Please wait a minute...
浙江大学学报(医学版)  2017, Vol. 46 Issue (1): 97-105    DOI: 10.3785/j.issn.1008-9292.2017.02.15
综述     
糖尿病溃疡动物模型的建立及相关治疗研究进展
高思倩1(),沈咏梅2,耿福能2,李艳华3,高建青1,3,*()
(1) 浙江大学药学院药物制剂研究所, 浙江 杭州 310058
(2) 四川好医生药业集团有限公司, 四川 成都 610000
(3) 江苏省新型外用及透皮制剂工程技术研究中心, 江苏 常州 213000
Research progress on the animal models and treatment strategies of diabetic foot ulcer
GAO Siqian1(),SHEN Yongmei2,GENG Funeng2,LI Yanhua3,GAO Jianqing1,3,*()
(1) Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
(2) Sichuan Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610000, China
(3) Jiangsu Engineering Research Center for New-Type External and Transdermal Preparations, Changzhou 213000, China
 全文: PDF(1012 KB)   HTML( 8 ) HTML
摘要:

为了更好地探索糖尿病足的发病机制,并为其治疗研究提供依据,需要建立适宜的糖尿病足实验动物模型。目前,最为常用的动物模型采用鼠类;根据模型建立方式的不同,可分为模拟病理因素的动物模型和模拟临床病征的动物模型两大类。随着糖尿病溃疡致病机制研究的深入,近年来相应的治疗策略如抑制基质金属蛋白酶的表达、促进血管新生、抗炎治疗等研究也取得了长足进展。本文概述了上述研究进展。

关键词: 糖尿病足/病理学糖尿病足/治疗疾病模型, 动物综述    
Abstract:

The suitable experimental animal model is important in research of pathogenesis and therapeutic strategies of diabetic foot ulcer, and the murine model is the most commonly used one at present. It can be divided into two types: the animal model simulating pathological conditions and the model simulating clinical symptoms. This article reviews the current research progress on the mechanisms of diabetic ulcer pathogenesis, and relevant treatment strategies, including the inhibition of matrix metalloproteinases (MMPs) expression, promotion of angiogenesis and anti-inflammatory therapy.

Key words: Diabetic foot/pathology    Diabetic foot/therapy    Disease models, animal    Review
收稿日期: 2016-08-24 出版日期: 2017-07-06
CLC:  R587.1  
基金资助: 浙江省卫生高层次创新人才培养工程
通讯作者: 高建青     E-mail: 13657656063@163.com;gaojianqing@zju.edu.cn
作者简介: 高思倩 (1993-), 女, 硕士研究生, 主要从事糖尿病溃疡外用制剂的研究; E-mail:13657656063@163.com|高建青 (1969-), 男, 博士, 教授, 博士生导师, 主要从事药物和基因传递系统的研究; E-mail:gaojianqing@.zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
高思倩
沈咏梅
耿福能
李艳华
高建青

引用本文:

高思倩,沈咏梅,耿福能,李艳华,高建青. 糖尿病溃疡动物模型的建立及相关治疗研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.

