Please wait a minute...
浙江大学学报(医学版)  2017, Vol. 46 Issue (2): 135-143    DOI: 10.3785/j.issn.1008-9292.2017.04.04
专题报道     
氟硼二吡咯类光敏剂的制备及对肿瘤细胞的光动力学影响
刘馨刚(),吴敏,李素莹,李忠宝,胡青莲,周峻,汤谷平*()
浙江大学化学系, 浙江 杭州 310028
Synthesis of BODIPY photosensitizers and their photodynamic effect on cancer cells
LIU Xingang(),WU Min,LI Suying,Li Zhongbao,HU Qinglian,ZHOU Jun,TANG Guping*()
Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310003, China
 全文: PDF(9867 KB)   HTML
摘要:

目的:设计合成两种不同极性取代基的氟硼二吡咯类光敏剂,观察其理化特性和在不同极性条件下的光动力学效应。方法:通过苯甲醛与吡咯活泼氢的缩合反应以及亲电取代反应制备氟硼二吡咯类光敏剂碘代羟基氟硼二吡咯(BPOI)和碘代甲酸甲酯氟硼二吡咯(BPCI)。通过核磁共振氢谱、傅里叶红外光谱和紫外可见吸收光谱、荧光发射光谱对该光敏剂进行理化性质表征。通过1,3-二苯基异苯并呋喃与2',7'-二氯荧光黄双乙酸盐检测该光敏剂活性氧产生能力,并采用MTT法检测其对肿瘤细胞的光动力学效应。结果:核磁共振氢谱和傅里叶红外光谱证实成功合成了两种不同取代基的氟硼二吡咯类光敏剂BPOI和BPCI。两种材料具有低毒性,且易被细胞摄取。meso位为给电子取代基的氟硼二吡咯类光敏剂BPOI产生活性氧的能力受溶剂极性影响大,而meso位为吸电子取代基的氟硼二吡咯类光敏剂BPCI则不受溶剂极性影响。结论:给电子取代基的氟硼二吡咯类光敏剂BPOI在高极性环境中产生活性氧速率慢,而在低极性环境中产生活性氧的能力大大增强,有望用于肿瘤细胞内的环境选择性光动力治疗。

关键词: 光化学疗法光敏感药/药代动力学光敏感药/治疗应用肿瘤/治疗肿瘤细胞,培养的/药物作用光谱法,荧光光谱分析吡咯类/药理学    
Abstract:

Objective: To design and synthesize photosensitizers with different substituents and to identify its physicochemical characteritics and photodynamic effect on cancer cells. Methods: Two kinds of BODIPY photosensitizers BPOI and BPCI were synthesized through condensation reaction between aldehyde and reactive hydrogen of pyrrole, followed with electrophilic substitution reaction. Physicochemical properties were characterized by 1H NMR, FT-IR and UV-visible absorption spectra and fluorescence emission spectra. The ability to produce reactive oxygen species was detected by BPDF and DCFH-DA. Photodynamic therapy effect on rat glioma C6 cells in vitro was determined by MTT method. Results: Two kinds of BODIPY photosensitizers BPOI and BPCI were successfully synthesized with different substituents, which were confirmed by 1H NMR, FT-IR. Both materials had low toxicity and could be readily taken up by tumor cells. The ability of synthesized photosensitizers to produce reactive oxygen species was strongly influenced by solvent polarity when the substituent was electron-donating group, while no effect was found when the substituent was electron-withdrawing group. Conclusion: Photosensitizer BPOI with electron-donating substituent produces reactive oxygen species with a slow rate in a highly polar environment, while greatly enhanced this effect in a low polarity environment, which is expected to be used for environmental-selective photodynamic therapy in tumor cells.

