Please wait a minute...
浙江大学学报(医学版)  2017, Vol. 46 Issue (1): 22-29    DOI: 10.3785/j.issn.1008-9292.2017.02.04
癫痫的形成机制及其诊治专题     
颞叶癫痫与海马成体神经再生
陈立颖(),汪仪,陈忠()
浙江大学药学院, 浙江 杭州 310058
Temporal lobe epilepsy and adult hippocampal neurogenesis
CHEN Liying(),WANG Yi,CHEN Zhong()
College of Pharmacy, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1038 KB)   HTML( 14 ) HTML
摘要:

颞叶癫痫是一种严重的慢性中枢系统疾病,难治性比例非常高,它不仅会损害海马的结构功能,还会影响海马齿状回区的成体神经再生。颞叶癫痫模型研究表明,海马齿状回区的内源性神经干细胞在癫痫持续状态后会迅速激活,神经再生水平显著提高,而在癫痫发作后期(慢性期)神经元再生水平降低至正常水平以下;另外,癫痫持续状态后产生并分化成熟的颗粒细胞会存在异常的形态和位置,并有可能异常整合到海马神经环路并对癫痫的形成和发作产生影响。然而,癫痫后的成体神经再生对于癫痫是利是弊仍存在较大争议。本文对近年来颞叶癫痫后成体神经再生的数量、形态和功能的研究进展进行综述,讨论成体神经再生在癫痫形成和病理机制中扮演的角色,为日后临床上以成体神经再生作为癫痫治疗调控的新靶点研究提供借鉴。

关键词: 癫痫, 颞叶/病理生理学齿状回/病理学齿状回/解剖学和组织学癫痫持续状态神经元神经再生疾病模型, 动物综述    
Abstract:

Temporal lobe epilepsy (TLE) is a common and severe neurological disorder which is often intractable. It can not only damage the normal structure and function of hippocampus, but also affect the neurogenesis in dentate gyrus (DG). It is well documented from researches on the animal models of TLE that after a latent period of several days, prolonged seizure activity leads to a dramatic increase in mitotic activity in the hippocampal DG. However, cell proliferation returns to baseline levels within 3-4 weeks after status epilepticus (SE). Meanwhile, there are two major abnormalities of DG neurogenesis, including the formation of hilar basal dendrites and the ectopic migration of newborn granule cells into the polymorphic cell layer, which may affect epileptogenesis and seizure onset. However, the specific contribution of these abnormalities to seizures is still unknown. In other words, whether they are anti-epileptic or pro-epileptic is still under heated discussion. This article systematically reviews current knowledge on neurogenesis and epilepsy based on the results of studies in recent years and discusses the possible roles of neurogenesis in epileptogenesis and pathologic mechanisms, so as to provide information for the potential application of neurogenesis as a new clinical therapeutic target for temporal lobe epilepsy.

Key words: Epilepsy, temporal lobe/physiopathology    Dentate gyrus/pathology    Dentate gyrus/pathology/anatomy&histology    Status epilepticus    Neurons    Nerve regeneration    Disease models, animal    Review
收稿日期: 2016-10-02 出版日期: 2017-07-07
CLC:  R741.02  
基金资助: 浙江省卫生厅高层次人才培养工程;国家自然科学基金(91332202)
通讯作者: 陈忠     E-mail: chenliying0129@163.com;chenzhong@zju.edu.cn
作者简介: 陈立颖 (1993-), 女, 博士研究生, 主要从事癫痫的基础研究; E-mail: chenliying0129@163.com|陈忠 (1968-), 男, 博士, 教授, 博士生导师, 主要从事慢性脑病的分子生物学机制及药物新靶点研究. E-mail: chenzhong@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈立颖
汪仪
陈忠

引用本文:

陈立颖,汪仪,陈忠. 颞叶癫痫与海马成体神经再生[J]. 浙江大学学报(医学版), 2017, 46(1): 22-29.