GAO Siqian,SHEN Yongmei,GENG Funeng,LI Yanhua,GAO Jianqing. Research progress on the animal models and treatment strategies of diabetic foot ulcer. J Zhejiang Univ (Med Sci), 2017, 46(1): 97-105.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2017.02.15        http://www.zjujournals.com/med/CN/Y2017/V46/I1/97

建模方法 优点 缺点
缺血性溃疡——血管结扎法
皮肤压迫法
诱导缺血自发性溃疡的形成,并结合同步血流监测,可信度高;溃疡面积可控制,成模率较高,便于定量分析;适用于血管相关的机制研究及疗效评价 建立的急性缺血溃疡模型与糖尿病慢性缺血形成的溃疡有较大差别
神经性溃疡——分离坐骨神经 诱导神经病变的自发性溃疡形成,适用于神经相关的机制研究及疗效评价 成模率低
感染性溃疡——细菌感染 操作简便,可作为一种加重糖尿病溃疡的额外诱发因素,适用于疗效评价 与糖尿病溃疡病理机制无直接关系
皮肤全层切除模型 应用最为广泛,操作简单,耗时短,成模率高,可随时直观地对创面实施观察和量化分析,适用于疗效评价 属于非自发性溃疡,与临床糖尿病病征相差较远,对动物的糖尿病病变程度要求较高
环形夹板模型 属于全层皮肤切除模型的改良模型,应用广泛,成模率高,能最大程度减少伤口的收缩,更好地模拟人类伤口的愈合过程,且创面大小可控,可随时监测与分析,适用于疗效评价 属于非自发性溃疡,且对动物的糖尿病病变程度要求较高
烫伤模型 模拟外界的诱发因素,操作简便,可用于疗效评价 属于非自发性溃疡,且创面面积不可控,不利于量化分析,与糖尿病病理机制关系不大
表1  不同糖尿病溃疡建模方法的优缺点
1 GUARIGUATA L, WHITING D, WEIL C et al. The International Diabetes Federation diabetes atlas methodology for estimating global and national prevalence of diabetes in adults. Diabetes Res Clin Pract. 2011, 94(3): 322-332 doi: 10.1016/j.diabres.2011.10.040
2 SCHAUER P R, RUBINO F . International Diabetes Federation position statement on bariatric surgery for type 2 diabetes:implications for patients, physicians, and surgeons. Surg Obes Relat Dis. 2011, 7(4): 448-451 doi: 10.1016/j.soard.2011.05.015
doi: 10.1016/j.soard.2011.05.015 pmid: 21782138
3 HSU I, PARKINSON L G, SHEN Y et al. Serpina3n accelerates tissue repair in a diabetic mouse model of delayed wound healing. Cell Death Dis. 2014, 5: e1458 doi: 10.1038/cddis.2014.423
doi: 10.1038/cddis.2014.423 pmid: 25299783
4 DESHPANDE A D, HARRIS-HAYES M, SCHOOTMAN M . Epidemiology of diabetes and diabetes-related complications. Phys Ther. 2008, 88(11): 1254-1264 doi: 10.2522/ptj.20080020
doi: 10.2522/ptj.20080020 pmid: 18801858
5 SINGH N, ARMSTRONG D G, LIPSKY B A . Preventing foot ulcers in patients with diabetes. JAMA. 2005, 293(2): 217-228 doi: 10.1001/jama.293.2.217
doi: 10.1001/jama.293.2.217 pmid: 15644549
6 RATHUR H M, BOULTON A J . Recent advances in the diagnosis and management of diabetic neuropathy. J Bone Joint Surg Br. 2005, 87(12): 1605-1610
7 SNYDER B J, WALDMAN B J . Venous thromboembolism prophylaxis and wound healing in patients undergoing major orthopedic surgery. Adv Skin Wound Care. 2009, 22(7): 311-315 doi: 10.1097/01.ASW.0000305485.98734.1f
doi: 10.1097/01.ASW.0000305485.98734.1f pmid: 20375968
8 ANDREWS K L, HOUDEK M T, KIEMELE L J . Wound management of chronic diabetic foot ulcers:from the basics to regenerative medicine. Prosthet Orthot Int. 2015, 39(1): 29-39 doi: 10.1177/0309364614534296
doi: 10.1177/0309364614534296 pmid: 25614499
9 DESPOSITO D, CHOLLET C, TAVEAU C et al. Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade. Clin Sci (Lond). 2016, 130(1): 45-56
10 FRYKBERG R G, BANKS J . Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle). 2015, 4(9): 560-582 doi: 10.1089/wound.2015.0635
doi: 10.1089/wound.2015.0635 pmid: 26339534
11 SHEETS A R, MASSEY C J, CRONK S M et al. Matrix-and plasma-derived peptides promote tissue-specific injury responses and wound healing in diabetic swine. J Transl Med. 2016, 14(1): 197 doi: 10.1186/s12967-016-0946-1
