Please wait a minute...
浙江大学学报(医学版)  2016, Vol. 45 Issue (6): 568-574    DOI: 10.3785/j.issn.1008-9292.2016.11.02
骨组织代谢与再生专题     
低频脉冲电磁场促进成骨细胞分化的基因调节和非基因调节探究
方清清1, 李志忠2, 周建1, 石文贵1, 闫娟丽1, 陈克明1
1. 兰州军区兰州总医院全军骨科中心骨科研究所, 甘肃 兰州 730050;
2. 兰州理工大学生命科学与工程学院, 甘肃 兰州 730050
Genic and non-genic regulation of low frequence pulsed electromagnetic fields on osteoblasts differentiation
FANG Qingqing1, LI Zhizhong2, ZHOU Jian1, SHI Wengui1, YAN Juanli1, CHEN Keming1
1. Institute of Orthopaedics Center, Lanzhou General Hospital of PLA, Lanzhou 730050, China;
2. College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
 全文: PDF(1110 KB)  
摘要:

目的:探究50 Hz 0.6 mT脉冲电磁场(PEMF)促进体外培养大鼠颅骨成骨细胞(ROB)分化成熟是否存在基因调节和非基因调节。方法:体外培养ROB,传代融合后经50 Hz 0.6 mT PEMF处理1.5 h,于0、3、6、9、12 h检测碱性磷酸酶(ALP)的活性及其基因表达,以及骨形成相关因子Runx2、OSX的基因和蛋白表达。结果:50 Hz 0.6 mT PEMF处理后3 h,ROB中ALP的活性高于对照组(P<0.01),而其基因表达在处理后6 h才高于对照组。Runx2的基因表达在处理后立即升高,持续至处理后6 h回归对照组水平,之后再次升高,其蛋白表达与之相对应但略有滞后。OSX的基因表达亦在处理后立即升高,持续至处理后6 h回归对照组水平,至12 h时显著降低,其蛋白表达与之相对应但略有滞后。结论:50 Hz 0.6 mT PEMF促进体外培养ROB分化成熟存在对Runx2和OSX的基因调节以及对ALP活性的非基因调节。

关键词: 成骨细胞/辐射效应颅骨电磁场动物新生细胞培养的细胞分化基因调节大鼠Wistar    
Abstract:

Objective: To study the genic and non-genic regulation of 50 Hz 0.6 mT pulsed electromagnenic fields (PEMF) on rat calvarial osteoblasts (ROB) differentiation. Methods: ROBs were achieved by enzyme digestion, and treated with 50 Hz 0.6 mT PEMFs for 1.5 hours after subculture. The alkaline phosphatase (ALP) activity, mRNA transcription of ALP, Runx2 and OSX and protein expression of Runx2 and OSX were detected at 0, 3, 6, 9 and 12 hours after PEMF treatment. Results: The ALP activity at 3 hours after treatment was significantly higher than that in the control(P<0.01), while the mRNA transcription of ALP began to increase at 6 hours after treatment. The mRNA transcription of Runx2 increased immediately after treatment and regressed at 6 hours, then increased again. The protein expression of it corresponded but with a little lag. The mRNA transcription of OSX also raised instantly after treatment, then returned to the level of control at 6 hours, and lower than control at 12 hours significantly. The protein expression of it also corresponded but with a bit delay. Conclusions: There are genic regulation for the protein expression of Runx2 and OSX, and non-genic regulation for the ALP activity on the process of 50 Hz 0.6 mT PEMFs prompts ROBs differentiation.

Key words: Osteoblasts/radiation effects    Skull    Electromagnetic fields    Animals, newborn    Cells, cultured    Cell differentiation    Genes, regulator    Rats, Wistar
收稿日期: 2016-09-30
CLC:  Q683  
基金资助:

国家自然科学基金(81270963,81471090)

通讯作者: 陈克明(1968-),男,博士,教授,博士生导师,主要从事骨质疏松症的发病机制和防治研究,E-mail:chenkm@lut.cn;http://orcid.org/0000-0002-9749-8356     E-mail: chenkm@lut.cn
作者简介: 方清清(1988-),女,硕士研究生,主要从事低频电磁场防治骨质疏松症的研究;E-mail:qingqinggslz@126.com;http://orcid.org/0000-0003-0996-2639
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

方清清 等. 低频脉冲电磁场促进成骨细胞分化的基因调节和非基因调节探究[J]. 浙江大学学报(医学版), 2016, 45(6): 568-574.