CHEN Liying,WANG Yi,CHEN Zhong. Temporal lobe epilepsy and adult hippocampal neurogenesis. J Zhejiang Univ (Med Sci), 2017, 46(1): 22-29.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2017.02.04        http://www.zjujournals.com/med/CN/Y2017/V46/I1/22

图1  海马内正常状态的成体神经再生和癫痫状态下的成体再生神经元发育成熟和功能整合 A:正常状态下海马齿状回区的放射状胶质细胞样前体细胞 (rNSC) 被激活后产生神经前体细胞,再分化成为不成熟神经元初步形成树突,然后成熟,树突延伸进入分子层,轴突经过门区延伸到CA3;B:癫痫持续状态后海马齿状回区rNSC被激活产生神经前体细胞,再分化成为不成熟神经元时不仅更早形成了正常的树突还在胞体底部形成了基底树突 (▲)。成熟后,神经元异常迁移离开颗粒细胞层在门区内向CA3迁移,部分轴突会反向伸展到达分子层,发生癫痫后常见的病理现象——苔藓纤维出芽 (△),从而形成异常的兴奋性环路.DG:海马齿状回区;GCL:颗粒细胞层;ML:分子层.
1 WOLF P . Pharmacoresistance in epilepsy. Zh Nevrol Psikhiatr Im S S Korsakova. 2005, 105(12): 55-56
2 SUN Y, WANG X, WANG Z et al. Expression of microRNA-129-2-3p and microRNA-935 in plasma and brain tissue of human refractory epilepsy. Epilepsy Res. 2016, 127: 276-283 doi: 10.1016/j.eplepsyres.2016.09.016
doi: 10.1016/j.eplepsyres.2016.09.016 pmid: 27689807
3 SON A Y, BIAGIONI M C, KAMINSKI D et al. Parkinson's disease and cryptogenic epilepsy. Case Rep Neurol Med. 2016, 2016: 3745631
4 ALTMAN J . Are new neurons formed in the brains of adult mammals?. Science. 1962, 135(3509): 1127-1128 doi: 10.1126/science.135.3509.1127
5 CHRISTIAN K M, SONG H, MING G L . Functions and dysfunctions of adult hippocampal neurogenesis. Annu Rev Neurosci. 2014, 37: 243-262 doi: 10.1146/annurev-neuro-071013-014134
doi: 10.1146/annurev-neuro-071013-014134 pmid: 24905596
6 DENG W, AIMONE J B, GAGE F H . New neurons and new memories:how does adult hippocampal neurogenesis affect learning and memory?. Nat Rev Neurosci. 2010, 11(5): 339-350 doi: 10.1038/nrn2822
doi: 10.1038/nrn2822 pmid: 20354534
7 SHAPIRO L A, KORN M J, RIBAK C E . Newly generated dentate granule cells from epileptic rats exhibit elongated hilar basal dendrites that align along GFAP-immunolabeled processes. Neuroscience. 2005, 136(3): 823-831 doi: 10.1016/j.neuroscience.2005.03.059
doi: 10.1016/j.neuroscience.2005.03.059 pmid: 16344154
8 MYERS C E, BERMUDEZ-HERNANDEZ K, SCHARFMAN H E. The influence of ectopic migration of granule cells into the hilus on dentate gyrus-CA3 function[J/OL][J/OL]. PLoS One, 2013, 8(6): e68208.
