Please wait a minute...
浙江大学学报(医学版)  2016, Vol. 45 Issue (3): 315-322    DOI: 10.3785/j.issn.1008-9292.2016.05.16
综述     
秀丽隐杆线虫神经胶质细胞对神经系统发育和功能的影响
徐玉兰, 薛雅丹, 康利军
浙江大学医学院神经科学研究所, 浙江 杭州 310058
The effect of glial cells in the function and development of the nervous system in Caenorhabditis elegans
XU Yulan, XUE Yadan, KANG Lijun
Institute of Neuroscience, Zhengjiang University School of Medicine, Hangzhou 310058, China
全文: PDF(1095 KB)  
摘要: 

秀丽隐杆线虫(简称线虫)神经胶质细胞(简称胶质细胞)分为三种类型:鞘状胶质细胞、槽状胶质细胞和谷氨酸受体胶质细胞,主要分布在化学感受器、头部感受器、外唇感受器和内唇感受器这四种感觉器官中。在神经系统发育过程中,胶质细胞在线虫神经元的树突延伸和轴突的导向延伸中发挥关键作用,还参与了突触生成,并且通过形成感受器通道的方式来维持感觉神经末梢的正常形态和功能。此外,线虫胶质细胞还可作为神经元的起源。在神经系统成熟过程中,线虫胶质细胞既可通过维持神经元形态来间接控制感觉神经元的功能,也可直接控制感觉神经元的功能。有些胶质细胞可以感受特定的外界刺激,用这些信息来调节与之相伴神经元的活动。线虫胶质细胞不仅通过神经元来影响神经系统,其自身也可以感受机械刺激。本文总结了目前已知线虫胶质细胞对神经发育和功能影响的研究进展。

关键词 新小杆线虫,漂亮神经胶质/细胞学神经系统/生长和发育综述    
Abstract

There are three types of glial cells in Caenorhabditis elegans (C. elegans for short): sheath glia, socket glia and glutamate receptor glia. They are mainly located in four sensory organs including the amphid, the cephalic organ, the outer labial sensilla and the inner labial sensilla. C. elegans glial cells play key roles in dendrite extension, neurite guidance and extension, and are essential for synaptogenesis and maintain the normal morphology and the function of sensory nerve endings as well. A recent study shown that some nematode neurons are derived from the glial cells. Moreover, nematodes glial cells can directly modulate the function of sensory neurons. Some glial cells can also respond to certain external stimuli, such as mechanical stimulation, and adjust the accompanying neuronal activities.The article summarizes the progress on effects of nematodes glial cells on the nervous system development and function.

Key wordsCaenorhabditis elegans    Neuroglia/cytology    Nervous system/growth&    development    Review
收稿日期: 2015-11-10
CLC:  Q421  
基金资助:

国家重大科学研究计划(2013CB945603);国家高技术研究发展计划(863计划)(2015AA020512);国家自然科学基金(31471023,31271180);浙江省自然科学基金杰出青年项目(LR14C090001)

通讯作者: 康利军(1973-),男,博士,研究员,博士生导师,主要从事机械敏感离子通道和神经胶质细胞的生理、病理和药理研究;E-mail:kanglijun@zju.edu.cn;http://orcid.org/0000-0001-9939-5134     E-mail: kanglijun@zju.edu.cn
作者简介: 徐玉兰(1990-),女,硕士研究生,主要从事神经胶质细胞参与神经调控的分子与细胞机制研究;E-mail:1138688311@qq.com;http://orcid.org/0000-0002-0386-2875
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

徐玉兰 等. 秀丽隐杆线虫神经胶质细胞对神经系统发育和功能的影响[J]. 浙江大学学报(医学版), 2016, 45(3): 315-322.
XU Yulan, XUE Yadan, KANG Lijun. The effect of glial cells in the function and development of the nervous system in Caenorhabditis elegans. Journal of ZheJiang University(Medical Science), 2016, 45(3): 315-322.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2016.05.16      或      http://www.zjujournals.com/xueshu/med/CN/Y2016/V45/I3/315

