Please wait a minute...
浙江大学学报(医学版)  2017, Vol. 46 Issue (1): 92-96    DOI: 10.3785/j.issn.1008-9292.2017.02.14
综述     
Nix介导的线粒体自噬机制的研究进展
郑艳榕(),张翔南,陈忠()
浙江大学药学院, 浙江 杭州 310058
Research progress on mechanism of Nix-mediated mitophagy
ZHENG Yanrong(),ZHANG Xiangnan,CHEN Zhong()
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1026 KB)   HTML( 8 ) HTML
摘要:

线粒体自噬对于维持细胞稳态至关重要。近年的研究发现,Nix是参与介导线粒体自噬的一个重要蛋白,在许多生理、病理过程中扮演了重要的角色。但是,Nix介导线粒体自噬的具体机制尚不清楚,现主要存在以下三种假说:① Nix可能与另一线粒体自噬关键蛋白Parkin相互作用,共同介导线粒体自噬;② Nix作为一种自噬受体蛋白,通过自身的Atg8家族相互作用模体招募Atg8家族成员至损伤线粒体,导致线粒体移除;③ 作为Bcl-2家族成员,Nix可能与参与自噬泡生成的重要蛋白Beclin-1竞争结合Bcl-2或Bcl-XL,导致细胞质中游离的Beclin-1增加,进而诱导自噬发生。本文阐述了Nix介导线粒体自噬的可能机制,为以Nix作为靶点进行相关疾病的治疗策略提供理论依据。

关键词: 线粒体自噬微管相关蛋白质类综述    
Abstract:

Autophagy is fundamental to maintain cellular homeostasis. As one kind of the most well-studied selective autophagy, autophagy of mitochondria (mitophagy) is crucial for the clearance of damaged mitochondria. Mitophagy dysfunction has been proved to be closely associated with many human diseases. Nix is a key protein for mitophagy during the maturation of reticulocytes. However, the detailed molecular mechanisms underlying Nix-mediated mitophagy are not fully understood. This article summarizes three possible working models of Nix in mitophagy induction. Firstly, Nix can interplay with Parkin, another important protein for mitophagy, to initiate mitophagy. Secondly, Nix can serve as a receptor for autophagy machinery by interacting with Atg8 family through its LIR motif. Finally, as a BH3-only protein, Nix can compete with Beclin-1 to bind other members of Bcl-2 family resulting in increased free Beclin-1 in cytosol, which further promotes autophagy flux.

Key words: Mitochondria    Autophagy    Microtubule-associated proteins    Review
收稿日期: 2016-10-02 出版日期: 2017-07-06
CLC:  R329.28  
基金资助: 国家自然科学基金(81273506);国家自然科学基金(81102429)
通讯作者: 陈忠     E-mail: yanrong_zh@zju.edu.cn;chenzhong@zju.edu.cn
作者简介: 郑艳榕 (1992-), 女, 博士研究生, 主要从事缺血性脑卒中的基础研究; E-mail:yanrong_zh@zju.edu.cn|陈忠 (1968-), 男, 博士, 教授, 博士生导师, 主要从事慢性脑病的分子生物学机制及药物新靶点研究; E-mail: chenzhong@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郑艳榕
张翔南
陈忠

引用本文:

郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.

ZHENG Yanrong,ZHANG Xiangnan,CHEN Zhong. Research progress on mechanism of Nix-mediated mitophagy. J Zhejiang Univ (Med Sci), 2017, 46(1): 92-96.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2017.02.14        http://www.zjujournals.com/med/CN/Y2017/V46/I1/92