doi: 10.1186/s12967-016-0946-1 pmid: 27369317
12 KIWANUKA E, HACKL F, PHILIP J et al. Comparison of healing parameters in porcine full-thickness wounds transplanted with skin micrografts, split-thickness skin grafts, and cultured keratinocytes. J Am Coll Surg. 2011, 213(6): 728-735 doi: 10.1016/j.jamcollsurg.2011.08.020
doi: 10.1016/j.jamcollsurg.2011.08.020 pmid: 22018809
13 O'LOUGHLIN A, KULKARNI M, VAUGHAN E E et al. Autologous circulating angiogenic cells treated with osteopontin and delivered via a collagen scaffold enhance wound healing in the alloxan-induced diabetic rabbit ear ulcer model. Stem Cell Res Ther. 2013, 4(6): 158 doi: 10.1186/scrt388
14 GóNGORA J, DíAZ-ROA A, RAMíREZ-HERNáNDEZ A et al. Evaluating the effect of Sarconesiopsis magellanica (Diptera:Calliphoridae) larvae-derived haemolymph and fat body extracts on chronic wounds in diabetic rabbits. J Diabetes Res. 2015, 2015: 270253
15 MICHAELS J, CHURGIN S S, BLECHMAN K M et al. db/db mice exhibit severe wound-healing impairments compared with other murine diabetic strains in a silicone-splinted excisional wound model. Wound Repair Regen. 2007, 15(5): 665-670 doi: 10.1111/wrr.2007.15.issue-5
doi: 10.1111/j.1524-475X.2007.00273.x pmid: 17971012
16 KIM H, HAN J W, LEE J Y et al. Diabetic mesenchymal stem cells are ineffective for improving limb ischemia due to their impaired angiogenic capability. Cell Transplant. 2015, 24(8): 1571-1584 doi: 10.3727/096368914X682792
doi: 10.3727/096368914X682792 pmid: 25008576
17 TI D, HAO H, XIA L et al. Controlled release of thymosin beta 4 using a collagen-chitosan sponge scaffold augments cutaneous wound healing and increases angiogenesis in diabetic rats with hindlimb ischemia. Tissue Eng Part A. 2015, 21(3-4): 541-549 doi: 10.1089/ten.tea.2013.0750
doi: 10.1089/ten.TEA.2013.0750 pmid: 25204972
18 HE S, SHEN L, WU Y et al. Effect of brain-derived neurotrophic factor on mesenchymal stem cell-seeded electrospinning biomaterial for treating ischemic diabetic ulcers via milieu-dependent differentiation mechanism. Tissue Eng Part A. 2015, 21(5-6): 928-938 doi: 10.1089/ten.tea.2014.0113
doi: 10.1089/ten.TEA.2014.0113 pmid: 25316594
19 TONG C, HAO H, XIA L et al. Hypoxia pretreatment of bone marrow-derived mesenchymal stem cells seeded in a collagen-chitosan sponge scaffold promotes skin wound healing in diabetic rats with hindlimb ischemia. Wound Repair Regen. 2016, 24(1): 45-56 doi: 10.1111/wrr.2016.24.issue-1
doi: 10.1111/wrr.12369 pmid: 26463737
20 TAM J C, KO C H, LAU K M et al. A Chinese 2-herb formula (NF3) promotes hindlimb ischemia-induced neovascularization and wound healing of diabetic rats. J Diabetes Complications. 2014, 28(4): 436-447 doi: 10.1016/j.jdiacomp.2014.03.004
doi: 10.1016/j.jdiacomp.2014.03.004 pmid: 24731763
21 SALCIDO R, POPESCU A, AHN C . Animal models in pressure ulcer research. J Spinal Cord Med. 2007, 30(2): 107-116 doi: 10.1080/10790268.2007.11753921
doi: 10.1177/0269881106072670 pmid: 17591222
22 STADLER I, ZHANG R Y, OSKOUI P et al. Development of a simple, noninvasive, clinically relevant model of pressure ulcers in the mouse. J Invest Surg. 2004, 17(4): 221-227 doi: 10.1080/08941930490472046
doi: 10.1080/08941930490472046 pmid: 15371164