Key words: Photochemotherapy    Photosensitizing agents/pharmacokinetics    Photosensitizing agents/therapeutic use    Neoplasms/therapy    Tumor cells, cultured/drug effects    Spectrometry, fluorescence    Spectrum analysis    Pyrroles/pharmacology
收稿日期: 2016-11-02 出版日期: 2017-08-07
基金资助: 国家自然科学基金(21374098)
通讯作者: 汤谷平     E-mail: liuxg@zju.edu.cn;tangguping@zju.edu.cn
作者简介: 刘馨刚(1989—),男,博士研究生,主要从事生物化学研究;E-mail: liuxg@zju.edu.cn;https://orcid.org/0000-0001-7071-0209
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘馨刚
吴敏
李素莹
李忠宝
胡青莲
周峻
汤谷平

引用本文:

刘馨刚,吴敏,李素莹,李忠宝,胡青莲,周峻,汤谷平. 氟硼二吡咯类光敏剂的制备及对肿瘤细胞的光动力学影响[J]. 浙江大学学报(医学版), 2017, 46(2): 135-143.

LIU Xingang,WU Min,LI Suying,Li Zhongbao,HU Qinglian,ZHOU Jun,TANG Guping. Synthesis of BODIPY photosensitizers and their photodynamic effect on cancer cells. J Zhejiang Univ (Med Sci), 2017, 46(2): 135-143.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2017.04.04        http://www.zjujournals.com/xueshu/med/CN/Y2017/V46/I2/135

