Please wait a minute...
浙江大学学报(医学版)  2016, Vol. 45 Issue (6): 561-567    DOI: 10.3785/j.issn.1008-9292.2016.11.01
骨组织代谢与再生专题     
1.8 mT不同频率正弦电磁场对青年大鼠骨生物力学性能的影响
周延峰, 高玉海, 甄平, 陈克明
兰州军区兰州总医院全军骨科中心骨科研究所, 甘肃 兰州 730050
Effects of 1.8 mT sinusoidal alternating electromagnetic fields of different frequencies on bone biomechanics of young rats
ZHOU Yanfeng, GAO Yuhai, ZHEN Ping, CHEN Keming
Institute of Orthopaedics Center, Lanzhou General Hospital of PLA, Lanzhou 730050, China
 全文: PDF(1263 KB)  
摘要:

目的:研究1.8 mT不同频率的正弦交变电磁场对青年大鼠骨密度和骨生物力学性能的影响。方法:32只6周龄雌性SD大鼠随机分为对照组、10 Hz组、25 Hz组和40 Hz组,每组8只。除对照组外,均每日给予1.8 mT不同频率的正弦电磁场干预,干预时间均为90 min。干预后第4、8周经双能X线骨密度仪检测全身骨密度,并在第8周骨密度检测之后处死实验大鼠,分离骨组织,检测股骨与腰椎骨的骨密度,测量股骨长度、直径、内外两髁外侧间距,用电子万能材料试验机检测股骨和腰椎骨的生物力学指标,显微CT分析胫骨松质骨的骨微结构改变。结果:与对照组比较,10 Hz组、40 Hz组大鼠的全身骨密度、股骨骨密度、股骨最大载荷、屈服强度以及腰椎骨最大载荷、弹性模量差异均有统计学意义(均P<0.05);而股骨的长度、直径、两髁间的宽度与对照组比较差异均无统计学意义(均P>0.05)。显微CT分析结果显示,10 Hz组、40 Hz组大鼠胫骨松质骨的骨小梁数量、分离度、骨体积百分比较对照组均增加(均P<0.01)。25 Hz组全身骨密度及股骨生物力学性能与对照组差异无统计学意义(均P>0.05)。结论:10、40 Hz的1.8 mT正弦交变电磁场可提高青年大鼠骨密度、改善骨微结构和骨生物力学特性。

关键词: 大鼠Sprague-Dawley电磁场胫骨骨密度骨质疏松/病理学生物力学    
Abstract:

Objective: To study the effects of 1.8 mT sinusoidal electromagnetic fields of different frequencies on bone mineral density (BMD) and biomechanical properties in young rats. Methods: A total of 32 female SD rats (6-week-old) were randomly divided into 4 groups (8 in each):control group, 10 Hz group, 25 Hz group and 40 Hz group. The experimental groups were given 1.8 mT sinusoidal electromagnetic field intervention 90 min per day. The whole body BMD of rats was detected with dual-energy X-ray absorptiometry after 4 and 8 weeks of intervention. After 8 weeks of intervention, all rats were sacrificed, and the BMD of femur and lumbar vertebra, the length and diameter of femur, the width between medial and lateral malleolus were measured. Electronic universal material testing machine was used to obtain biomechanical properties of femur and lumbar vertebra, and micro CT scan was performed to observe micro structures of tibial cancellous bone. Results: Compared with the control group, rats in 10 Hz and 40 Hz groups had higher whole body BMD, BMD of femur, maximum load and yield strength of femur, as well as maximum load and elastic modulus of lumbar vertebra (all P<0.05). But no significant differences in the length and diameter of femur, and the width between medial and lateral malleolus were observed between control group and experimental groups (all P>0.05). Micro CT scan showed that the trabecular number and separation degree, bone volume percentage were significantly increased in 10 Hz and 40 Hz groups (all P<0.01). Rats in 25 Hz group also had higher BMD and better in biomechanical properties than control group, but the differences were not statistically significant (all P>0.05). Conclusion: 10 and 40 Hz of 1.8 mT sinusoidal electromagnetic field can significantly improve the bone density, microstructure and biomechanical properties in young rats.

