综述 |
|
|
|
|
糖尿病溃疡动物模型的建立及相关治疗研究进展 |
高思倩1( ),沈咏梅2,耿福能2,李艳华3,高建青1,3,*( ) |
(1) 浙江大学药学院药物制剂研究所, 浙江 杭州 310058 (2) 四川好医生药业集团有限公司, 四川 成都 610000 (3) 江苏省新型外用及透皮制剂工程技术研究中心, 江苏 常州 213000 |
|
Research progress on the animal models and treatment strategies of diabetic foot ulcer |
GAO Siqian1( ),SHEN Yongmei2,GENG Funeng2,LI Yanhua3,GAO Jianqing1,3,*( ) |
(1) Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (2) Sichuan Gooddoctor Pharmaceutical Group Co., Ltd., Chengdu 610000, China (3) Jiangsu Engineering Research Center for New-Type External and Transdermal Preparations, Changzhou 213000, China |
引用本文:
高思倩,沈咏梅,耿福能,李艳华,高建青. 糖尿病溃疡动物模型的建立及相关治疗研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
GAO Siqian,SHEN Yongmei,GENG Funeng,LI Yanhua,GAO Jianqing. Research progress on the animal models and treatment strategies of diabetic foot ulcer. J Zhejiang Univ (Med Sci), 2017, 46(1): 97-105.
链接本文:
http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2017.02.15
或
http://www.zjujournals.com/med/CN/Y2017/V46/I1/97
|
1 |
GUARIGUATA L, WHITING D, WEIL C et al. The International Diabetes Federation diabetes atlas methodology for estimating global and national prevalence of diabetes in adults. Diabetes Res Clin Pract. 2011, 94(3): 322-332 doi: 10.1016/j.diabres.2011.10.040
|
2 |
SCHAUER P R, RUBINO F . International Diabetes Federation position statement on bariatric surgery for type 2 diabetes:implications for patients, physicians, and surgeons. Surg Obes Relat Dis. 2011, 7(4): 448-451 doi: 10.1016/j.soard.2011.05.015
doi: 10.1016/j.soard.2011.05.015
pmid: 21782138
|
3 |
HSU I, PARKINSON L G, SHEN Y et al. Serpina3n accelerates tissue repair in a diabetic mouse model of delayed wound healing. Cell Death Dis. 2014, 5: e1458 doi: 10.1038/cddis.2014.423
doi: 10.1038/cddis.2014.423
pmid: 25299783
|
4 |
DESHPANDE A D, HARRIS-HAYES M, SCHOOTMAN M . Epidemiology of diabetes and diabetes-related complications. Phys Ther. 2008, 88(11): 1254-1264 doi: 10.2522/ptj.20080020
doi: 10.2522/ptj.20080020
pmid: 18801858
|
5 |
SINGH N, ARMSTRONG D G, LIPSKY B A . Preventing foot ulcers in patients with diabetes. JAMA. 2005, 293(2): 217-228 doi: 10.1001/jama.293.2.217
doi: 10.1001/jama.293.2.217
pmid: 15644549
|
6 |
RATHUR H M, BOULTON A J . Recent advances in the diagnosis and management of diabetic neuropathy. J Bone Joint Surg Br. 2005, 87(12): 1605-1610
|
7 |
SNYDER B J, WALDMAN B J . Venous thromboembolism prophylaxis and wound healing in patients undergoing major orthopedic surgery. Adv Skin Wound Care. 2009, 22(7): 311-315 doi: 10.1097/01.ASW.0000305485.98734.1f
doi: 10.1097/01.ASW.0000305485.98734.1f
pmid: 20375968
|
8 |
ANDREWS K L, HOUDEK M T, KIEMELE L J . Wound management of chronic diabetic foot ulcers:from the basics to regenerative medicine. Prosthet Orthot Int. 2015, 39(1): 29-39 doi: 10.1177/0309364614534296
doi: 10.1177/0309364614534296
pmid: 25614499
|
9 |
DESPOSITO D, CHOLLET C, TAVEAU C et al. Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade. Clin Sci (Lond). 2016, 130(1): 45-56
|
10 |
FRYKBERG R G, BANKS J . Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle). 2015, 4(9): 560-582 doi: 10.1089/wound.2015.0635