23 DUSCHER D, NEOFYTOU E, WONG V W et al. Transdermal deferoxamine prevents pressure-induced diabetic ulcers. Proc Natl Acad Sci U S A. 2015, 112(1): 94-99 doi: 10.1073/pnas.1413445112
doi: 10.1073/pnas.1413445112 pmid: 25535360
24 SHEAJ D . Pressure sores:classification and management. Clin Orthop Relat Res. 1975 112): 89-100
25 Mash N D . Dermal wounds:pressure sores. Philosophy of the IAET. J Enterostomal Ther. 1988, 15(1): 4-17
26 DANIGO A, NASSER M, BESSAGUET F et al. Candesartan restores pressure-induced vasodilation and prevents skin pressure ulcer formation in diabetic mice. Cardiovasc Diabetol. 2015, 14: 26 doi: 10.1186/s12933-015-0185-4
doi: 10.1186/s12933-015-0185-4 pmid: 25888905
27 CUI F F, PAN Y Y, XIE H H et al. Pressure combined with ischemia/reperfusion injury induces deep tissue injury via endoplasmic reticulum stress in a rat pressure ulcer model. Int J Mol Sci. 2016, 17(3): 284 doi: 10.3390/ijms17030284
doi: 10.3390/ijms17030284 pmid: 4813148
28 LOBMANN R . Neuropathy and diabetic foot ulcers. Internist (Berl). 2015, 56(5): 503-512 doi: 10.1007/s00108-014-3630-7
doi: 10.1007/s00108-014-3630-7 pmid: 25903093
29 AMIN N, DOUPIS J . Diabetic foot disease:from the evaluation of the "foot at risk" to the novel diabetic ulcer treatment modalities. World J Diabetes. 2016, 7(7): 153-164 doi: 10.4239/wjd.v7.i7.153
30 JIN S, ZHANG M, GAO Y et al. The efficacy of Jing Wan Hong ointment for nerve injury diabetic foot ulcer and its mechanisms. J Diabetes Res. 2014, 2014: 259412
31 BOWLING F L, JUDE E B, BOULTON A J . MRSA and diabetic foot wounds:contaminating or infecting organisms?. Curr Diab Rep. 2009, 9(6): 440-444 doi: 10.1007/s11892-009-0072-z
doi: 10.1007/s11892-009-0072-z pmid: 19954689
32 CHHIBBER S, KAUR T, KAUR S . Co-therapy using lytic bacteriophage and linezolid:effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS One. 2013, 8(2): e56022 doi: 10.1371/journal.pone.0056022
doi: 10.1371/journal.pone.0056022 pmid: 23418497
33 LEE J H, JA K J, SHIN H B et al. Comparative efficacy of silver-containing dressing materials for treating MRSA-infected wounds in rats with streptozotocin-induced diabetes. Wounds. 2013, 25(12): 345-354
34 RANDERIA P S, SEEGER M A, WANG X Q et al. siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proc Natl Acad Sci U S A. 2015, 112(18): 5573-5578 doi: 10.1073/pnas.1505951112
doi: 10.1073/pnas.1505951112 pmid: 259025073
35 KATO J, KAMIYA H, HIMENO T et al. Mesenchymal stem cells ameliorate impaired wound healing through enhancing keratinocyte functions in diabetic foot ulcerations on the plantar skin of rats. J Diabetes Complications. 2014, 28(5): 588-595 doi: 10.1016/j.jdiacomp.2014.05.003
doi: 10.1016/j.jdiacomp.2014.05.003 pmid: 25027388
36 SULLIVAN T P, EAGLSTEIN W H, DAVIS S C et al. The pig as a model for human wound healing. Wound Repair Regen. 2001, 9(2): 66-76 doi: 10.1046/j.1524-475x.2001.00066.x
doi: 10.1046/j.1524-475x.2001.00066.x pmid: 11350644
37 WONG V W, SORKIN M, GLOTZBACH J P et al. Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol. 2011, 2011: 969618
38 PARK S A, TEIXEIRA L B, RAGHUNATHAN V K et al. Full-thickness splinted skin wound healing models in db/db and heterozygous mice:implications for wound healing impairment. Wound Repair Regen. 2014, 22(3): 368-380 doi: 10.1111/wrr.12172