Key words: Rats, Sprague-Dawley    Electromagnetic fields    Tibia    Bone density    Osteoporosis/pathology    Biomechanics
收稿日期: 2016-08-08
CLC:  Q683  
基金资助:

甘肃省自然科学基金(1506RJZA306,1506RJZA307);国家自然科学基金(81270963,81471090)

通讯作者: 陈克明(1968-),男,博士,教授,博士生导师,主要从事骨质疏松症的发病机制和防治研究;E-mail:chenkm@lut.cn;http://orcid.org/0000-0002-9749-8356     E-mail: chenkm@lut.cn
作者简介: 周延峰(1989-),男,硕士研究生,主要从事低频电磁场防治骨质疏松症的研究;E-mail:yanyanzdl@163.com;http://orcid.org/0000-0003-2428-3845
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

周延峰 等. 1.8 mT不同频率正弦电磁场对青年大鼠骨生物力学性能的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 561-567.

ZHOU Yanfeng, GAO Yuhai, ZHEN Ping, CHEN Keming. Effects of 1.8 mT sinusoidal alternating electromagnetic fields of different frequencies on bone biomechanics of young rats. Journal of ZheJiang University(Medical Science), 2016, 45(6): 561-567.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2016.11.01        http://www.zjujournals.com/xueshu/med/CN/Y2016/V45/I6/561