[1] BARRES B A. The mystery and magic of glia: a perspective on their roles in health and disease[J]. Neuron, 2008, 60(3): 430-440.
[2] ZHANG Y, LU H, BARGMANN C I. Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans[J]. Nature, 2005, 438(7065): 179-184.
[3] BACAJ T, TEVLIN M, LU Y, et al. Glia are essential for sensory organ function in C. elegans[J]. Science, 2008, 322(5902): 744-747.
[4] BARGMANN C I. Chemosensation in C. elegans[J]. WormBook, 2006: 1-29.
[5] OIKONOMOU G, SHAHAM S. The glia of Caenorhabditis elegans[J]. Glia, 2011, 59(9): 1253-1263.
[6] WARD S, THOMSON N, WHITE J G, et al. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans[J]. J Comp Neurol, 1975, 160(3): 313-337.
[7] SHAHAM S. Glia-neuron interactions in the nervous system of Caenorhabditis elegans[J]. Curr Opin Neurobiol, 2006, 16(5): 522-528.
[8] HEIMAN M G, SHAHAM S. DEX-1 and DYF-7 establish sensory dendrite length by anchoring dendritic tips during cell migration[J]. Cell, 2009, 137(2): 344-355.
[9] YOSHIMURA S, MURRAY J I, LU Y, et al. mls-2 and vab-3 Control glia development, hlh-17/Olig expression and glia-dependent neurite extension in C. elegans[J]. Development, 2008, 135(13): 2263-2275.
[10] SULSTON J E, SCHIERENBERG E, WHITE J G, et al. The embryonic cell lineage of the nematode Caenorhabditis elegans[J]. Dev Biol, 1983, 100(1): 64-119.
[11] COLÓN-RAMOS D A, MARGETA M A, SHEN K. Glia promote local synaptogenesis through UNC-6(netrin) signaling in C. elegans[J]. Science, 2007, 318(5847): 103-106.
[12] WHITE J G, SOUTHGATE E, THOMSON J N, et al. The structure of the nervous system of the nematode Caenorhabditis elegans[J]. Philos Trans R Soc Lond B Biol Sci, 1986, 314(1165): 1-340.
[13] SHAO Z, WATANABE S, CHRISTENSEN R, et al. Synapse location during growth depends on glia location[J]. Cell, 2013, 154(2): 337-350.
[14] RIDDLE D L, SWANSON M M, ALBERT P S. Interacting genes in nematode dauer larva formation[J]. Nature, 1981, 290(5808): 668-671.
[15] HERMAN R K. Mosaic analysis of two genes that affect nervous system structure in Caenorhabditis elegans[J]. Genetics, 1987, 116(3): 377-388.
[16] PERENS E A, SHAHAM S. C. elegans daf-6 encodes a patched-related protein required for lumen formation[J]. Dev Cell, 2005, 8(6): 893-906.
[17] OIKONOMOU G, PERENS E A, LU Y, et al. Opposing activities of LIT-1/NLK and DAF-6/patched-related direct sensory compartment morphogenesis in C. elegans[J/OL]. PLoS Biol, 2011, 9(8): e1001121.
[18] OIKONOMOU G, SHAHAM S. On the morphogenesis of glial compartments in the sensory organs of Caenorhabditis elegans[J]. Worm, 2012, 1(1): 51-55.
[19] SAMMUT M, COOK S J, NGUYEN K C, et al. Glia-derived neurons are required for sex-specific learning in C. elegans[J]. Nature, 2015, 526(7573): 385-390.
[20] CHRISTOPHERSON K S, ULLIAN E M, STOKES C C, et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis[J]. Cell, 2005, 120(3): 421-433.