doi: 10.1089/wound.2015.0635
pmid: 26339534
|
11 |
SHEETS A R, MASSEY C J, CRONK S M et al. Matrix-and plasma-derived peptides promote tissue-specific injury responses and wound healing in diabetic swine. J Transl Med. 2016, 14(1): 197 doi: 10.1186/s12967-016-0946-1
doi: 10.1186/s12967-016-0946-1
pmid: 27369317
|
12 |
KIWANUKA E, HACKL F, PHILIP J et al. Comparison of healing parameters in porcine full-thickness wounds transplanted with skin micrografts, split-thickness skin grafts, and cultured keratinocytes. J Am Coll Surg. 2011, 213(6): 728-735 doi: 10.1016/j.jamcollsurg.2011.08.020
doi: 10.1016/j.jamcollsurg.2011.08.020
pmid: 22018809
|
13 |
O'LOUGHLIN A, KULKARNI M, VAUGHAN E E et al. Autologous circulating angiogenic cells treated with osteopontin and delivered via a collagen scaffold enhance wound healing in the alloxan-induced diabetic rabbit ear ulcer model. Stem Cell Res Ther. 2013, 4(6): 158 doi: 10.1186/scrt388
|
14 |
GóNGORA J, DíAZ-ROA A, RAMíREZ-HERNáNDEZ A et al. Evaluating the effect of Sarconesiopsis magellanica (Diptera:Calliphoridae) larvae-derived haemolymph and fat body extracts on chronic wounds in diabetic rabbits. J Diabetes Res. 2015, 2015: 270253
|
15 |
MICHAELS J, CHURGIN S S, BLECHMAN K M et al. db/db mice exhibit severe wound-healing impairments compared with other murine diabetic strains in a silicone-splinted excisional wound model. Wound Repair Regen. 2007, 15(5): 665-670 doi: 10.1111/wrr.2007.15.issue-5
doi: 10.1111/j.1524-475X.2007.00273.x
pmid: 17971012
|
16 |
KIM H, HAN J W, LEE J Y et al. Diabetic mesenchymal stem cells are ineffective for improving limb ischemia due to their impaired angiogenic capability. Cell Transplant. 2015, 24(8): 1571-1584 doi: 10.3727/096368914X682792
doi: 10.3727/096368914X682792
pmid: 25008576
|
17 |
TI D, HAO H, XIA L et al. Controlled release of thymosin beta 4 using a collagen-chitosan sponge scaffold augments cutaneous wound healing and increases angiogenesis in diabetic rats with hindlimb ischemia. Tissue Eng Part A. 2015, 21(3-4): 541-549 doi: 10.1089/ten.tea.2013.0750
doi: 10.1089/ten.TEA.2013.0750
pmid: 25204972
|
18 |
HE S, SHEN L, WU Y et al. Effect of brain-derived neurotrophic factor on mesenchymal stem cell-seeded electrospinning biomaterial for treating ischemic diabetic ulcers via milieu-dependent differentiation mechanism. Tissue Eng Part A. 2015, 21(5-6): 928-938 doi: 10.1089/ten.tea.2014.0113
doi: 10.1089/ten.TEA.2014.0113
pmid: 25316594
|
19 |
TONG C, HAO H, XIA L et al. Hypoxia pretreatment of bone marrow-derived mesenchymal stem cells seeded in a collagen-chitosan sponge scaffold promotes skin wound healing in diabetic rats with hindlimb ischemia. Wound Repair Regen. 2016, 24(1): 45-56 doi: 10.1111/wrr.2016.24.issue-1
doi: 10.1111/wrr.12369
pmid: 26463737
|
20 |
TAM J C, KO C H, LAU K M et al. A Chinese 2-herb formula (NF3) promotes hindlimb ischemia-induced neovascularization and wound healing of diabetic rats. J Diabetes Complications. 2014, 28(4): 436-447 doi: 10.1016/j.jdiacomp.2014.03.004
doi: 10.1016/j.jdiacomp.2014.03.004
pmid: 24731763
|
21 |