FANG Qingqing, LI Zhizhong, ZHOU Jian, SHI Wengui, YAN Juanli, CHEN Keming. Genic and non-genic regulation of low frequence pulsed electromagnetic fields on osteoblasts differentiation. Journal of ZheJiang University(Medical Science), 2016, 45(6): 568-574.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2016.11.02        http://www.zjujournals.com/xueshu/med/CN/Y2016/V45/I6/568

[1] KANIS J A, MELTON L J, CHRISTIANSEN C, et al. The diagnosis of osteoporosis[J]. J Bone Miner Res, 1994, 9(8):1137-1141.
[2] KULAR J, TICKNER J, CHIM S M, et al. An overview of the regulation of bone remodelling at the cellular level[J]. Clin Biochem, 2012, 45(12):863-873.
[3] LI X D, LIU Z Y, CHANG B, et al. Panax notoginseng saponins promote osteogenic differentiation of bone marrow stromal cells through the ERK and p38 MAPK signaling pathways[J]. Cell Physiol Biochem, 2011, 28(2):367-376.
[4] MARTINO C F, BELCHENKO D, FERGUSON V, et al. The effects of pulsed electromagnetic fields on the cellular activity of SaOS-2 cells[J]. Bioelectromagnetics, 2008, 29(2):125-132.
[5] WIESMANN H P, HARTIG M, STRATMANN U, et al. Electrical stimulation influences mineral formation of osteoblast-like cells in vitro[J]. Biochim Biophys Acta, 2001, 1538(1):28-37.
[6] TAYLOR K F, INOUE N, RAFIEE B, et al. Effect of pulsed electromagnetic fields on maturation of regenerate bone in a rabbit limb lengthening model[J]. J Orthop Res, 2006, 24(1):2-10.
[7] 翟中和,王喜忠,丁明孝. 细胞生物学[M]. 2版. 北京:高等教育出版社,2000:19. ZHAI Zhonghe, WANG Xizhong, DING Mingxiao. Cell biology[M]. 2nd ed. Beijing:Higher Education Press, 2000:19. (in Chinese)
[8] 孙大业,崔素娟,孙颖. 细胞信号转导[M]. 4版. 北京:科学出版社,2010:68-69. SUN Daye, CUI Sujuan, SUN Ying. Cellular signal transduction[M]. 4th ed. Beijing:Science Press, 2010:68-69. (in Chinese)
[9] 鞠辉明,陈星云,刘宗平,等. 糖皮质激素非基因组效应的研究[J]. 现代生物医学进展,2009,9(14):2741-2744. JU Huiming, CHEN Xingyun, LIU Zongping, et al. Research on non-genomic glucocorticoid effects[J]. Progress in Modern Biomedicine, 2009, 9(14):2741-2744. (in Chinese)
[10] DAVIS P J, LIN H Y, MOUSA S A, et al. Overlapping nongenomic and genomic actions of thyroid hormone and steroids[J]. Steroids, 2011, 76(9):829-833.
[11] ZHOU J, MING L G, GE B F, et al. Effects of 50Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts[J]. Bone, 2011, 49(4):753-761.
[12] SCHWARTZ Z, FISHER M, LOHMANN C H, et al. Osteoprotegerin (OPG) production by cells in the osteoblast lineage is regulated by pulsed electromagnetic fields in cultures grown on calcium phosphate substrates[J]. Ann Biomed Eng, 2009, 37(3):437-444.
[13] LI K, MA S, LI Y, et al. Effects of PEMF exposure at different pulses on osteogenesis of MC3T3-E1 cells[J]. Arch Oral Biol, 2014, 59(9):921-927.
[14] MANNI V, LISI A, RIETI S, et al. Low electromagnetic field (50 Hz) induces differentiation on primary human oral keratinocytes (HOK)[J]. Bioelectromagnetics, 2004, 25(2):118-126.
[15] YAN J L, ZHOU J, MA H P, et al. Pulsed electromagnetic fields promote osteoblast mineralization and maturation needing the existence of primary cilia[J]. Mol Cell Endocrinol, 2015, 404:132-140.
