Please wait a minute...
浙江大学学报(医学版)  2016, Vol. 45 Issue (6): 648-654    DOI: 10.3785/j.issn.1008-9292.2016.11.15
综述     
杜氏肌营养不良疾病模型及基因治疗研究进展
李统宇1,2, 梁平1,2
1. 浙江大学医学院附属第一医院肝胆胰外科 卫生部多器官联合移植研究重点实验室 浙江省器官移植重点实验室, 浙江 杭州 310003;
2. 浙江大学转化医学研究院, 浙江 杭州 310029
Research progress on disease models and gene therapy of Duchenne muscular dystrophy
LI Tongyu1,2, LIANG Ping1,2
1. Division of Hepatobilitary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine;Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health;Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China;
2. Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
 全文: PDF(1011 KB)  
摘要:

杜氏肌营养不良(DMD)是一种X连锁隐性致死性遗传病,通常由基因突变致病,其发病机制复杂多样。该病的致病基因是人类最大的基因,位于Xp21.2区,编码抗肌萎缩蛋白。目前,DMD患者尚无有效的治疗方案。DMD的基因突变及分子机制研究可为其治疗研究打下基础,而后者的进行又需建立在DMD疾病模型之上,如mdx小鼠模型等。随着研究的深入,DMD基因治疗策略不断提出,并在动物模型上取得了不错的效果。除此之外,诱导多能干细胞技术可提供患者特异的细胞来源,为DMD发病机制及治疗研究提供新的平台。

关键词: 基因疗法肌营养不良杜氏/治疗疾病模型动物多能干细胞综述    
Abstract:

Duchenne muscular dystrophy (DMD) is an X-linked, recessive and lethal genetic disease, which usually caused by gene mutations and the underlying mechanisms are complicated and diverse. The causal gene of DMD is the largest one in human that locates in the region of Xp21.2, encoding dystrophin. Currently there is no effective treatment for DMD patients. The treatment of DMD depends on gene mutation and molecular mechanism study of the disease, which requires reliable disease models such as mdx mouse model. Recently, researchers have increasingly discovered gene therapy strategies for DMD, and the efficacy has been demonstrated in DMD animal models. In addition, induced pluripotent stem cell technology can provide patient-specific cell source, offering a new platform for mechanism and therapy study of DMD.

Key words: Gene therapy    Muscular dystrophy, Duchenne/therapy    Disease models, animal    Multipotent stem cells    Review
收稿日期: 2016-09-22
CLC:  R746.2  
基金资助:

浙江省自然科学基金(LR15H020001);国家自然科学基金(31571528)

通讯作者: 梁平(1981-),男,博士,教授,博士生导师,主要从事多能干细胞与心血管疾病的转化医学研究;E-mail:pingliang@zju.edu.cn;http://orcid.org/0000-0001-6806-3735     E-mail: pingliang@zju.edu.cn
作者简介: 李统宇(1990-),男,硕士研究生,主要从事多能干细胞与心血管疾病的转化医学研究;E-mail:litongyu@zju.edu.cn;http://orcid.org/0000-0003-4634-7643
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李统宇 等. 杜氏肌营养不良疾病模型及基因治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 648-654.

LI Tongyu, LIANG Ping. Research progress on disease models and gene therapy of Duchenne muscular dystrophy. Journal of ZheJiang University(Medical Science), 2016, 45(6): 648-654.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2016.11.15        http://www.zjujournals.com/xueshu/med/CN/Y2016/V45/I6/648