SALCIDO R, POPESCU A, AHN C . Animal models in pressure ulcer research. J Spinal Cord Med. 2007, 30(2): 107-116 doi: 10.1080/10790268.2007.11753921
doi: 10.1177/0269881106072670
pmid: 17591222
|
22 |
STADLER I, ZHANG R Y, OSKOUI P et al. Development of a simple, noninvasive, clinically relevant model of pressure ulcers in the mouse. J Invest Surg. 2004, 17(4): 221-227 doi: 10.1080/08941930490472046
doi: 10.1080/08941930490472046
pmid: 15371164
|
23 |
DUSCHER D, NEOFYTOU E, WONG V W et al. Transdermal deferoxamine prevents pressure-induced diabetic ulcers. Proc Natl Acad Sci U S A. 2015, 112(1): 94-99 doi: 10.1073/pnas.1413445112
doi: 10.1073/pnas.1413445112
pmid: 25535360
|
24 |
SHEAJ D . Pressure sores:classification and management. Clin Orthop Relat Res. 1975 112): 89-100
|
25 |
Mash N D . Dermal wounds:pressure sores. Philosophy of the IAET. J Enterostomal Ther. 1988, 15(1): 4-17
|
26 |
DANIGO A, NASSER M, BESSAGUET F et al. Candesartan restores pressure-induced vasodilation and prevents skin pressure ulcer formation in diabetic mice. Cardiovasc Diabetol. 2015, 14: 26 doi: 10.1186/s12933-015-0185-4
doi: 10.1186/s12933-015-0185-4
pmid: 25888905
|
27 |
CUI F F, PAN Y Y, XIE H H et al. Pressure combined with ischemia/reperfusion injury induces deep tissue injury via endoplasmic reticulum stress in a rat pressure ulcer model. Int J Mol Sci. 2016, 17(3): 284 doi: 10.3390/ijms17030284
doi: 10.3390/ijms17030284
pmid: 4813148
|
28 |
LOBMANN R . Neuropathy and diabetic foot ulcers. Internist (Berl). 2015, 56(5): 503-512 doi: 10.1007/s00108-014-3630-7
doi: 10.1007/s00108-014-3630-7
pmid: 25903093
|
29 |
AMIN N, DOUPIS J . Diabetic foot disease:from the evaluation of the "foot at risk" to the novel diabetic ulcer treatment modalities. World J Diabetes. 2016, 7(7): 153-164 doi: 10.4239/wjd.v7.i7.153
|
30 |
JIN S, ZHANG M, GAO Y et al. The efficacy of Jing Wan Hong ointment for nerve injury diabetic foot ulcer and its mechanisms. J Diabetes Res. 2014, 2014: 259412
|
31 |
BOWLING F L, JUDE E B, BOULTON A J . MRSA and diabetic foot wounds:contaminating or infecting organisms?. Curr Diab Rep. 2009, 9(6): 440-444 doi: 10.1007/s11892-009-0072-z
doi: 10.1007/s11892-009-0072-z
pmid: 19954689
|
32 |
CHHIBBER S, KAUR T, KAUR S . Co-therapy using lytic bacteriophage and linezolid:effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS One. 2013, 8(2): e56022 doi: 10.1371/journal.pone.0056022
doi: 10.1371/journal.pone.0056022
pmid: 23418497
|
33 |
LEE J H, JA K J, SHIN H B et al. Comparative efficacy of silver-containing dressing materials for treating MRSA-infected wounds in rats with streptozotocin-induced diabetes. Wounds. 2013, 25(12): 345-354
|
34 |
RANDERIA P S, SEEGER M A, WANG X Q et al. siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proc Natl Acad Sci U S A. 2015, 112(18): 5573-5578 doi: 10.1073/pnas.1505951112
doi: 10.1073/pnas.1505951112
pmid: 259025073
|
35 |
KATO J, KAMIYA H, HIMENO T et al. Mesenchymal stem cells ameliorate impaired wound healing through enhancing keratinocyte functions in diabetic foot ulcerations on the plantar skin of rats. J Diabetes Complications. 2014, 28(5): 588-595 doi: 10.1016/j.jdiacomp.2014.05.003