[1] ALEJANDRO P, CONSTANTINESCU F. A review of osteoporosis in the older adult[J]. Clin Geriatr Med, 2017, 33(1):27-40.
[2] GIORDANO N, BATTISTI E, GERACI S, et al. Effect of electromagnetic fields on bone mineral density and biochemical marker of bone turnover in osteoporosis:a single-blind, randomized pilot study[J]. Curr Therap Res, 2001, 62(3):187-193.
[3] WANG Y N, ZHANG W. The effect of plused electromagnetic field on the bone volume of human being[J]. Procidia Technology, 2015, 20:66-71.
[4] ABRAHAM A C, AGARWALLA A, YADAVALLI A, et al. Microstructural and compositional contributions towards the mechanical behavior of aging human bone measured by cyclic and impact reference point indentation[J]. Bone, 2016, 87:37-43.
[5] OSTERHOFF G, MORGAN E F, SHEFELBINE S J, et al. Bone mechanical properties and changes with osteoporosis[J]. Injury, 2016, 47 Suppl 2:S11-S20.
[6] CAO Z, CHEN Y, CHEN Y, et al. Electromagnetic irradiation may be a new approach to therapy for peri-implantitis[J]. Med Hypotheses, 2012, 78(3):370-372.
[7] YOON S H, CHEN J, GRYNPAS M D, et al. Prophylactic pamidronate partially protects from glucocorticoid-induced bone loss in the mdx mouse model of Duchenne muscular dystrophy[J]. Bone, 2016, 90:168-180.
[8] JING D, SHEN G, HUANG J, et al. Circadian rhythm affects the preventive role of pulsed electromagnetic fields on ovariectomy-induced osteoporosis in rats[J]. Bone, 2010, 46(2):487-495.
[9] QU C Y, YU S W. The damage and healing of bone in the disuse under mechanical and electro-magnetic loading[J]. Procedia Engineering, 2011, 10(7):171-176.
[10] ZHOU J, MING L G, GE B F, et al. Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts[J]. Bone, 2011, 49(4):753-761.
[11] 高玉海,甄平,周建,等.不同时间正弦交变电磁场对大鼠骨密度及骨形态计量指标的影响[J].中国医学科学院学报,2014,36(6):660-667. GAO Yuhai, ZHEN Ping, ZHOU Jian, et al. Effect of sinusoidal electromagetic field on bone mineral density and histomorphometry of rats at different time points[J]. Acta Academiae Medicinae Sinicae, 2014, 36(6):660-667.(in Chinese)
[12] LEE J E, JEON H R, PARK J K, et al. Sex differences in the association between stroke and bone mineral density in elderly Koreans:the Korean national health and nutrition examination survey, 2008-2010[J]. Maturitas, 2017, 95:1-5.
[13] VANLEENE M, SHEFELBINE S J. Therapeutic impact of low amplitude high frequency whole body vibrations on the osteogenesis imperfecta mouse bone[J]. Bone, 2013, 53(2):507-514.
[14] CORTET B, MARCHANDISE X. Bone microarchitecture and mechanical resistance[J]. Bernard Cortet, 2001, 68(4):297-305.
[15] 高玉海,成魁,葛宝丰,等.不同强度正弦交变电磁场对大鼠骨密度及骨形态计量学的影响[J].中国骨伤,2014,27(11):933-937. GAO Yuhai, CHENG Kui, GE Baofeng, et al. Effect of different-intensity SEMFs on bone mineral density and histomorphometry in SD rats[J]. China Journal of Orthopaedics and Traumatology, 2014, 27(11):933-937.
[1] 屈涛 等. 丹参素对去势大鼠骨质量的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 587-591.
[2] 方清清 等. 低频脉冲电磁场促进成骨细胞分化的基因调节和非基因调节探究[J]. 浙江大学学报(医学版), 2016, 45(6): 568-574.
[3] 张展 等. 鼠尾Ⅰ型胶原的酸解、纤维重构和仿骨生物矿化研究[J]. 浙江大学学报(医学版), 2016, 45(6): 592-597.
[4] 高玉海 等. 淫羊藿总黄酮胶囊对生长期大鼠骨密度和骨形态计量学的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 581-586.
[5] 孟楠楠 等. 甲基丁香酚对变应性鼻炎大鼠鼻黏膜组织中黏蛋白5AC的影响[J]. 浙江大学学报(医学版), 2016, 45(5): 477-485.
[6] 孔祥朋 等. 肌腱干细胞与骨髓间充质干细胞促进髌腱愈合的对比研究[J]. 浙江大学学报(医学版), 2016, 45(2): 112-119.
[7] 崔光莹等. 脉冲电场肿瘤消融激发免疫反应的研究进展[J]. 浙江大学学报(医学版), 2015, 44(6): 672-677.
[8] 谢华, 郝颖, 尹强, 李文斌, 鹿辉, 贾正平, 王荣. 急进高原后大鼠组织高原适应性基因含量的差异性观察[J]. 浙江大学学报(医学版), 2015, 44(5): 571-577.
[9] 谢雯, 孟凯, 贾红, 张莉. 蛋白合成抑制剂在成年大鼠海马CA1区长时程增强和去强化中的作用[J]. 浙江大学学报(医学版), 2015, 44(5): 546-552.
[10] 杨敏丽, 叶招明. 极低频电磁场诱导人骨肉瘤细胞凋亡及其机制研究[J]. 浙江大学学报(医学版), 2015, 44(3): 323-328.
[11] 王小军, 张浩, 詹红生, 丁道芳. 应用大鼠血清建立体外软骨细胞退变模型[J]. 浙江大学学报(医学版), 2015, 44(3): 308-314.
[12] 陈博, 林勋, 张旻, 詹红生, 石印玉. “椎骨错缝”大鼠模型的影像学研究[J]. 浙江大学学报(医学版), 2015, 44(2): 117-123.
[13] 胡强,等. 蛛网膜下腔出血大鼠早期大脑皮层低氧诱导因子-1α表达与细胞凋亡相关性研究[J]. 浙江大学学报(医学版), 2014, 43(1): 58-65.
[14] 谭丽华, 李小刚, 郭运忠, 唐晓鸿, 杨侃, 蒋卫红. 去肾交感神经术对高血压大鼠左室肥厚及其炎症因子的影响[J]. 浙江大学学报(医学版), 2013, 42(5): 550-555.
[15] 翁秀妹, 潘建平. 骨碱性磷酸酶、N-端骨钙素在重组人甲状旁腺素(1-34)治疗原发性骨质疏松症疗效观察中的应用[J]. 浙江大学学报(医学版), 2013, 42(5): 578-582.