[1] GOVONI A, MAGRI F, BRAJKOVIC S, et al. Ongoing therapeutic trials and outcome measures for Duchenne muscular dystrophy[J]. Cell Mol Life Sci, 2013, 70(23):4585-4602.
[2] DAVIES K E, SMITH T J, BUNDEY S, et al. Mild and severe muscular dystrophy associated with deletions in Xp21 of the human X chromosome[J]. J Med Genet, 1988, 25(1):9-13.
[3] KUNKEL L M, MONACO A P, MIDDLESWORTH W, et al. Specific cloning of DNA fragments absent from the DNA of a male patient with an X chromosome deletion[J]. Proc Natl Acad Sci U S A, 1985, 82(14):4778-4782.
[4] PRIOR T W, BRIDGEMAN S J. Experience and strategy for the molecular testing of Duchenne muscular dystrophy[J]. J Mol Diagn, 2005, 7(3):317-326.
[5] MAGRI F, GOVONI A, D'ANGELO M G, et al. Genotype and phenotype characterization in a large dystrophinopathic cohort with extended follow-up[J]. J Neurol, 2011, 258(9):1610-1623.
[6] MUNTONI F, TORELLI S, FERLINI A. Dystrophin and mutations:one gene, several proteins, multiple phenotypes[J]. Lancet Neurol, 2003, 2(12):731-740.
[7] LAPIDOS K A, KAKKAR R, MCNALLY E M. The dystrophin glycoprotein complex:signaling strength and integrity for the sarcolemma[J]. Circ Res, 2004, 94(8):1023-1031.
[8] HENDRIKSEN R G, HOOGLAND G, SCHIPPER S, et al. A possible role of dystrophin in neuronal excitability:a review of the current literature[J]. Neurosci Biobehav Rev, 2015, 51:255-262.
[9] EHMSEN J, POON E, DAVIES K. The dystrophin-associated protein complex[J]. J Cell Sci, 2002, 115(Pt 14):2801-2803.
[10] DAVIES K E, NOWAK K J. Molecular mechanisms of muscular dystrophies:old and new players[J]. Nat Rev Mol Cell Biol, 2006, 7(10):762-773.
[11] GAO Q Q, MCNALLY E M. The dystrophin complex:structure, function, and implications for therapy[J]. Compr Physiol, 2015, 5(3):1223-1239.
[12] GUMERSON J D, MICHELE D E. The dystrophin-glycoprotein complex in the prevention of muscle damage[J]. J Biomed Biotechnol, 2011, 2011:210797.
[13] BULFIELD G, SILLER W G, WIGHT P A, et al. X chromosome-linked muscular dystrophy (mdx) in the mouse[J]. Proc Natl Acad Sci U S A, 1984, 81(4):1189-1192.
[14] MATSUMURA K, ERVASTI J M, OHLENDIECK K, et al. Association of dystrophin-related protein with dystrophin-associated proteins in mdx mouse muscle[J]. Nature, 1992, 360(6404):588-591.
[15] CHAMBERLAIN J S, METZGER J, REYES M, et al. Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma[J]. FASEB J, 2007, 21(9):2195-2204.
[16] WILLMANN R, POSSEKEL S, DUBACH-POWELL J, et al. Mammalian animal models for Duchenne muscular dystrophy[J]. Neuromuscul Disord, 2009, 19(4):241-249.
[17] LARCHER T, LAFOUX A, TESSON L, et al. Characterization of dystrophin deficient rats:a new model for Duchenne muscular dystrophy[J/OL]. PLoS One, 2014, 9(10):e110371.
[18] GIBBS E M, HORSTICK E J, DOWLING J J. Swimming into prominence:the zebrafish as a valuable tool for studying human myopathies and muscular dystrophies[J]. FEBS J, 2013, 280(17):4187-4197.
[19] BARTHÉLÉMY I, PINTO-MARIZ F, YADA E, et al. Predictive markers of clinical outcome in the GRMD dog model of Duchenne muscular dystrophy[J]. Dis Model Mech, 2014, 7(11):1253-1261.
[20] FAIRCLOUGH R J, WOOD M J, DAVIES K E. Therapy for Duchenne muscular dystrophy:renewed optimism from genetic approaches[J]. Nat Rev Genet, 2013, 14(6):373-378.
[21] AL-ZAIDY S, RODINO-KLAPAC L, MENDELL J R. Gene therapy for muscular dystrophy:moving the field forward[J]. Pediatr Neurol, 2014, 51(5):607-618.
[22] KOO T, WOOD M J. Clinical trials using antisense oligonucleotides in duchenne muscular dystrophy[J]. Hum Gene Ther, 24(5):479-488.
[23] AARTSMA-RUS A, FOKKEMA I, VERSCHUUREN J, et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations[J]. Hum Mutat, 2009, 30(3):293-299.
[24] OUSTEROUT D G, KABADI A M, THAKORE P I, et al. Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases[J]. Mol Ther, 2015, 23(3):523-532.