doi: 10.1016/j.jdiacomp.2014.05.003
pmid: 25027388
|
36 |
SULLIVAN T P, EAGLSTEIN W H, DAVIS S C et al. The pig as a model for human wound healing. Wound Repair Regen. 2001, 9(2): 66-76 doi: 10.1046/j.1524-475x.2001.00066.x
doi: 10.1046/j.1524-475x.2001.00066.x
pmid: 11350644
|
37 |
WONG V W, SORKIN M, GLOTZBACH J P et al. Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol. 2011, 2011: 969618
|
38 |
PARK S A, TEIXEIRA L B, RAGHUNATHAN V K et al. Full-thickness splinted skin wound healing models in db/db and heterozygous mice:implications for wound healing impairment. Wound Repair Regen. 2014, 22(3): 368-380 doi: 10.1111/wrr.12172
doi: 10.1111/wrr.12172
pmid: 24844336
|
39 |
CHEREDDY K K, LOPES A, KOUSSOROPLIS S et al. Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds. Nanomedicine. 2015, 11(8): 1975-1984 doi: 10.1016/j.nano.2015.07.006
doi: 10.1016/j.nano.2015.07.006
pmid: 26238081
|
40 |
WANG X, GE J, TREDGETE E et al. The mouse excisional wound splinting model, including applications for stem cell transplantation. Nat Protoc. 2013, 8(2): 302-309 doi: 10.1038/nprot.2013.002
doi: 10.1038/nprot.2013.002
pmid: 23329003
|
41 |
TIAN M, QING C, NIU Y et al. The relationship between inflammation and impaired wound healing in a diabetic rat burn model. J Burn Care Res. 2016, 37(2): e115-e124 doi: 10.1097/BCR.0000000000000171
doi: 10.1097/BCR.0000000000000171
pmid: 25407384
|
42 |
RANJBAR R, TAKHTFOOLADIM A . The effects of low level laser therapy on Staphylococcus aureus infected third-degree burns in diabetic rats. Acta Cir Bras. 2016, 31(4): 250-255 doi: 10.1590/S0102-865020160040000005
doi: 10.1590/S0102-865020160040000005
pmid: 27168537
|
43 |
ZHU Y, HOSHI R, CHEN S et al. Sustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetes. J Control Release. 2016, 238: 114-122 doi: 10.1016/j.jconrel.2016.07.043
doi: 10.1016/j.jconrel.2016.07.043
pmid: 27473766
|
44 |
RAM M, SINGH V, KUMAWAT S et al. Deferoxamine modulates cytokines and growth factors to accelerate cutaneous wound healing in diabetic rats. Eur J Pharmacol. 2015, 764: 9-21 doi: 10.1016/j.ejphar.2015.06.029
doi: 10.1016/j.ejphar.2015.06.029
pmid: 26101070
|
45 |
LEAL E C, CARVALHO E, TELLECHEA A et al. Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype. Am J Pathol. 2015, 185(6): 1638-1648 doi: 10.1016/j.ajpath.2015.02.011
doi: 10.1016/j.ajpath.2015.02.011
pmid: 25871534
|
46 |
TOKATLIAN T, CAM C, SEGURA T . Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model. Adv Healthc Mater. 2015, 4(7): 1084-1091 doi: 10.1002/adhm.v4.7
doi: 10.1002/adhm.201400783
pmid: 25694196
|
47 |
TELLECHEA A, SILVA E A, MIN J et al. Alginate and DNA gels are suitable delivery systems for diabetic wound healing. Int J Low Extrem Wounds. 2015, 14(2): 146-153 doi: 10.1177/1534734615580018
doi: 10.1177/1534734615580018
pmid: 26032947
|
48 |
SACCO P, TRAVAN A, BORGOGNA M et al. Silver-containing antimicrobial membrane based on chitosan-TPP hydrogel for the treatment of wounds. J Mater Sci Mater Med. 2015, 26(3): 128 doi: 10.1007/s10856-015-5474-7
doi: 10.1007/s10856-015-5474-7