doi: 10.1111/wrr.12172 pmid: 24844336
39 CHEREDDY K K, LOPES A, KOUSSOROPLIS S et al. Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds. Nanomedicine. 2015, 11(8): 1975-1984 doi: 10.1016/j.nano.2015.07.006
doi: 10.1016/j.nano.2015.07.006 pmid: 26238081
40 WANG X, GE J, TREDGETE E et al. The mouse excisional wound splinting model, including applications for stem cell transplantation. Nat Protoc. 2013, 8(2): 302-309 doi: 10.1038/nprot.2013.002
doi: 10.1038/nprot.2013.002 pmid: 23329003
41 TIAN M, QING C, NIU Y et al. The relationship between inflammation and impaired wound healing in a diabetic rat burn model. J Burn Care Res. 2016, 37(2): e115-e124 doi: 10.1097/BCR.0000000000000171
doi: 10.1097/BCR.0000000000000171 pmid: 25407384
42 RANJBAR R, TAKHTFOOLADIM A . The effects of low level laser therapy on Staphylococcus aureus infected third-degree burns in diabetic rats. Acta Cir Bras. 2016, 31(4): 250-255 doi: 10.1590/S0102-865020160040000005
doi: 10.1590/S0102-865020160040000005 pmid: 27168537
43 ZHU Y, HOSHI R, CHEN S et al. Sustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetes. J Control Release. 2016, 238: 114-122 doi: 10.1016/j.jconrel.2016.07.043
doi: 10.1016/j.jconrel.2016.07.043 pmid: 27473766
44 RAM M, SINGH V, KUMAWAT S et al. Deferoxamine modulates cytokines and growth factors to accelerate cutaneous wound healing in diabetic rats. Eur J Pharmacol. 2015, 764: 9-21 doi: 10.1016/j.ejphar.2015.06.029
doi: 10.1016/j.ejphar.2015.06.029 pmid: 26101070
45 LEAL E C, CARVALHO E, TELLECHEA A et al. Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype. Am J Pathol. 2015, 185(6): 1638-1648 doi: 10.1016/j.ajpath.2015.02.011
doi: 10.1016/j.ajpath.2015.02.011 pmid: 25871534
46 TOKATLIAN T, CAM C, SEGURA T . Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model. Adv Healthc Mater. 2015, 4(7): 1084-1091 doi: 10.1002/adhm.v4.7
doi: 10.1002/adhm.201400783 pmid: 25694196
47 TELLECHEA A, SILVA E A, MIN J et al. Alginate and DNA gels are suitable delivery systems for diabetic wound healing. Int J Low Extrem Wounds. 2015, 14(2): 146-153 doi: 10.1177/1534734615580018
doi: 10.1177/1534734615580018 pmid: 26032947
48 SACCO P, TRAVAN A, BORGOGNA M et al. Silver-containing antimicrobial membrane based on chitosan-TPP hydrogel for the treatment of wounds. J Mater Sci Mater Med. 2015, 26(3): 128 doi: 10.1007/s10856-015-5474-7
doi: 10.1007/s10856-015-5474-7 pmid: 25693676
49 NAVONE S E, PASCUCCI L, DOSSENA M et al. Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice. Stem Cell Res Ther. 2014, 5(1): 7 doi: 10.1186/scrt396
doi: 10.1186/scrt396 pmid: 4055150
50 XIE Z, PARAS C B, WENG H et al. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater. 2013, 9(12): 9351-9359 doi: 10.1016/j.actbio.2013.07.030
doi: 10.1016/j.actbio.2013.07.030 pmid: 3818500
51 KIM H S, YOO H S . In vitro and in vivo epidermal growth factor gene therapy for diabetic ulcers with electrospun fibrous meshes. Acta Biomater. 2013, 9(7): 7371-7380 doi: 10.1016/j.actbio.2013.03.018
doi: 10.1016/j.actbio.2013.03.018 pmid: 23528498
52 LOSI P, BRIGANTI E, ERRICO C et al. Fibrin-based scaffold incorporating VEGF-and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater. 2013, 9(8): 7814-7821 doi: 10.1016/j.actbio.2013.04.019