doi: 10.1371/journal.pone.0068208 pmid: 3695928
9 SCHMIDT-HIEBER C, JONAS P, BISCHOFBERGER J . Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature. 2004, 429(6988): 184-187 doi: 10.1038/nature02553
doi: 10.1038/nature02553 pmid: 15107864
10 ESPóSITO M S, PIATTI V C, LAPLAGNE D A et al. Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci. 2005, 25(44): 10074-10086 doi: 10.1523/JNEUROSCI.3114-05.2005
doi: 10.1523/JNEUROSCI.3114-05.2005 pmid: 16267214
11 DREW L J, KHEIRBEK M A, LUNA V M et al. Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons. Hippocampus. 2016, 26(6): 763-778 doi: 10.1002/hipo.22557
doi: 10.1002/hipo.22557 pmid: 26662922
12 LACEFIELD C O, ITSKOV V, REARDON T et al. Effects of adult-generated granule cells on coordinated network activity in the dentate gyrus. Hippocampus. 2012, 22(1): 106-116 doi: 10.1002/hipo.v22.1
doi: 10.1002/hipo.20860
13 PARENT J M, YU T W, LEIBOWITZ R T et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci. 1997, 17(10): 3727-3738
14 GRAY W P, SUNDSTROM L E . Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Res. 1998, 790(1-2): 52-59 doi: 10.1016/S0006-8993(98)00030-4
doi: 10.1016/S0006-8993(98)00030-4 pmid: 9593820
15 MOHAPEL P, EKDAHL C T, LINDVALL O . Status epilepticus severity influences the long-term outcome of neurogenesis in the adult dentate gyrus. Neurobiol Dis. 2004, 15(2): 196-205 doi: 10.1016/j.nbd.2003.11.010
doi: 10.1016/j.nbd.2003.11.010 pmid: 15006689
16 YANG F, WANG J C, HAN J L et al. Different effects of mild and severe seizures on hippocampal neurogenesis in adult rats. Hippocampus. 2008, 18(5): 460-468 doi: 10.1002/(ISSN)1098-1063
doi: 10.1002/hipo.20409 pmid: 18240317
17 BOTTERILL J J, BRYMER K J, CARUNCHO H J et al. Aberrant hippocampal neurogenesis after limbic kindling:relationship to BDNF and hippocampal-dependent memory. Epilepsy Behav. 2015, 47: 83-92 doi: 10.1016/j.yebeh.2015.04.046
doi: 10.1016/j.yebeh.2015.04.046 pmid: 25976182
18 JESSBERGER S, R?MER B, BABU H et al. Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp Neurol. 2005, 196(2): 342-351 doi: 10.1016/j.expneurol.2005.08.010
doi: 10.1016/j.expneurol.2005.08.010 pmid: 16168988
19 BLüMCKE I, SCHEWE J C, NORMANN S et al. Increase of nestin-immunoreactive neural precursor cells in the dentate gyrus of pediatric patients with early-onset temporal lobe epilepsy. Hippocampus. 2001, 11(3): 311-321 doi: 10.1002/hipo.v11:3
doi: 10.1002/hipo.1045 pmid: 11769312
20 WASTERLAIN C G . Developmental brain damage after chemically induced epileptic seizures. Eur Neurol. 1975, 13(6): 495-498
21 SHI X Y, SUN R P, WANG J W . Consequences of pilocarpine-induced recurrent seizures in neonatal rats. Brain Dev. 2007, 29(3): 157-163 doi: 10.1016/j.braindev.2006.08.009
doi: 10.1016/j.braindev.2006.08.009 pmid: 17008043
22 LIU H, KAUR J, DASHTIPOUR K et al. Suppression of hippocampal neurogenesis is associated with developmental stage, number of perinatal seizure episodes, and glucocorticosteroid level. Exp Neurol. 2003, 184(1): 196-213 doi: 10.1016/S0014-4886(03)00207-3
doi: 10.1016/S0014-4886(03)00207-3 pmid: 14637092