pmid: 25693676
|
49 |
NAVONE S E, PASCUCCI L, DOSSENA M et al. Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice. Stem Cell Res Ther. 2014, 5(1): 7 doi: 10.1186/scrt396
doi: 10.1186/scrt396
pmid: 4055150
|
50 |
XIE Z, PARAS C B, WENG H et al. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater. 2013, 9(12): 9351-9359 doi: 10.1016/j.actbio.2013.07.030
doi: 10.1016/j.actbio.2013.07.030
pmid: 3818500
|
51 |
KIM H S, YOO H S . In vitro and in vivo epidermal growth factor gene therapy for diabetic ulcers with electrospun fibrous meshes. Acta Biomater. 2013, 9(7): 7371-7380 doi: 10.1016/j.actbio.2013.03.018
doi: 10.1016/j.actbio.2013.03.018
pmid: 23528498
|
52 |
LOSI P, BRIGANTI E, ERRICO C et al. Fibrin-based scaffold incorporating VEGF-and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater. 2013, 9(8): 7814-7821 doi: 10.1016/j.actbio.2013.04.019
doi: 10.1016/j.actbio.2013.04.019
pmid: 23603001
|
53 |
DAVEY G C, PATIL S B, O'LOUGHLIN A et al. Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus. Front Endocrinol (Lausanne). 2014, 5: 86
|
54 |
FENG G, HAO D, CHAI J . Processing of CXCL12 impedes the recruitment of endothelial progenitor cells in diabetic wound healing. FEBS J. 2014, 281(22): 5054-5062 doi: 10.1111/febs.2014.281.issue-22
doi: 10.1111/febs.13043
pmid: 25211042
|
55 |
KUO Y R, WANG C T, CHENG J T et al. Adipose-derived stem cells accelerate diabetic wound healing through theinduction of autocrine and paracrine effects. Cell Transplant. 2016, 25(1): 71-81 doi: 10.3727/096368915X687921
|
56 |
FLECK C A, CHAKRAVARTHY D . Newer debridement methods for wound bed preparation. Adv Skin Wound Care. 2010, 23(7): 313-315 doi: 10.1097/01.ASW.0000383755.62091.1e
doi: 10.1097/01.ASW.0000383755.62091.1e
pmid: 20562539
|
57 |
FALABELLA A F . Debridement and wound bed preparation. Dermatol Ther. 2006, 19(6): 317-325 doi: 10.1111/dth.2006.19.issue-6
doi: 10.1111/j.1529-8019.2006.00090.x
pmid: 17199674
|
58 |
XIE X, MCGREGOR M, DENDUKURI N . The clinical effectiveness of negative pressure wound therapy:a systematic review. J Wound Care. 2010, 19(11): 490-495 doi: 10.12968/jowc.2010.19.11.79697
doi: 10.12968/jowc.2010.19.11.79697
pmid: 00031015
|
59 |
LI X, LIU J, LIU Y et al. Negative pressure wound therapy accelerates rats diabetic wound by promoting agenesis. Int J Clin Exp Med. 2015, 8(3): 3506-3513
|
60 |
AYDIN F, KAYA A, KARAPINAR L et al. IGF-1 increases with hyperbaric oxygen therapy and promotes wound healing in diabetic foot ulcers. J Diabetes Res. 2013, 2013: 567834
|
61 |
HUANG E T, MANSOURI J, MURAD M H et al. A clinical practice guideline for the use of hyperbaric oxygen therapy in the treatment of diabetic foot ulcers. Undersea Hyperb Med. 2015, 42(3): 205-247
|
62 |
NAVESC C . The diabetic foot:a historical overview and gaps in current treatment. Adv Wound Care (New Rochelle). 2016, 5(5): 191-197 doi: 10.1089/wound.2013.0518
doi: 10.1089/wound.2013.0518
pmid: 4827295
|
63 |
LIU Y, MIN D, BOLTON T et al. Increased matrix metalloproteinase-9 predicts poor wound healing in diabetic foot ulcers. Diabetes Care. 2009, 32(1): 117-119 doi: 10.2337/dc08-0763