图1  Nix介导线粒体自噬的四种可能模式 A:Nix可能通过诱导膜电势降低激活PINK1/Parkin通路,介导线粒体自噬,其中,蛋白X表示Parkin的泛素化底物,如Mfn2、VDAC1等;B:Nix作为Parkin的泛素化底物,被Parkin泛素化后特异性被LC3识别,进而介导线粒体自噬;C:Nix直接通过其LIR模体与Atg8家族成员结合,介导线粒体自噬;D:Nix可能与Beclin-1竞争结合Bcl-2,释放Beclin-1,增强自噬流.
1 LEVINE B, KLIONSKY D J . Development by self-digestion:molecular mechanisms and biological functions of autophagy. Dev Cell. 2004, 6(4): 463-477 doi: 10.1016/S1534-5807(04)00099-1
doi: 10.1016/S0305-4179(99)00126-6 pmid: 15068787
2 KIM I, RODRIGUEZ-ENRIQUEZ S, LEMASTERS J J . Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys. 2007, 462(2): 245-253 doi: 10.1016/j.abb.2007.03.034
doi: 10.1016/j.abb.2007.03.034 pmid: 17475204
3 YOULE R J, NARENDRA D P . Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011, 12(1): 9-14
4 CHEN Y, DORN G W . PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 2013, 340(6131): 471-475 doi: 10.1126/science.1231031
doi: 10.1126/science.1231031 pmid: 23620051
5 GEISLER S, HOLMSTR?M K M, SKUJAT D et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010, 12(2): 119-131 doi: 10.1038/ncb2012
6 MCLELLAND G L, SOUBANNIER V, CHEN C X et al. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 2014, 33(4): 282-295
7 DENISON M S, NAGY S R . Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol. 2003, 43: 309-334 doi: 10.1146/annurev.pharmtox.43.100901.135828
doi: 10.1146/annurev.pharmtox.43.100901.135828 pmid: 12540743
8 PAWLYK A C, GIASSON B I, SAMPATHU D M et al. Novel monoclonal antibodies demonstrate biochemical variation of brain parkin with age. J Biol Chem. 2003, 278(48): 48120-48128 doi: 10.1074/jbc.M306889200
doi: 10.1074/jbc.M306889200 pmid: 12972409
9 SCHWEERS R L, ZHANG J, RANDALL M S et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci U S A. 2007, 104(49): 19500-19505 doi: 10.1073/pnas.0708818104
10 CUCONATI A, WHITE E . Viral homologs of BCL-2:role of apoptosis in the regulation of virus infection. Genes Dev. 2002, 16(19): 2465-2478 doi: 10.1101/gad.1012702
doi: 10.1101/gad.1012702 pmid: 12368257
11 OHI N, TOKUNAGA A, TSUNODA H et al. A novel adenovirus E1B19K-binding protein B5 inhibits apoptosis induced by Nip3 by forming a heterodimer through the C-terminal hydrophobic region. Cell Death Differ. 1999, 6(4): 314-325 doi: 10.1038/sj.cdd.4400493
doi: 10.1038/sj.cdd.4400493 pmid: 10381623
12 MATSUSHIMA M, FUJIWARA T, TAKAHASHI E et al. Isolation, mapping, and functional analysis of a novel human cDNA (BNIP3L) encoding a protein homologous to human NIP3. Genes Chromosomes Cancer. 1998, 21(3): 230-235 doi: 10.1002/(ISSN)1098-2264
doi: 10.1002/(SICI)1098-2264(199803)21:33.0.CO;2-0 pmid: 9523198
13 IMAZU T, SHIMIZU S, TAGAMI S et al. Bcl-2/E1B 19 kDa-interacting protein 3-like protein (Bnip3L) interacts with bcl-2/Bcl-xL and induces apoptosis by altering mitochondrial membrane permeability. Oncogene. 1999, 18(32): 4523-4529 doi: 10.1038/sj.onc.1202722
