光定量PCR和蛋白质印迹法检测各组骨骼肌组织超氧化物歧化酶(SOD1和SOD2)、过氧化氢酶(CAT)和线粒体去乙酰化酶(SIRT3)的表达量。结果:尼克酰胺各组血糖降低,其神经元线粒体超氧水平均低于糖尿病对照组(均P<0.05)。尼克酰胺各组骨骼肌组织中SOD2 mRNA/蛋白水平和活性均高于糖尿病对照组(均P<0.05),而组织中CAT的表达量和活性差异均无统计学意义(均P>0.05)。与糖尿病对照组比较,尼克酰胺各组SIRT3的表达均增加(均P<0.05),线粒体SOD2蛋白乙酰化水平均降低(均P<0.05)。结论:尼克酰胺降低妊娠糖尿病大鼠的空腹血糖水平,并可能通过促进SIRT3蛋白功能降低线粒体SOD2蛋白乙酰化水平、增强SOD2活性从而降低妊娠期糖尿病大鼠的线粒体超氧水平。

关键词: 糖尿病,妊娠/药物疗法烟酰胺/投药和剂量烟酰胺/治疗应用线粒体超氧化物歧化酶/血液过氧化氢酶/血液疾病模型,动物    
Abstract:

Objective: To investigate the effects of nicotinamide (NAM) on blood glucose level and anti-oxidative enzyme activity in gestational diabetic (GDM) rats. Methods: GDM model was induced by injection of STZ (35 mg/kg) in pregnant female Sprague-Dawley rats. Nicotinamide was given to GDM rats by gavage at 50, 100 or 200 mg/kg q.d from gestational d 6 to d 20. The rats were divided into normal control group, GDM group (0 mg/kg), low-dose NAM group (50 mg/kg), middle-dose NAM group (100 mg/kg) and high-dose NAM group (200 mg/kg) with 8 animals in each group. When rats were sacrificed at d 21, the blood glucose level was measured; skeletal muscle and fetal brain samples were collected. The expression and activity of anti-oxidative enzymes, including superoxide dismutase (SOD1, SOD2), catalase (CAT) and sirtuin-3 (SIRT3) were measured by RT-PCR and Western blot. Results: Nicotinamide significantly lowered the blood glucose in GDM rats and decreased mitochondrial superoxide level in the fetal cortical neurons. SOD2 was induced in skeletal muscle by nicotinamide in GDM rats (P<0.05), while no significant change was observed in the expression of CAT (P>0.05). Nicotinamide increased SIRT3 expression (P<0.05) and decreased deacetylation of SOD2 in skeletal muscle of GDM rats (P<0.05). Conclusion: Nicotinamide can lower the blood glucose level in GDM rats, and decrease mitochondrial superoxide level, which is associated with promoting SIRT3 activity to deacetylate SOD2 and elevate SOD2 activity in GDM rats.

Key words: Diabetes, gestational/drug therapy    Niacinamide/padministration & dosage    Niacinamide/therapeutic use    Mitochondria    Superoxide dismutase/blood    Catalase/blood    Disease models, animal
收稿日期: 2017-01-18 出版日期: 2017-10-31
作者简介: 王莉(1982—)硕士,主治医师,主要从事妊娠并发症和妇科肿瘤研究;E-mail:violinlxx@126.com;http://orcid.org/0000-0003-4288-1320
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王莉
王瑜
武海英

引用本文:

王莉,王瑜,武海英. 尼克酰胺降低妊娠期糖尿病大鼠的血糖水平以及调控线粒体超氧水平研究[J]. 浙江大学学报(医学版), 2017, 46(2): 179-185.

WANG Li,WANG Yu,WU Haiying. Nicotinamide regulates blood glucose level and affects mitochondrial superoxide level in gestational diabetic rats. J Zhejiang Univ (Med Sci), 2017, 46(2): 179-185.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2017.04.10        http://www.zjujournals.com/xueshu/med/CN/Y2017/V46/I2/179