[21] EROGLU C, ALLEN N J, SUSMAN M W, et al. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis[J]. Cell, 2009, 139(2): 380-392.
[22] WANG Y, APICELLA A JR, LEE S K, et al. A glial DEG/ENaC channel functions with neuronal channel DEG-1 to mediate specific sensory functions in C. elegans[J]. EMBO J, 2008, 27(18): 2388-2399.
[23] HAN L, WANG Y, SANGALETTI R, et al. Two novel DEG/ENaC channel subunits expressed in glia are needed for nose-touch sensitivity in Caenorhabditis elegans[J]. J Neurosci, 2013, 33(3): 936-949.
[24] YOSHIDA A, NAKANO S, SUZUKI T, et al. A glial K+/Cl- cotransporter modifies temperature-evoked dynamics in Caenorhabditis elegans sensory neurons[J]. Genes Brain Behav, 2016,15(4):429-440.
[25] HARDAWAY J A, STURGEON S M, SNARRENBERG C L, et al. Glial expression of the Caenorhabditis elegans gene swip-10 supports glutamate dependent control of extrasynaptic dopamine signaling[J]. J Neurosci, 2015, 35(25): 9409-9423.
[26] SHAHAM S. Chemosensory organs as models of neuronal synapses[J]. Nat Rev Neurosci, 2010, 11(3): 212-217.
[27] ROAYAIE K, CRUMP J G, SAGASTI A, et al. The G alpha protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons[J]. Neuron, 1998, 20(1): 55-67.
[28] MUKHOPADHYAY S, LU Y, SHAHAM S, et al. Sensory signaling-dependent remodeling of olfactory cilia architecture in C. elegans[J]. Dev Cell, 2008, 14(5): 762-774.
[29] PROCKO C, LU Y, SHAHAM S. Glia delimit shape changes of sensory neuron receptive endings in C. elegans[J]. Development, 2011, 138(7): 1371-1381.
[30] PROCKO C, LU Y, SHAHAM S. Sensory organ remodeling in Caenorhabditis elegans requires the zinc-finger protein ZTF-16[J]. Genetics, 2012, 190(4): 1405-1415.
[1] 高思倩,沈咏梅,耿福能,李艳华,高建青. 颞叶癫痫与海马成体神经再生[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[2] 王颖,汪仪,陈忠. 中枢胆碱能系统与癫痫关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 15-21.
[3] 高思倩,沈咏梅,耿福能,李艳华,高建青. 糖尿病溃疡动物模型的建立及相关治疗研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[4] 李文龙,瞿海斌. 近红外光谱应用于中药质量控制及生产过程监控的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 80-88.
[5] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[6] 封盛 等. 糖皮质激素受体信号通路在膀胱癌治疗中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 655-660.
[7] 李统宇 等. 杜氏肌营养不良疾病模型及基因治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 648-654.
[8] 曹鹏 等. 双氢青蒿素抗肿瘤分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 501-507.
[9] 李亭亭 等. 中性粒细胞在哮喘中作用的研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 544-549.
[10] 王雪 等. TANK结合激酶1在抗病毒免疫应答中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 550-557.
[11] 杜苗苗 等. 钙化性主动脉瓣疾病药物治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(4): 432-438.
[12] 何斌 等. 贝伐珠单克隆抗体在难治性子宫颈癌中的应用进展[J]. 浙江大学学报(医学版), 2016, 45(4): 395-402.
[13] 历雪莹 等. DNA甲基化及其靶向治疗在急性髓系白血病中的研究进展[J]. 浙江大学学报(医学版), 2016, 45(4): 387-394.
[14] 竺天虹 等. 上皮间充质转化介导子宫内膜异位症发生发展的研究进展[J]. 浙江大学学报(医学版), 2016, 45(4): 439-445.
[15] 沈银忠 等. 人类免疫缺陷病毒暴露前预防的应用与挑战[J]. 浙江大学学报(医学版), 2016, 45(3): 221-227.