doi: 10.1016/j.actbio.2013.04.019 pmid: 23603001
53 DAVEY G C, PATIL S B, O'LOUGHLIN A et al. Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus. Front Endocrinol (Lausanne). 2014, 5: 86
54 FENG G, HAO D, CHAI J . Processing of CXCL12 impedes the recruitment of endothelial progenitor cells in diabetic wound healing. FEBS J. 2014, 281(22): 5054-5062 doi: 10.1111/febs.2014.281.issue-22
doi: 10.1111/febs.13043 pmid: 25211042
55 KUO Y R, WANG C T, CHENG J T et al. Adipose-derived stem cells accelerate diabetic wound healing through theinduction of autocrine and paracrine effects. Cell Transplant. 2016, 25(1): 71-81 doi: 10.3727/096368915X687921
56 FLECK C A, CHAKRAVARTHY D . Newer debridement methods for wound bed preparation. Adv Skin Wound Care. 2010, 23(7): 313-315 doi: 10.1097/01.ASW.0000383755.62091.1e
doi: 10.1097/01.ASW.0000383755.62091.1e pmid: 20562539
57 FALABELLA A F . Debridement and wound bed preparation. Dermatol Ther. 2006, 19(6): 317-325 doi: 10.1111/dth.2006.19.issue-6
doi: 10.1111/j.1529-8019.2006.00090.x pmid: 17199674
58 XIE X, MCGREGOR M, DENDUKURI N . The clinical effectiveness of negative pressure wound therapy:a systematic review. J Wound Care. 2010, 19(11): 490-495 doi: 10.12968/jowc.2010.19.11.79697
doi: 10.12968/jowc.2010.19.11.79697 pmid: 00031015
59 LI X, LIU J, LIU Y et al. Negative pressure wound therapy accelerates rats diabetic wound by promoting agenesis. Int J Clin Exp Med. 2015, 8(3): 3506-3513
60 AYDIN F, KAYA A, KARAPINAR L et al. IGF-1 increases with hyperbaric oxygen therapy and promotes wound healing in diabetic foot ulcers. J Diabetes Res. 2013, 2013: 567834
61 HUANG E T, MANSOURI J, MURAD M H et al. A clinical practice guideline for the use of hyperbaric oxygen therapy in the treatment of diabetic foot ulcers. Undersea Hyperb Med. 2015, 42(3): 205-247
62 NAVESC C . The diabetic foot:a historical overview and gaps in current treatment. Adv Wound Care (New Rochelle). 2016, 5(5): 191-197 doi: 10.1089/wound.2013.0518
doi: 10.1089/wound.2013.0518 pmid: 4827295
63 LIU Y, MIN D, BOLTON T et al. Increased matrix metalloproteinase-9 predicts poor wound healing in diabetic foot ulcers. Diabetes Care. 2009, 32(1): 117-119 doi: 10.2337/dc08-0763
doi: 10.2337/dc09-1394 pmid: 19875600
64 CHANG M . Restructuring of the extracellular matrix in diabetic wounds and healing:a perspective. Pharmacol Res. 2016, 107: 243-248 doi: 10.1016/j.phrs.2016.03.008
doi: 10.1016/j.phrs.2016.03.008 pmid: 27033051
65 GAO M, NGUYEN T T, SUCKOW M A et al. Acceleration of diabetic wound healing using a novel protease-anti-protease combination therapy. Proc Natl Acad Sci U S A. 2015, 112(49): 15226-15231 doi: 10.1073/pnas.1517847112
doi: 10.1073/pnas.1517847112 pmid: 26598687
66 CASTLEBERRY S A, ALMQUIST B D, LI W et al. Self-assembled wound dressings silence MMP-9 and improve diabetic wound healing in vivo. Adv Mater. 2016, 28(9): 1809-1817 doi: 10.1002/adma.201503565
doi: 10.1002/adma.201503565 pmid: 26695434
67 KIM H S, YOO H S . Matrix metalloproteinase-inspired suicidal treatments of diabetic ulcers with siRNA-decorated nanofibrous meshes. Gene Ther. 2013, 20(4): 378-385 doi: 10.1038/gt.2012.49