图 1  碘代羟基氟硼二吡咯(BPOI)和碘代甲酸甲酯氟硼二吡咯(BPCI)的合成路线图
图 2  中间体BPO、BPC和光敏剂BPOI、BPCI的核磁共振氢谱图
图 3  光敏剂BPOI和BPCI的傅里叶红外光谱图
图 4  中间体BPO、BPI以及光敏剂BPOI、BPCI的紫外可见吸收光谱图和荧光发射光谱图
图 5  C6细胞经BPOI和BPCI孵育4 h后的激光共聚焦扫描显微镜图像
图 6  含有BPOI或BPCI的不同极性溶剂中DPBF在415 nm处紫外吸收特征峰强度变化曲线
图 7  数据归一化处理后DPBF在415 nm波长处紫外可见吸收强度变化趋势
图 8  以DCFH-DA为活性氧指示剂检测光敏剂BPOI和BPCI在细胞内产生单线态氧能力的激光共聚焦扫描显微镜图像
图 9  光敏剂BPOI或BPCI共孵育的C6细胞生存曲线
1 CHENG L , WANG C , FENG L et al. Functional nanomaterials for phototherapies of cancer[J]. Chem Rev, 2014, 114 (21): 10869- 10939
doi: 10.1021/cr400532z
2 LUCKY S S , SOO K C , ZHANG Y . Nanoparticles in photodynamic therapy[J]. Chem Rev, 2015, 115 (4): 1990- 2042
doi: 10.1021/cr5004198
3 LI W , PENG J , TAN L et al. Mild photothermal therapy/photodynamic therapy/chemotherapy of breast cancer by Lyp-1 modified Docetaxel/IR820 Co-loaded micelles[J]. Biomaterials, 2016, 106 119- 133
doi: 10.1016/j.biomaterials.2016.08.016
4 KAMKAEW A , LIM S H , LEE H B et al. BODIPY dyes in photodynamic therapy[J]. Chem Soc Rev, 2013, 42 (1): 77- 88
doi: 10.1039/C2CS35216H
5 KE M R , YEUNG S L , NG D K et al. Preparation and in vitro photodynamic activities of folate-conjugated distyryl boron dipyrromethene based photosensitizers[J]. J Med Chem, 2013, 56 (21): 8475- 8483
doi: 10.1021/jm4009168
6 LOUDET A , BURGESS K . BODIPY dyes and their derivatives: syntheses and spectroscopic properties[J]. Chem Rev, 2007, 107 (11): 4891- 4932
doi: 10.1021/cr078381n
7 YOGO T , URANO Y , MIZUSHIMA A et al. Selective photoinactivation of protein function through environment-sensitive switching of singlet oxygen generation by photosensitizer[J]. Proc Natl Acad Sci U S A, 2008, 105 (1): 28- 32
doi: 10.1073/pnas.0611717105
8 WANG S , LIU H , MACK J et al. A BODIPY-based'turn-on'fluorescent probe for hypoxic cell imaging[J]. Chem Commun, 2015, 51 (69): 13389- 13392
doi: 10.1039/C5CC05139H
9 LIM S H , THIVIERGE C , NOWAK-SLIWINSKA P et al. In vitro and in vivo photocytotoxicity of boron dipyrromethene derivatives for photodynamic therapy[J]. J Med Chem, 2010, 53 (7): 2865- 2874
doi: 10.1021/jm901823u
10 李 黎波 , 李 文敏 , 项 蕾红 et al. 光动力疗法在中国的应用与临床研究[J]. 中国激光医学杂志, 2012, 21 (5): 278- 307
LI Libo , LI Wenming , XIANG Leihong et al. Photodynamic therapy: clinical research and application in China[J]. Chinese Journal of Laser Medicine & Surgery, 2012, 21 (5): 278- 307
11 HE H , LO P C , YEUNG S L et al. Synthesis and in vitro photodynamic activities of pegylated distyryl boron dipyrromethene derivatives[J]. J Med Chem, 2011, 54 (8): 3097- 3102
doi: 10.1021/jm101637g
12 BOURRé L , THIBAUT S , BRIFFAUD A et al. Indirect detection of photosensitizer ex vivo[J]. J Photochem Photobiol B, 2002, 67 (1): 23- 31
doi: 10.1016/S1011-1344(02)00279-8
[1] 郭峰亮,汤谷平,胡青莲. 纳米材料靶向肿瘤相关巨噬细胞用于肿瘤成像及治疗的研究进展[J]. 浙江大学学报(医学版), 2017, 46(2): 167-172.
[2] 邹继霞,章程燕,王苹莉. 肿瘤过继T细胞免疫治疗应用进展[J]. 浙江大学学报(医学版), 2017, 46(2): 211-217.
[3] 夏光发 等. 新辅助化疗前后激素受体变化的乳腺癌患者辅助内分泌治疗的疗效[J]. 浙江大学学报(医学版), 2016, 45(6): 614-619.
[4] 岑超等. 纳秒脉冲电场肿瘤电消融的分子生物学机制[J]. 浙江大学学报(医学版), 2015, 44(6): 678-683.
[5] 崔光莹等. 脉冲电场肿瘤消融激发免疫反应的研究进展[J]. 浙江大学学报(医学版), 2015, 44(6): 672-677.
[6] 周朵, 赵正言. 麻疹病毒抗肿瘤作用的研究进展[J]. 浙江大学学报(医学版), 2015, 44(4): 458-464.
[7] 过川根,等.
磁共振弥散加权成像联合动态增强在肝癌患者TACE术后病灶残留及复发监测中的应用价值
[J]. 浙江大学学报(医学版), 2014, 43(1): 77-82+88.
[8] 柴延兰,王娟,刘孜. 代谢组学——肿瘤个体化治疗研究的有力工具[J]. 浙江大学学报(医学版), 2013, 42(6): 705-710.
[9] . 一种锌卟啉化电纺纤维膜的制备及其氨敏性能研究[J]. 浙江大学学报(医学版), 2012, 41(3): 274-280.
[10] . 鸡肠狼毒植物中曼西醇型二萜成分的研究[J]. 浙江大学学报(医学版), 2011, 40(4): 380-383.
[11] 徐海潮,钱令波,茹筱晨,缪海锋,叶治国,王会平. 阿托伐他汀对大鼠心肌缺血/复灌电生理的影响[J]. 浙江大学学报(医学版), 2010, 39(6): 589-593.
[12] 邱福铭;李忠朋;黄建. γδT细胞为基础的抗肿瘤免疫治疗研究进展 [J]. 浙江大学学报(医学版), 2010, 39(4): 424-429.
[13] 张立煌,王青青.  恶性肿瘤免疫治疗的现状及展望[J]. 浙江大学学报(医学版), 2010, 39(4): 339-344.
[14] 刘容;马文江;周建娅;杨光迪;周建英. hVEGF siRNA抑制A549细胞在裸鼠移植瘤的早期生长及血管新生[J]. 浙江大学学报(医学版), 2009, 38(2): 136-144.
[15] 刘君,虎义平,姜启英,陈丹,余海,王青青,汤谷平. 多肽MC10介导的聚乙烯亚胺-β-环糊精聚合体作为靶向Her-2受体基因载体的研究[J]. 浙江大学学报(医学版), 2009, 38(1): 7-14.