Please wait a minute...
浙江大学学报(医学版)  2017, Vol. 46 Issue (2): 167-172    DOI: 10.3785/j.issn.1008-9292.2017.04.08
专题报道     
纳米材料靶向肿瘤相关巨噬细胞用于肿瘤成像及治疗的研究进展
郭峰亮1(),汤谷平2,*(),胡青莲1
1. 浙江工业大学生物工程学院, 浙江 杭州 310032
2. 浙江大学有机与药物化学研究所, 浙江 杭州 310028
Advances in nanoparticle-targeting tumor associated macrophages for cancer imaging and therapy
GUO Fengliang1(),TANG Guping2,*(),HU Qinglian1
1. College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
2. Institute of Organic and Medicinal Chemistry, Zhejiang University, Hangzhou 310028, China
 全文: PDF(2632 KB)   HTML
摘要:

肿瘤组织由肿瘤细胞和复杂的微环境构成。肿瘤相关巨噬细胞(TAM)是肿瘤微环境的重要组成成分,在肿瘤生长转移及微环境调控中扮演着重要的角色。近年来的研究表明,纳米材料作为新兴的技术平台,为肿瘤的成像和治疗提供了新的思路。一方面可以通过TAM成像为肿瘤发生、发展以及肿瘤治疗的效果提供直观的证据;另一方面通过TAM靶向杀伤或者促进TAM类型转化,调节肿瘤微环境的免疫抑制,提高肿瘤治疗效果。本文阐述了TAM的功能,同时对靶向TAM的纳米材料在肿瘤成像以及治疗方面的应用进行了综述。

关键词: 巨噬细胞/生理学肿瘤/免疫学肿瘤/诊断,肿瘤/治疗纳米结构免疫疗法综述    
Abstract:

Tumor tissues are composed of tumor cells and complicate microenvironment. Tumor associated macrophages (TAMs) as an important component in tumor microenvironment, play fundamental roles in tumor progression, metastasis and microenvironment regulation. Recently, studies have found that nanotechnology, as an emerging platform, provides unique potential for cancer imaging and therapy. With the nanotechnology, TAMs imaging presents direct evidence for cancer development, progression, and the effectiveness of cancer treatments; it also can regulate the immunosuppression of tumor microenvironment and improve therapeutic efficiency through TAMs targeted killing or phenotypic transformation. In this article, we illustrate the function of TAMs and review the latest development in nano-carriers and their applications in tumor associated macrophage targeting cancer imaging and therapy.

Key words: Macrophages/physiology    Neoplasms/immunology    Neoplasms/diagnosis    Neoplasms/therapy    Nanostructures    Immunotherapy    Review
收稿日期: 2016-12-23 出版日期: 2017-08-07
基金资助: 国家自然科学基金(51603186)
通讯作者: 汤谷平     E-mail: 374095668@qq.com;tangguping@zju.edu.cn
作者简介: 郭峰亮(1991—),男,硕士研究生,主要从事纳米材料与免疫系统相互作用研究;E-mail: 374095668@qq.com;http://orcid.org/0000-0003-1874-4326
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭峰亮
汤谷平
胡青莲

引用本文:

郭峰亮,汤谷平,胡青莲. 纳米材料靶向肿瘤相关巨噬细胞用于肿瘤成像及治疗的研究进展[J]. 浙江大学学报(医学版), 2017, 46(2): 167-172.

GUO Fengliang,TANG Guping,HU Qinglian. Advances in nanoparticle-targeting tumor associated macrophages for cancer imaging and therapy. J Zhejiang Univ (Med Sci), 2017, 46(2): 167-172.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2017.04.08        http://www.zjujournals.com/xueshu/med/CN/Y2017/V46/I2/167