doi: 10.1038/gt.2012.49 pmid: 22717742
68 EMING S A, BRACHVOGEL B, ODORISIO T et al. Regulation of angiogenesis:wound healing as a model. Prog Histochem Cytochem. 2007, 42(3): 115-170 doi: 10.1016/j.proghi.2007.06.001
doi: 10.1016/j.proghi.2007.06.001 pmid: 17980716
69 RAM M, SINGH V, KUMAWAT S et al. Deferoxamine modulates cytokines and growth factors to accelerate cutaneous wound healing in diabetic rats. Eur J Pharmacol. 2015, 764: 9-21 doi: 10.1016/j.ejphar.2015.06.029
doi: 10.1016/j.ejphar.2015.06.029 pmid: 26101070
70 CHEN H, JIA P, KANG H et al. Upregulating Hif-1alpha byhydrogel nanofibrous scaffolds for rapidly recruiting angiogenesis relative cells in diabetic wound. Adv Healthc Mater. 2016, 5(8): 907-918 doi: 10.1002/adhm.201501018
doi: 10.1002/adhm.201501018 pmid: 26891197
71 LIU Z, BENARD O, SYEDA M M et al. Inhibition of prostaglandin transporter (PGT) promotes perfusion and vascularization and accelerates wound healing in non-diabetic and diabetic rats. PLoS One. 2015, 10(7): e0133615 doi: 10.1371/journal.pone.0133615
doi: 10.1371/journal.pone.0133615 pmid: 4521828
72 CHEN W, WU Y, LI L et al. Adenosine accelerates the healing of diabetic ischemic ulcers by improving autophagy of endothelial progenitor cells grown on a biomaterial. Sci Rep. 2015, 5: 11594 doi: 10.1038/srep11594
doi: 10.1038/srep11594 pmid: 26108983
73 BLAKYTNY R, JUDE E . The molecular biology of chronic wounds and delayed healing in diabetes. Diabet Med. 2006, 23(6): 594-608 doi: 10.1111/dme.2006.23.issue-6
doi: 10.1111/j.1464-5491.2006.01773.x pmid: 16759300
74 MOURA L I, DIAS A M, LEAL E C et al. Chitosan-based dressings loaded with neurotensin-an efficient strategy to improve early diabetic wound healing. Acta Biomater. 2014, 10(2): 843-857 doi: 10.1016/j.actbio.2013.09.040
doi: 10.1016/j.actbio.2013.09.040 pmid: 24121197
75 MOURA L I, DIAS A M, SUESCA E et al. Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice. Biochim Biophys Acta. 2014, 1842(1): 32-43 doi: 10.1016/j.bbadis.2013.10.009
doi: 10.1016/j.bbadis.2013.10.009 pmid: 24161538
[1] 冯梦宇 等. 加速康复外科在胰腺外科中的应用[J]. 浙江大学学报(医学版), 2017, 46(6): 666-674.
[2] 许晶晶 等. 影像学在肿瘤精准医疗时代的机遇和挑战[J]. 浙江大学学报(医学版), 2017, 46(5): 455-461.
[3] 潘静颖 等. PET-CT与乳腺癌分子病理分型、治疗反应及预后的相关性研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 473-480.
[4] 张思影 等. CT和磁共振参数反应图在肿瘤精准疗效评估中的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 468-472.
[5] 潘瑶 等. 胰腺癌的影像学精准诊断与评估[J]. 浙江大学学报(医学版), 2017, 46(5): 462-467.
[6] 王梦嫣 等. 耶氏肺孢子菌对磺胺类药物耐药相关基因突变的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 563-569.
[7] 李艳蝶 等. NLRP3炎症小体与儿童自身炎症性疾病研究进展[J]. 浙江大学学报(医学版), 2017, 46(4): 449-453.
[8] 王丽雅 等. 借助辅助生殖技术出生子代的安全性研究进展[J]. 浙江大学学报(医学版), 2017, 46(3): 279-284.
[9] 严恺 等. 出生缺陷相关遗传病产前诊断技术新进展[J]. 浙江大学学报(医学版), 2017, 46(3): 227-232.
[10] 唐敏悦 等. 半乳糖凝集素1在母胎界面参与胚胎着床和妊娠维持的研究进展[J]. 浙江大学学报(医学版), 2017, 46(3): 321-327.
[11] 傅晓华 等. 棕色脂肪组织及其与多囊卵巢综合征关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(3): 315-320.
[12] 傅燕玲 等. 肽类激素Kisspeptin在生殖内分泌领域的应用前景[J]. 浙江大学学报(医学版), 2017, 46(3): 328-333.
[13] 钱叶青 等. 高通量测序技术在临床遗传学中的应用[J]. 浙江大学学报(医学版), 2017, 46(3): 334-337.
[14] 沈丹 等. 多囊卵巢综合征患者子代发生的远期改变[J]. 浙江大学学报(医学版), 2017, 46(3): 300-304.
[15] 何玉洁,潘建平. 病原菌对NOD样受体及Toll样受体信号通路介导的固有免疫逃逸机制研究进展[J]. 浙江大学学报(医学版), 2017, 46(2): 218-224.