doi: 10.2337/dc09-1394
pmid: 19875600
|
64 |
CHANG M . Restructuring of the extracellular matrix in diabetic wounds and healing:a perspective. Pharmacol Res. 2016, 107: 243-248 doi: 10.1016/j.phrs.2016.03.008
doi: 10.1016/j.phrs.2016.03.008
pmid: 27033051
|
65 |
GAO M, NGUYEN T T, SUCKOW M A et al. Acceleration of diabetic wound healing using a novel protease-anti-protease combination therapy. Proc Natl Acad Sci U S A. 2015, 112(49): 15226-15231 doi: 10.1073/pnas.1517847112
doi: 10.1073/pnas.1517847112
pmid: 26598687
|
66 |
CASTLEBERRY S A, ALMQUIST B D, LI W et al. Self-assembled wound dressings silence MMP-9 and improve diabetic wound healing in vivo. Adv Mater. 2016, 28(9): 1809-1817 doi: 10.1002/adma.201503565
doi: 10.1002/adma.201503565
pmid: 26695434
|
67 |
KIM H S, YOO H S . Matrix metalloproteinase-inspired suicidal treatments of diabetic ulcers with siRNA-decorated nanofibrous meshes. Gene Ther. 2013, 20(4): 378-385 doi: 10.1038/gt.2012.49
doi: 10.1038/gt.2012.49
pmid: 22717742
|
68 |
EMING S A, BRACHVOGEL B, ODORISIO T et al. Regulation of angiogenesis:wound healing as a model. Prog Histochem Cytochem. 2007, 42(3): 115-170 doi: 10.1016/j.proghi.2007.06.001
doi: 10.1016/j.proghi.2007.06.001
pmid: 17980716
|
69 |
RAM M, SINGH V, KUMAWAT S et al. Deferoxamine modulates cytokines and growth factors to accelerate cutaneous wound healing in diabetic rats. Eur J Pharmacol. 2015, 764: 9-21 doi: 10.1016/j.ejphar.2015.06.029
doi: 10.1016/j.ejphar.2015.06.029
pmid: 26101070
|
70 |
CHEN H, JIA P, KANG H et al. Upregulating Hif-1alpha byhydrogel nanofibrous scaffolds for rapidly recruiting angiogenesis relative cells in diabetic wound. Adv Healthc Mater. 2016, 5(8): 907-918 doi: 10.1002/adhm.201501018
doi: 10.1002/adhm.201501018
pmid: 26891197
|
71 |
LIU Z, BENARD O, SYEDA M M et al. Inhibition of prostaglandin transporter (PGT) promotes perfusion and vascularization and accelerates wound healing in non-diabetic and diabetic rats. PLoS One. 2015, 10(7): e0133615 doi: 10.1371/journal.pone.0133615
doi: 10.1371/journal.pone.0133615
pmid: 4521828
|
72 |
CHEN W, WU Y, LI L et al. Adenosine accelerates the healing of diabetic ischemic ulcers by improving autophagy of endothelial progenitor cells grown on a biomaterial. Sci Rep. 2015, 5: 11594 doi: 10.1038/srep11594
doi: 10.1038/srep11594
pmid: 26108983
|
73 |
BLAKYTNY R, JUDE E . The molecular biology of chronic wounds and delayed healing in diabetes. Diabet Med. 2006, 23(6): 594-608 doi: 10.1111/dme.2006.23.issue-6
doi: 10.1111/j.1464-5491.2006.01773.x
pmid: 16759300
|
74 |
MOURA L I, DIAS A M, LEAL E C et al. Chitosan-based dressings loaded with neurotensin-an efficient strategy to improve early diabetic wound healing. Acta Biomater. 2014, 10(2): 843-857 doi: 10.1016/j.actbio.2013.09.040
doi: 10.1016/j.actbio.2013.09.040
pmid: 24121197
|
75 |
MOURA L I, DIAS A M, SUESCA E et al. Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice. Biochim Biophys Acta. 2014, 1842(1): 32-43 doi: 10.1016/j.bbadis.2013.10.009
doi: 10.1016/j.bbadis.2013.10.009
pmid: 24161538
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|