图 1  纳米材料靶向肿瘤相关巨噬细胞应用于肿瘤成像(A)和肿瘤免疫治疗(B)的示意图
图 2  肿瘤相关巨噬细胞在肿瘤发展过程中分泌的主要细胞因子[3]
1 UMAR A , DUNN B K , GREENWALD P . Future directions in cancer prevention[J]. Nat Rev Cancer, 2012, 12 (12): 835- 848
doi: 10.1038/nrc3397
2 KELLAND L . The resurgence of platinum-based cancer chemotherapy[J]. Nat Rev Cancer, 2007, 7 (8): 573- 584
doi: 10.1038/nrc2167
3 QUAIL D F , JOYCE J A . Microenvironmental regulation of tumor progression and metastasis[J]. Nat Med, 2013, 19 (11): 1423- 1437
doi: 10.1038/nm.3394
4 HANAHAN D , COUSSENS L M . Accessories to the crime: functions of cells recruited to the tumor microenvironment[J]. Cancer Cell, 2012, 21 (3): 309- 322
doi: 10.1016/j.ccr.2012.02.022
5 MELLMAN I , COUKOS G , DRANOFF G . Cancer immunotherapy comes of age[J]. Nature, 2011, 480 (7378): 480- 489
doi: 10.1038/nature10673
6 MCDERMOTT D , LEBBé C , HODI F S et al. Durable benefit and the potential for long-term survival with immunotherapy in advanced melanoma[J]. Cancer Treat Rev, 2014, 40 (9): 1056- 1064
doi: 10.1016/j.ctrv.2014.06.012
7 FUKUMURA D , JAIN R K . Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize[J]. J Cell Biochem, 2007, 101 (4): 937- 949
doi: 10.1002/(ISSN)1097-4644
8 WEISSLEDER R , NAHRENDORF M , PITTET M J . Imaging macrophages with nanoparticles[J]. Nat Mater, 2014, 13 (2): 125- 138
doi: 10.1038/nmat3780
9 SOLINAS G , GERMANO G , MANTOVANI A et al. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation[J]. J Leukoc Biol, 2009, 86 (5): 1065- 1073
doi: 10.1189/jlb.0609385
10 SORIA G , BEN-BARUCH A . The inflammatory chemokines CCL2 and CCL5 in breast cancer[J]. Cancer Lett, 2008, 267 (2): 271- 285
doi: 10.1016/j.canlet.2008.03.018
11 TSUTSUMI C , SONODA K H , EGASHIRA K et al. The critical role of ocular-infiltrating macrophages in the development of choroidal neovascularization[J]. J Leukoc Biol, 2003, 74 (1): 25- 32
doi: 10.1189/jlb.0902436
12 LOCATI M , DEUSCHLE U , MASSARDI M L et al. Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes[J]. J Immunol, 2002, 168 (7): 3557- 3562
doi: 10.4049/jimmunol.168.7.3557
13 POLLARD J W . Tumour-educated macrophages promote tumour progression and metastasis[J]. Nat Rev Cancer, 2004, 4 (1): 71- 78
doi: 10.1038/nrc1256
14 BINGLE L , BROWN N J , LEWIS C E . The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies[J]. J Pathol, 2002, 196 (3): 254- 265
doi: 10.1002/(ISSN)1096-9896
15 VINOGRADOV S , WARREN G , WEI X . Macrophages associated with tumors as potential targets and therapeutic intermediates[J]. Nanomedicine, 2014, 9 (5): 695- 707
doi: 10.2217/nnm.14.13
16 YANG C , HE L , HE P et al. Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway[J]. Med Oncol, 2015, 32 (2): 352-
17 JINUSHI M , CHIBA S , YOSHIYAMA H et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells[J]. Proc Nati Acad Sci U S A, 2011, 108 (30): 12425- 12430
doi: 10.1073/pnas.1106645108
18 BANCIU M , METSELAAR J M , SCHIFFELERS R M et al. Antitumor activity of liposomal prednisolone phosphate depends on the presence of functional tumor-associated macrophages in tumor tissue[J]. Neoplasia, 2008, 10 (2): 108- 117
doi: 10.1593/neo.07913
19 LIN E Y , NGUYEN A V , RUSSELL R G et al. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy[J]. J Exp Med, 2001, 193 (6): 727- 740