23 HATTIANGADY B, RAO M S, SHETTY A K . Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus. Neurobiol Dis. 2004, 17(3): 473-490 doi: 10.1016/j.nbd.2004.08.008
doi: 10.1016/j.nbd.2004.08.008
24 SIERRA A, MARTíN-SUáREZ S, VALCáRCEL-MARTíN R et al. Neuronal hyperactivity accelerates depletion of neural stem cells and impairs hippocampal neurogenesis. Cell Stem Cell. 2015, 16(5): 488-503 doi: 10.1016/j.stem.2015.04.003
doi: 10.1016/j.stem.2015.04.003 pmid: 25957904
25 FUKUDA S, KATO F, TOZUKA Y et al. Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J Neurosci. 2003, 23(28): 9357-9366
26 SERI B, GARCíA-VERDUGO J M, MCEWEN B S et al. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci. 2001, 21(18): 7153-7160
27 SEGI-NISHIDA E, WARNER-SCHMIDT J L, DUMAN R S . Electroconvulsive seizure and VEGF increase the proliferation of neural stem-like cells in rat hippocampus. Proc Natl Acad Sci U S A. 2008, 105(32): 11352-11357 doi: 10.1073/pnas.0710858105
doi: 10.1073/pnas.0710858105 pmid: 18682560
28 BONAGUIDI M A, WHEELER M A, SHAPIRO J S et al. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell. 2011, 145(7): 1142-1155 doi: 10.1016/j.cell.2011.05.024
doi: 10.1016/j.cell.2011.05.024 pmid: 21664664
29 SIERRA A, ENCINAS J M, DEUDERO J J et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 2010, 7(4): 483-495 doi: 10.1016/j.stem.2010.08.014
doi: 10.1016/j.stem.2010.08.014 pmid: 20887954
30 STONE S S, TEIXEIRA C M, DEVITO L M et al. Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J Neurosci. 2011, 31(38): 13469-13484 doi: 10.1523/JNEUROSCI.3100-11.2011
doi: 10.1523/JNEUROSCI.3100-11.2011 pmid: 21940440
31 SULTAN S, GEBARA E G, MOULLEC K et al. D-serine increases adult hippocampal neurogenesis. Front Neurosci. 2013, 7: 155
32 PALMER T D, WILLHOITE A R, GAGE F H . Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 2000, 425(4): 479-494 doi: 10.1002/(ISSN)1096-9861
33 LIE D C, COLAMARINO S A, SONG H J et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005, 437(7063): 1370-1375 doi: 10.1038/nature04108
34 SONG H, STEVENS C F, GAGE F H . Astroglia induce neurogenesis from adult neural stem cells. Nature. 2002, 417(6884): 39-44 doi: 10.1038/417039a
doi: 10.1038/417039a pmid: 11986659
35 SONG J, ZHONG C, BONAGUIDI M A et al. Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature. 2012, 489(7414): 150-154 doi: 10.1038/nature11306
doi: 10.1038/nature11306
36 ZHAO C, TENG E M, SUMMERS R G et al. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci. 2006, 26(1): 3-11 doi: 10.1523/JNEUROSCI.3648-05.2006
doi: 10.1523/JNEUROSCI.3648-05.2006 pmid: 16399667
37 TONI N, TENG E M, BUSHONG E A et al. Synapse formation on neurons born in the adult hippocampus. Nat Neurosci. 2007, 10(6): 727-734 doi: 10.1038/nn1908
doi: 10.1038/nn1908 pmid: 17486101
38 RAO M S, SHETTY A K . Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci. 2004, 19(2): 234-246 doi: 10.1111/ejn.2004.19.issue-2
39 SERESS L, RIBAK C E . Postnatal development of the light and electron microscopic features of basket cells in the hippocampal dentate gyrus of the rat. Anat Embryol (Berl). 1990, 181(6): 547-565