[25] URNOV F D, REBAR E J, HOLMES M C, et al. Genome editing with engineered zinc finger nucleases[J]. Nat Rev Genet, 2010, 11(9):636-646.
[26] OUSTEROUT D G, PEREZ-PINERA P, THAKORE P I, et al. Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients[J]. Mol Ther, 2013, 21(9):1718-1726.
[27] PERKINS K J, DAVIES K E. The role of utrophin in the potential therapy of Duchenne muscular dystrophy[J]. Neuromuscul Disord, 2002, 12 Suppl 1:S78-S89.
[28] TINSLEY J, DECONINCK N, FISHER R, et al. Expression of full-length utrophin prevents muscular dystrophy in mdx mice[J]. Nat Med, 1998, 4(12):1441-1444.
[29] DI CMG, CORBI N, STRIMPAKOS G, et al. The artificial gene Jazz, a transcriptional regulator of utrophin, corrects the dystrophic pathology in mdx mice[J]. Hum Mol Genet, 2010, 19(5):752-760.
[30] BASU U, LOZYNSKA O, MOORWOOD C, et al. Translational regulation of utrophin by miRNAs[J/OL]. PLoS One, 2011, 6(12):e29376.
[31] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.
[32] MENDELL J R, RODINO-KLAPAC L R. Duchenne muscular dystrophy:CRISPR/Cas9 treatment[J]. Cell Res, 2016, 26(5):513-514.
[33] TABEBORDBAR M, ZHU K, CHENG J K, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells[J]. Science, 2016, 351(6271):407-411.
[34] CHAKKALAKAL J V, THOMPSON J, PARKS R J, et al. Molecular, cellular, and pharmacological therapies for Duchenne/Becker muscular dystrophies[J]. FASEB J, 2005, 19(8):880-891.
[35] EVANS M J, KAUFMAN M H. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292(5819):154-156.
[36] THOMSON J A, ITSKOVITZ-ELDOR J, SHAPIRO S S, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391):1145-1147.
[37] DENNIS C. Cloning:mining the secrets of the egg[J]. Nature, 2006, 439(7077):652-655.
[38] HALL V J, STOJKOVIC P, STOJKOVIC M. Using therapeutic cloning to fight human disease:a conundrum or reality?[J]. Stem Cells, 2006, 24(7):1628-1637.
[39] KAZUKI Y, HIRATSUKA M, TAKIGUCHI M, et al. Complete genetic correction of ips cells from Duchenne muscular dystrophy[J]. Mol Ther, 2010, 18(2):386-393.
[40] NOGUCHI H, SAITOH I, TSUGATA T, et al. Induction of tissue-specific stem cells by reprogramming factors, and tissue-specific selection[J]. Cell Death Differ, 2015, 22(1):145-155.
[41] CHEN F, CAO J, LIU Q, et al. Comparative study of myocytes from normal and mdx mice iPS cells[J]. J Cell Biochem, 2012, 113(2):678-684.
[42] LUO Y, FAN Y, CHEN X, et al. Modeling induced pluripotent stem cells from fibroblasts of Duchenne muscular dystrophy patients[J]. Int J Neurosci, 2014, 124(1):12-21
[1] 高思倩,沈咏梅,耿福能,李艳华,高建青. 颞叶癫痫与海马成体神经再生[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[2] 汪锡婷,唐藕凤,叶夷露,郑鸣之,胡珏,陈忠,钟恺. 藏红花素对小鼠电点燃癫痫的影响[J]. 浙江大学学报(医学版), 2017, 46(1): 7-14.
[3] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[4] 侯甲福,武蕾蕾,才玉婷,高长久,安锦丹,于忠诚. 锦花清热胶囊抗内毒素作用实验研究[J]. 浙江大学学报(医学版), 2017, 46(1): 74-79.
[5] 马婷婷,王毅,陈晓倩,赵筱萍. 液相色谱-质谱联用导向的黄葵胶囊肾保护活性物质研究[J]. 浙江大学学报(医学版), 2017, 46(1): 66-73.
[6] 王颖,汪仪,陈忠. 中枢胆碱能系统与癫痫关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 15-21.
[7] 高思倩,沈咏梅,耿福能,李艳华,高建青. 糖尿病溃疡动物模型的建立及相关治疗研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[8] 李文龙,瞿海斌. 近红外光谱应用于中药质量控制及生产过程监控的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 80-88.
[9] 张力三,陈冠峰,陈洁芳,何旭东,胡兴越. 组胺改善癫痫所致记忆形成障碍的实验研究[J]. 浙江大学学报(医学版), 2017, 46(1): 1-6.
[10] 高玉海 等. 淫羊藿总黄酮胶囊对生长期大鼠骨密度和骨形态计量学的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 581-586.
[11] 洪梦琪 等. 腹膜透析液通过上调葡萄糖转运体促进腹膜纤维化[J]. 浙江大学学报(医学版), 2016, 45(6): 598-606.
[12] 封盛 等. 糖皮质激素受体信号通路在膀胱癌治疗中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 655-660.
[13] 方清清 等. 低频脉冲电磁场促进成骨细胞分化的基因调节和非基因调节探究[J]. 浙江大学学报(医学版), 2016, 45(6): 568-574.
[14] 屈涛 等. 丹参素对去势大鼠骨质量的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 587-591.
[15] 刘军 等. 机体炎症因子和氧化应激标志物介导姜黄素抑制骨性关节炎的作用机制[J]. 浙江大学学报(医学版), 2016, 45(5): 461-468.