doi: 10.1084/jem.193.6.727
20 AMOOZGAR Z , GOLDBERG M S . Targeting myeloid cells using nanoparticles to improve cancer immunotherapy[J]. Adv Drug Deliv Rev, 2015, 91 38- 51
doi: 10.1016/j.addr.2014.09.007
21 DALDRUP-LINK H E , GOLOVKO D , RUFFELL B et al. MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles[J]. Clin Cancer Res, 2011, 17 (17): 5695- 5704
doi: 10.1158/1078-0432.CCR-10-3420
22 DALDRUP-LINK H , COUSSENS L M . MR imaging of tumor-associated macrophages[J]. Oncoimmunology, 2012, 1 (4): 507- 509
doi: 10.4161/onci.19456
23 KELIHER E J , YOO J , NAHRENDORF M et al. 89Zr-labeled dextran nanoparticles allow in vivo macrophage imaging[J]. Bioconjug Chem, 2011, 22 (12): 2383- 2389
doi: 10.1021/bc200405d
24 PARVEEN S , SAHOO S K . Polymeric nanoparticles for cancer therapy[J]. J Drug Target, 2008, 16 (2): 108- 123
doi: 10.1080/10611860701794353
25 CHOI M R , STANTON-MAXEY K J , STANLEY J K et al. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors[J]. Nano Lett, 2007, 7 (12): 3759- 3765
doi: 10.1021/nl072209h
26 MILLER M A , ZHENG Y R , GADDE S et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(Ⅳ) pro-drug[J]. Nat Commun, 2015, 6 8692-
doi: 10.1038/ncomms9692
27 ALIZADEH D , ZHANG L , HWANG J et al. Tumor-associated macrophages are predominant carriers of cyclodextrin-based nanoparticles into gliomas[J]. Nanomedicine, 2010, 6 (2): 382- 390
doi: 10.1016/j.nano.2009.10.001
28 MOVAHEDI K , SCHOONOOGHE S , LAOUI D et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages[J]. Cancer Res, 2012, 72 (16): 4165- 4177
doi: 10.1158/0008-5472.CAN-11-2994
29 HUANG Z , ZHANG Z , JIANG Y et al. Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy[J]. J Control Release, 2012, 158 (2): 286- 292
doi: 10.1016/j.jconrel.2011.11.013
30 SONG M , LIU T , SHI C et al. Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like dhenotype and attenuating tumor hypoxia[J]. ACS Nano, 2016, 10 (1): 633- 647
doi: 10.1021/acsnano.5b06779
[1] 何玉洁,潘建平. 病原菌对NOD样受体及Toll样受体信号通路介导的固有免疫逃逸机制研究进展[J]. 浙江大学学报(医学版), 2017, 46(2): 218-224.
[2] 陈琪,吴敏,白宏震,郭则灵,周峻,王青青,汤谷平. 细菌外膜囊泡纳米载体的制备及其免疫调节作用[J]. 浙江大学学报(医学版), 2017, 46(2): 118-126.
[3] 邹继霞,章程燕,王苹莉. 肿瘤过继T细胞免疫治疗应用进展[J]. 浙江大学学报(医学版), 2017, 46(2): 211-217.
[4] 王颖,汪仪,陈忠. 中枢胆碱能系统与癫痫关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 15-21.
[5] 高思倩,沈咏梅,耿福能,李艳华,高建青. 糖尿病溃疡动物模型的建立及相关治疗研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[6] 李文龙,瞿海斌. 近红外光谱应用于中药质量控制及生产过程监控的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 80-88.
[7] 卢伸,王青青. 第14届国际树突状细胞会议热点解读[J]. 浙江大学学报(医学版), 2017, 46(1): 106-109.
[8] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[9] 陈立颖,汪仪,陈忠. 颞叶癫痫与海马成体神经再生[J]. 浙江大学学报(医学版), 2017, 46(1): 22-29.
[10] 李统宇 等. 杜氏肌营养不良疾病模型及基因治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 648-654.
[11] 封盛 等. 糖皮质激素受体信号通路在膀胱癌治疗中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 655-660.
[12] 曹鹏 等. 双氢青蒿素抗肿瘤分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 501-507.
[13] 李亭亭 等. 中性粒细胞在哮喘中作用的研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 544-549.
[14] 王雪 等. TANK结合激酶1在抗病毒免疫应答中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 550-557.
[15] 何斌 等. 贝伐珠单克隆抗体在难治性子宫颈癌中的应用进展[J]. 浙江大学学报(医学版), 2016, 45(4): 395-402.