40 JESSBERGER S, ZHAO C, TONI N et al. Seizure-associated, aberrant neurogenesis in adult rats characterized with retrovirus-mediated cell labeling. J Neurosci. 2007, 27(35): 9400-9407 doi: 10.1523/JNEUROSCI.2002-07.2007
doi: 10.1523/JNEUROSCI.2002-07.2007 pmid: 17728453
41 SHAPIRO L A, RIBAK C E . Newly born dentate granule neurons after pilocarpine-induced epilepsy have hilar basal dendrites with immature synapses. Epilepsy Res. 2006, 69(1): 53-66 doi: 10.1016/j.eplepsyres.2005.12.003
doi: 10.1016/j.eplepsyres.2005.12.003 pmid: 16480853
42 SHAPIRO L A, FIGUEROA-ARAGON S, RIBAK C E . Newly generated granule cells show rapid neuroplastic changes in the adult rat dentate gyrus during the first five days following pilocarpine-induced seizures. Eur J Neurosci. 2007, 26(3): 583-592 doi: 10.1111/j.1460-9568.2007.05662.x
doi: 10.1111/j.1460-9568.2007.05662.x pmid: 17686039
43 DASHTIPOUR K, TRAN P H, OKAZAKI M M et al. Ultrastructural features and synaptic connections of hilar ectopic granule cells in the rat dentate gyrus are different from those of granule cells in the granule cell layer. Brain Res. 2001, 890(2): 261-271 doi: 10.1016/S0006-8993(00)03119-X
doi: 10.1016/S0006-8993(00)03119-X pmid: 11164792
44 PIERCE J P, MELTON J, PUNSONI M et al. Mossy fibers are the primary source of afferent input to ectopic granule cells that are born after pilocarpine-induced seizures. Exp Neurol. 2005, 196(2): 316-331 doi: 10.1016/j.expneurol.2005.08.007
doi: 10.1016/j.expneurol.2005.08.007
45 WALTER C, MURPHY B L, PUN R Y et al. Pilocarpine-induced seizures cause selective time-dependent changes to adult-generated hippocampal dentate granule cells. J Neurosci. 2007, 27(28): 7541-7552 doi: 10.1523/JNEUROSCI.0431-07.2007
doi: 10.1523/JNEUROSCI.0431-07.2007 pmid: 17626215
46 MURPHY B L, PUN R Y, YIN H et al. Heterogeneous integration of adult-generated granule cells into the epileptic brain. J Neurosci. 2011, 31(1): 105-117 doi: 10.1523/JNEUROSCI.2728-10.2011
doi: 10.1523/JNEUROSCI.2728-10.2011
47 PARENT J M, ELLIOTT R C, PLEASURE S J et al. Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann Neurol. 2006, 59(1): 81-91 doi: 10.1002/(ISSN)1531-8249
doi: 10.1002/ana.20699 pmid: 16261566
48 SCHARFMAN H E, SOLLAS A E, BERGER R E et al. Perforant path activation of ectopic granule cells that are born after pilocarpine-induced seizures. Neuroscience. 2003, 121(4): 1017-1029 doi: 10.1016/S0306-4522(03)00481-0
doi: 10.1016/S0306-4522(03)00481-0 pmid: 14580952
49 SCHARFMAN H E, SOLLAS A L, GOODMAN J H . Spontaneous recurrent seizures after pilocarpine-induced status epilepticus activate calbindin-immunoreactive hilar cells of the rat dentate gyrus. Neuroscience. 2002, 111(1): 71-81 doi: 10.1016/S0306-4522(01)00599-1
doi: 10.1016/S0306-4522(01)00599-1 pmid: 11955713
50 SCHARFMAN H E, GOODMAN J H, SOLLAS A L . Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells:functional implications of seizure-induced neurogenesis. J Neurosci. 2000, 20(16): 6144-6158
doi: 10.1016/S0006-3223(00)00914-8 pmid: 10934264
51 GONG C, WANG T W, HUANG H S et al. Reelin regulates neuronal progenitor migration in intact and epileptic hippocampus. J Neurosci. 2007, 27(8): 1803-1811 doi: 10.1523/JNEUROSCI.3111-06.2007