doi: 10.1038/sj.onc.1202722 pmid: 10467396
14 KIM H, RAFIUDDIN-SHAH M, TU H C et al. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol. 2006, 8(12): 1348-1358 doi: 10.1038/ncb1499
15 KELEKAR A, THOMPSON C B . Bcl-2-family proteins:the role of the BH3 domain in apoptosis. Trends Cell Biol. 1998, 8(8): 324-330 doi: 10.1016/S0962-8924(98)01321-X
16 LAI J, FLANAGAN J, PHILLIPS W A et al. Analysis of the candidate 8p21 tumour suppressor, BNIP3L, in breast and ovarian cancer. Br J Cancer. 2003, 88(2): 270-276 doi: 10.1038/sj.bjc.6600674
doi: 10.1038/sj.bjc.6600674 pmid: 12610513
17 UNOKI M, NAKAMURA Y . EGR2 induces apoptosis in various cancer cell lines by direct transactivation of BNIP3L and BAK. Oncogene. 2003, 22(14): 2172-2185 doi: 10.1038/sj.onc.1206222
doi: 10.1038/sj.onc.1206222 pmid: 12687019
18 REAL P J, BENITO A, CUEVAS J et al. Blockade of epidermal growth factor receptors chemosensitizes breast cancer cells through up-regulation of Bnip3L. Cancer Res. 2005, 65(18): 8151-8157 doi: 10.1158/0008-5472.CAN-05-1134
doi: 10.1158/0008-5472.CAN-05-1134 pmid: 16166289
19 FEI P, WANG W, KIM S H et al. Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell. 2004, 6(6): 597-609 doi: 10.1016/j.ccr.2004.10.012
doi: 10.1016/j.ccr.2004.10.012 pmid: 15607964
20 WILFINGER N, AUSTIN S, SCHEIBER-MOJDEHKAR B et al. Novel p53-dependent anticancer strategy by targeting iron signaling and BNIP3L-induced mitophagy. Oncotarget. 2016, 7(2): 1242-1261
21 O'SULLIVAN T E, JOHNSON L R, KANG H H et al. BNIP3-and BNIP3L-mediated mitophagy promotes the generation of natural killer cell memory. Immunity. 2015, 43(2): 331-342 doi: 10.1016/j.immuni.2015.07.012
doi: 10.1016/j.immuni.2015.07.012 pmid: 26253785
22 GAO F, CHEN D, SI J et al. The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Hum Mol Genet. 2015, 24(9): 2528-2538 doi: 10.1093/hmg/ddv017
doi: 10.1093/hmg/ddv017 pmid: 25612572
23 MATSUDA N, SATO S, SHIBA K et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 2010, 189(2): 211-221 doi: 10.1083/jcb.200910140
doi: 10.4161/auto.6.7.13039 pmid: 20404107
24 SANDOVAL H, THIAGARAJAN P, DASGUPTA S K et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature. 2008, 454(7201): 232-235 doi: 10.1038/nature07006
doi: 10.1038/nature07006 pmid: 2570948
25 DING W X, NI H M, LI M et al. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J Biol Chem. 2010, 285(36): 27879-27890 doi: 10.1074/jbc.M110.119537
26 KUBLI D A, YCAZA J E, GUSTAFSSON A B . Bnip3 mediates mitochondrial dysfunction and cell death through Bax and Bak. Biochem J. 2007, 405(3): 407-415 doi: 10.1042/BJ20070319
doi: 10.1016/j.physc.2008.09.004 pmid: 17447897
27 KIRKIN V, MCEWAN D G, NOVAK I et al. A role for ubiquitin in selective autophagy. Mol Cell. 2009, 34(3): 259-269 doi: 10.1016/j.molcel.2009.04.026