图 1  三组MitoSOX标记的神经元线粒体超氧阴离子在激光扫描共聚焦显微镜下红色荧光比较
图 2  三组骨骼肌细胞内抗氧化酶活性比较
图 3  各组骨骼肌组织中SOD2、SOD1、CAT和SIRT3 mRNA相对表达量比较
图 4  各组骨骼肌细胞内抗氧化酶及SOD2乙酰化产物的电泳图
图 5  各组骨骼肌细胞内抗氧化酶及SOD2乙酰化产物表达量的定量分析
1 BOYLE K E , NEWSOM S A , JANSSEN R C et al. Skeletal muscle MnSOD, mitochondrial complex Ⅱ, and SIRT3 enzyme activities are decreased in maternal obesity during human pregnancy and gestational diabetes mellitus[J]. J Clin Endocrinol Metab, 2013, 98 (10): E1601- E1609
doi: 10.1210/jc.2013-1943
2 CHENG X H , CHAPPLE S J , PATEL B et al. Gestational diabetes mellitus impairs Nrf2-mediated adaptive antioxidant defenses and redox signaling in fetal endothelial cells in utero[J]. Diabetes, 2013, 62 (12): 4088- 4097
doi: 10.2337/db13-0169
3 JOHN C M , RAMASAMY R , AL NAQEEB G et al. Nicotinamide supplementation protects gestational diabetic rats by reducing oxidative stress and enhancing immune responses[J]. Curr Med Chem, 2012, 19 (30): 5181- 5186
doi: 10.2174/092986712803530449
4 LIOCHEV S I . Superoxide dismutase mimics, other mimics, antioxidants, prooxidants, and related matters[J]. Chem Res Toxicol, 2013, 26 (9): 1312- 1319
doi: 10.1021/tx4001623
5 OZDEN O , PARK S H , KIM H S et al. Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress[J]. Aging (Albany NY), 2011, 3 (2): 102- 107
6 CHEN I C , CHIANG W F , LIU S Y et al. Role of SIRT3 in the regulation of redox balance during oral carcinogenesis[J]. Mol Cancer, 2013, 12 68-
doi: 10.1186/1476-4598-12-68
7 WEYDERT C J , CULLEN J J . Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue[J]. Nat Protoc, 2010, 5 (1): 51- 66
doi: 10.1038/nprot.2009.197
8 庄 璟怡 , 应 豪 , 王 德芬 . 小剂量链脲佐菌素建立妊娠期糖尿病大鼠模型的研究[J]. 现代妇产科进展, 2014, 23 (8): 607- 610
ZHUANG Jingyi , YING Hao , WANG Defen . A study on establishment of low-dose Streptozotocin-induced gestiational diabetics in rats[J]. Progress in Obstetrics and Gynecology, 2014, 23 (8): 607- 610
9 CADENAS E , DAVIES K J . Mitochondrial free radical generation, oxidative stress, and aging[J]. Free Radic Biol Med, 2000, 29 (3-4): 222- 230
doi: 10.1016/S0891-5849(00)00317-8
10 FOSTER W , MYLLYNEN P , WINN L M et al. Reactive oxygen species, diabetes and toxicity in the placenta-a workshop report[J]. Placenta, 2008, 29 Suppl A S105- S107
11 SHYMANS'KY I O , KUCHMEROV'SKA T M , DONCHENKO H V et al. Oxidative stress correction by nicotinamide and nicotynol-GABA in diabetic neuropathy[J]. Ukr Biokhim Zh(1999), 2002, 74 (5): 89- 95
12 BRESCIANI G , GONZáLEZ-GALLEGO J , DA CRUZ I B et al. The Ala16Val MnSOD gene polymorphism modulates oxidative response to exercise[J]. Clin Biochem, 2013, 46 (4-5): 335- 340
doi: 10.1016/j.clinbiochem.2012.11.020
13 TAO R , COLEMAN M C , PENNINGTON J D et al. Sirt3-Mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress[J]. Mole Cell, 2010, 40 (6): 893- 904
doi: 10.1016/j.molcel.2010.12.013
14 TAO R , VASSILOPOULOS A , PARISIADOU L et al. Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis[J]. Antioxid Redox Signal, 2014, 20 (10): 1646- 1654
doi: 10.1089/ars.2013.5482
15 CANTó C , HOUTKOOPER R H , PIRINEN E et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet induced obesity[J]. Cell metab, 2012, 15 (6): 838- 847
doi: 10.1016/j.cmet.2012.04.022
[1] 王晏鹏,黄琼晓,徐盛,舒静. 采用吸宫和电凝方法建立小鼠子宫内膜损伤模型的比较[J]. 浙江大学学报(医学版), 2017, 46(2): 186-191.
[2] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[3] 李统宇 等. 杜氏肌营养不良疾病模型及基因治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 648-654.
[4] 高玉海 等. 淫羊藿总黄酮胶囊对生长期大鼠骨密度和骨形态计量学的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 581-586.
[5] 洪 梦琪,聂 振禹,陈 争跃,余 雄伟,包 蓓艳. 腹膜透析液通过上调葡萄糖转运体促进腹膜纤维化[J]. 浙江大学学报(医学版), 2016, 45(6): 598-606.
[6] 林先刚 等. 姜黄素对慢性阻塞性肺疾病大鼠肺动脉平滑肌细胞的作用及其机制研究[J]. 浙江大学学报(医学版), 2016, 45(5): 469-476.
[7] 肖卫强 等. 不同模式口鼻式吸烟诱导急性肺损伤的实验研究[J]. 浙江大学学报(医学版), 2016, 45(5): 522-529.
[8] 白石 等. 雷公藤甲素缓解局灶性脑组织缺血再灌注损伤诱发的炎症及其相关凋亡的研究[J]. 浙江大学学报(医学版), 2016, 45(5): 493-500.
[9] 刘军 等. 机体炎症因子和氧化应激标志物介导姜黄素抑制骨性关节炎的作用机制[J]. 浙江大学学报(医学版), 2016, 45(5): 461-468.
[10] 沈志森 等. RNA干扰沉默DJ-1基因对Hep-2细胞裸鼠移植瘤生长的影响[J]. 浙江大学学报(医学版), 2016, 45(4): 349-355.
[11] 韩亮, 侯金超, 方向明. 苏拉明对脓毒症小鼠肺组织和循环炎症反应的抑制作用[J]. 浙江大学学报(医学版), 2015, 44(5): 553-558.
[12] 刘扬, 汪仪, 许正浩, 陈忠. 低频率电刺激抑制杏仁核电点燃癫痫刺激模式依赖效应的实验研究[J]. 浙江大学学报(医学版), 2015, 44(5): 539-545.
[13] 陶安风, 许正浩, 吴承昊, 汪仪, 侯伟伟, 张世红, 陈忠. 不同波形低频率电刺激对小鼠海马电点燃癫痫的作用比较[J]. 浙江大学学报(医学版), 2015, 44(3): 315-322.
[14] 林开清, 朱丽波, 张信美, 林俊. 肥大细胞在雌激素介导的子宫内膜异位症中的作用机制研究[J]. 浙江大学学报(医学版), 2015, 44(3): 269-277.
[15] 朱丽波, 林开清, 张信美, 林俊. 色甘酸钠对子宫内膜异位症大鼠肥大细胞功能的调节作用[J]. 浙江大学学报(医学版), 2015, 44(3): 278-284.