doi: 10.1523/JNEUROSCI.3111-06.2007 pmid: 17314278
52 LIU X, WANG Q, HAYDART F et al. Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci. 2005, 8(9): 1179-1187 doi: 10.1038/nn1522
doi: 10.1038/nn1522 pmid: 16116450
53 SCHARFMAN H, GOODMAN J, MACLEOD A et al. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol. 2005, 192(2): 348-356 doi: 10.1016/j.expneurol.2004.11.016
doi: 10.1016/j.expneurol.2004.11.016 pmid: 15755552
54 OVERSTREET-WADICHE L S, BROMBERG D A, BENSEN A L et al. Seizures accelerate functional integration of adult-generated granule cells. J Neurosci. 2006, 26(15): 4095-4103 doi: 10.1523/JNEUROSCI.5508-05.2006
55 JUNG K H, CHU K, KIM M et al. Continuous cytosine-b-D-arabinofuranoside infusion reduces ectopic granule cells in adult rat hippocampus with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Eur J Neurosci. 2004, 19(12): 3219-3226 doi: 10.1111/j.0953-816X.2004.03412.x
56 MORGAN R J, SOLTESZ I . Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci U S A. 2008, 105(16): 6179-6184 doi: 10.1073/pnas.0801372105
57 PUN R Y, ROLLE I J, LASARGE C L et al. Excessive activation of mTOR in postnatally generated granule cells is sufficient to cause epilepsy. Neuron. 2012, 75(6): 1022-1034 doi: 10.1016/j.neuron.2012.08.002
doi: 10.1016/j.neuron.2012.08.002
58 CHO K O, LYBRAND Z R, ITO N et al. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat Commun. 2015, 6: 6606 doi: 10.1038/ncomms7606
doi: 10.1038/ncomms7606 pmid: 25808087
59 RAEDT R, BOON P, PERSSON A et al. Radiation of the rat brain suppresses seizure-induced neurogenesis and transiently enhances excitability during kindling acquisition. Epilepsia. 2007, 48(10): 1952-1963 doi: 10.1111/epi.2007.48.issue-10
doi: 10.1111/j.1528-1167.2007.01146.x pmid: 17555527
60 PEKCEC A, LVPKE M, BAUMANN R et al. Modulation of neurogenesis by targeted hippocampal irradiation fails to affect kindling progression. Hippocampus. 2011, 21(8): 866-876
[1] 冯梦宇 等. 加速康复外科在胰腺外科中的应用[J]. 浙江大学学报(医学版), 2017, 46(6): 666-674.
[2] 许晶晶 等. 影像学在肿瘤精准医疗时代的机遇和挑战[J]. 浙江大学学报(医学版), 2017, 46(5): 455-461.
[3] 潘静颖 等. PET-CT与乳腺癌分子病理分型、治疗反应及预后的相关性研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 473-480.
[4] 张思影 等. CT和磁共振参数反应图在肿瘤精准疗效评估中的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 468-472.
[5] 潘瑶 等. 胰腺癌的影像学精准诊断与评估[J]. 浙江大学学报(医学版), 2017, 46(5): 462-467.
[6] 王梦嫣 等. 耶氏肺孢子菌对磺胺类药物耐药相关基因突变的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 563-569.
[7] 李艳蝶 等. NLRP3炎症小体与儿童自身炎症性疾病研究进展[J]. 浙江大学学报(医学版), 2017, 46(4): 449-453.
[8] 王丽雅 等. 借助辅助生殖技术出生子代的安全性研究进展[J]. 浙江大学学报(医学版), 2017, 46(3): 279-284.
[9] 严恺 等. 出生缺陷相关遗传病产前诊断技术新进展[J]. 浙江大学学报(医学版), 2017, 46(3): 227-232.
[10] 唐敏悦 等. 半乳糖凝集素1在母胎界面参与胚胎着床和妊娠维持的研究进展[J]. 浙江大学学报(医学版), 2017, 46(3): 321-327.
[11] 傅晓华 等. 棕色脂肪组织及其与多囊卵巢综合征关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(3): 315-320.
[12] 傅燕玲 等. 肽类激素Kisspeptin在生殖内分泌领域的应用前景[J]. 浙江大学学报(医学版), 2017, 46(3): 328-333.
[13] 钱叶青 等. 高通量测序技术在临床遗传学中的应用[J]. 浙江大学学报(医学版), 2017, 46(3): 334-337.
[14] 沈丹 等. 多囊卵巢综合征患者子代发生的远期改变[J]. 浙江大学学报(医学版), 2017, 46(3): 300-304.
[15] 何玉洁,潘建平. 病原菌对NOD样受体及Toll样受体信号通路介导的固有免疫逃逸机制研究进展[J]. 浙江大学学报(医学版), 2017, 46(2): 218-224.