[16] 周建,葛宝丰,陈克明,等. 正弦交变电磁场促进体外培养成骨细胞成熟矿化的时间效应[J]. 生物医学工程学杂志,2011,28(6):1085-1088. ZHOU Jian, GE Baofeng, CHEN Keming, et al. Time effect of sinusoidal elctromagnetic on enhanceing the maturation and mineralization of osteoblast in vitro[J]. Journal of Biomedical Engineering, 2011, 28(6):1085-1088. (in Chinese)
[17] WINDAHL S H, SAXON L, BÖRJESSON A E, et al. Estrogen receptor-α is required for the osteogenic response to mechanical loading in a ligand-independent manner involving its activation function 1 but not 2[J]. J Bone Miner Res, 2013, 28(2):291-301.
[18] AGUIRRE J I, PLOTKIN L I, GORTAZAR A R, et al. A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast mechanotransduction[J]. J Biol Chem, 2007, 282(35):25501-25508.
[19] GALEA G L, PRICE J S, LANYON L E. Estrogen receptors' roles in the control of mechanically adaptive bone (re)modeling[J]. Bonekey Rep, 2013, 2:413.
[20] KOUSTENI S, CHEN J R, BELLIDO T, et al. Reversal of bone loss in mice by nongenotropic signaling of sex steroids[J]. Science, 2002, 298(5594):843-846.
[21] JI Z, CHENG Y, YUAN P, et al. Panax notoginseng stimulates alkaline phosphatase activity, collagen synthesis, and mineralization in osteoblastic MC3T3-E1 cells[J]. In Vitro Cell Dev Biol Anim, 2015, 51(9):950-957.
[22] VOJISAVLJEVIC V, PIROGOVA E, COSIC I. Review of studies on modulating enzyme activity by low intensity electromagnetic radiation[J]. Conf Proc IEEE Eng Med Biol Soc, 2010, 2010:835-838.
[23] 王秋颖. 碱性磷酸酶特性及其应用的研究进展[J]. 中国畜牧兽医,2011,38(1):157-161. WANG Qiuying. Advances on characteristic and application of alkaline phosphatase[J]. China Animal Husbandry & Veterinary Medicine, 2011, 38(1):157-161. (in Chinese)
[24] TANG J, YUAN Z, YANG L, et al. Exposure to 900MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in rats[J]. Brain Res, 2015, 1601:92-101.
[25] SOLTANOFF C S, YANG S, CHEN W, et al. Signaling networks that control the lineage commitment and differentiation of bone cells[J]. Crit Rev Eukaryot Gene Expr, 2009, 19(1):1-46.
[1] 高思倩,沈咏梅,耿福能,李艳华,高建青. 颞叶癫痫与海马成体神经再生[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[2] 汪锡婷,唐藕凤,叶夷露,郑鸣之,胡珏,陈忠,钟恺. 藏红花素对小鼠电点燃癫痫的影响[J]. 浙江大学学报(医学版), 2017, 46(1): 7-14.
[3] 卢伸,王青青. 第14届国际树突状细胞会议热点解读[J]. 浙江大学学报(医学版), 2017, 46(1): 106-109.
[4] 侯甲福,武蕾蕾,才玉婷,高长久,安锦丹,于忠诚. 锦花清热胶囊抗内毒素作用实验研究[J]. 浙江大学学报(医学版), 2017, 46(1): 74-79.
[5] 马婷婷,王毅,陈晓倩,赵筱萍. 液相色谱-质谱联用导向的黄葵胶囊肾保护活性物质研究[J]. 浙江大学学报(医学版), 2017, 46(1): 66-73.
[6] 陈刚,张鼎,应亚草,王志峰,陶伟,朱皓,张景峰,彭志毅. 国产载药微球经动脉化疗栓塞治疗不可切除原发性肝癌的临床研究[J]. 浙江大学学报(医学版), 2017, 46(1): 44-51.
[7] 吴菡,王钟瑾,明文杰,王爽,丁美萍. 长程视频脑电图监测癫痫患者发作间期痫样放电的时段分析[J]. 浙江大学学报(医学版), 2017, 46(1): 30-35.
[8] 高思倩,沈咏梅,耿福能,李艳华,高建青. 糖尿病溃疡动物模型的建立及相关治疗研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[9] 张力三,陈冠峰,陈洁芳,何旭东,胡兴越. 组胺改善癫痫所致记忆形成障碍的实验研究[J]. 浙江大学学报(医学版), 2017, 46(1): 1-6.
[10] 高玉海 等. 淫羊藿总黄酮胶囊对生长期大鼠骨密度和骨形态计量学的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 581-586.
[11] 洪梦琪 等. 腹膜透析液通过上调葡萄糖转运体促进腹膜纤维化[J]. 浙江大学学报(医学版), 2016, 45(6): 598-606.
[12] 周延峰 等. 1.8 mT不同频率正弦电磁场对青年大鼠骨生物力学性能的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 561-567.
[13] 杨晓红 等. 微RNA-705对MC3T3-E1细胞成骨分化能力的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 575-580.
[14] 张展 等. 鼠尾Ⅰ型胶原的酸解、纤维重构和仿骨生物矿化研究[J]. 浙江大学学报(医学版), 2016, 45(6): 592-597.
[15] 候仕芳 等. 下调lmna基因对斑马鱼胚胎髓系和红系造血干细胞发育的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 620-625.