doi: 10.1016/j.molcel.2009.04.026 pmid: 19450525
28 NOVAK I, KIRKIN V, MCEWAN D G et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 2010, 11(1): 45-51 doi: 10.1038/embor.2009.256
doi: 10.1038/embor.2009.256 pmid: 20010802
29 ZHANG J, LOYD M R, RANDALL M S et al. A short linear motif in BNIP3L (NIX) mediates mitochondrial clearance in reticulocytes. Autophagy. 2012, 8(9): 1325-1332 doi: 10.4161/auto.20764
30 ZHU Y, MASSEN S, TERENZIO M et al. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J Biol Chem. 2013, 288(2): 1099-1113 doi: 10.1074/jbc.M112.399345
doi: 10.1074/jbc.M112.399345 pmid: 3542995
31 LIU L, FENG D, CHEN G et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 2012, 14(2): 177-185 doi: 10.1038/ncb2422
32 AOKI Y, KANKI T, HIROTA Y et al. Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Mol Biol Cell. 2011, 22(17): 3206-3217 doi: 10.1091/mbc.E11-02-0145
doi: 10.1091/mbc.E11-02-0145 pmid: 21757540
33 NARENDRA D P, JIN S M, TANAKA A et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010, 8(1): e1000298 doi: 10.1371/journal.pbio.1000298
pmid: 2811155
34 CAO Y, KLIONSKY D J . Physiological functions of Atg6/Beclin 1:a unique autophagy-related protein. Cell Res. 2007, 17(10): 839-849 doi: 10.1038/cr.2007.78
doi: 10.1038/cr.2007.78 pmid: 17893711
35 YORIMITSU T, KLIONSKY D J . Autophagy:molecular machinery for self-eating. Cell Death Differ. 2005, 12(Suppl 2): 1542-1552
36 PATTINGRE S, TASSA A, QU X et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005, 122(6): 927-939 doi: 10.1016/j.cell.2005.07.002
doi: 10.1016/j.cell.2005.07.002 pmid: 16179260
[1] 冯梦宇 等. 加速康复外科在胰腺外科中的应用[J]. 浙江大学学报(医学版), 2017, 46(6): 666-674.
[2] 许晶晶 等. 影像学在肿瘤精准医疗时代的机遇和挑战[J]. 浙江大学学报(医学版), 2017, 46(5): 455-461.
[3] 潘静颖 等. PET-CT与乳腺癌分子病理分型、治疗反应及预后的相关性研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 473-480.
[4] 张思影 等. CT和磁共振参数反应图在肿瘤精准疗效评估中的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 468-472.
[5] 潘瑶 等. 胰腺癌的影像学精准诊断与评估[J]. 浙江大学学报(医学版), 2017, 46(5): 462-467.
[6] 王梦嫣 等. 耶氏肺孢子菌对磺胺类药物耐药相关基因突变的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 563-569.
[7] 张斌斌 等. 抑制哺乳动物雷帕霉素靶蛋白信号通路对慢性脑缺血小鼠认知功能的改善和机制[J]. 浙江大学学报(医学版), 2017, 46(4): 405-412.
[8] 李艳蝶 等. NLRP3炎症小体与儿童自身炎症性疾病研究进展[J]. 浙江大学学报(医学版), 2017, 46(4): 449-453.
[9] 郑静 等. 浙江省新生儿脂肪酸氧化代谢疾病筛查及随访分析[J]. 浙江大学学报(医学版), 2017, 46(3): 248-255.
[10] 王丽雅 等. 借助辅助生殖技术出生子代的安全性研究进展[J]. 浙江大学学报(医学版), 2017, 46(3): 279-284.
[11] 严恺 等. 出生缺陷相关遗传病产前诊断技术新进展[J]. 浙江大学学报(医学版), 2017, 46(3): 227-232.
[12] 唐敏悦 等. 半乳糖凝集素1在母胎界面参与胚胎着床和妊娠维持的研究进展[J]. 浙江大学学报(医学版), 2017, 46(3): 321-327.
[13] 傅晓华 等. 棕色脂肪组织及其与多囊卵巢综合征关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(3): 315-320.
[14] 傅燕玲 等. 肽类激素Kisspeptin在生殖内分泌领域的应用前景[J]. 浙江大学学报(医学版), 2017, 46(3): 328-333.
[15] 钱叶青 等. 高通量测序技术在临床遗传学中的应用[J]. 浙江大学学报(医学版), 2017, 46(3): 334-337.