Please wait a minute...
浙江大学学报(医学版)  2016, Vol. 45 Issue (3): 302-307    DOI: 10.3785/j.issn.1008-9292.2016.05.14
综述     
Toll样受体在抗白假丝酵母菌感染中的作用研究进展
周云1,2, 潘建平1
1. 浙江大学城市学院医学院, 浙江 杭州 310015;
2. 浙江大学医学院病原生物学系, 浙江 杭州 310058
Progress on the role of Toll-like receptors in Candida albicans infections
ZHOU Yun1,2, PAN Jianping1
1. Zhejiang University City College School of Medicine, Hangzhou 310015, China;
2. Department of Pathogen Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
全文: PDF(984 KB)  
摘要: 

Toll样受体(TLR)是一类主要表达于树突状细胞和巨噬细胞等固有免疫细胞上的模式识别受体,能识别和结合白假丝酵母菌上的病原相关分子模式,并引起特定下游信号转导。TLR多态性与宿主对白假丝酵母菌的易感性有关,TLR激活后可诱导促炎性细胞因子的表达,发挥抗白假丝酵母菌感染作用;而白假丝酵母菌也可发生菌相改变以利于逃逸机体免疫反应。了解TLR和白假丝酵母菌之间的相互作用,可为阐明抗真菌感染免疫的机制提供新的实验依据。

关键词 Toll样受体念珠菌,白色/药物作用细胞因子类感染/药物疗法综述    
Abstract

Toll like receptors (TLRs) are expressed mainly on innate immunocytes such as dendritic cells and macrophages, and may have the potential to recognize and bind to pathogen-associated molecular patterns (PAMPs) from Candida albicans, thereby triggering the downstream signals. The genetic polymorphism of TLRs is associated with susceptibility to Candida albicans. The activation of TLRs by PAMPs from Candida albicans can induce the production of proinflammatory cytokines that play key roles in the anti-infection of Candida albicans. However, in order to evade the immune response of host,Candida albicans can also change its bacterial phase. Understanding of the interaction between TLRs and Candida albicans will provide novel evidence to further clarify the mechanisms of anti-fungal immune response.

Key wordsToll-like receptors    Candida albicans/drug effects    Cytokines    Infection/drug therapy    Review
收稿日期: 2015-11-13
CLC:  R378.2  
基金资助:

浙江省医药卫生科技计划(2013KYA149);杭州市科技发展计划(20150633B44);杭州市高层次留学回国人员在杭创业创新项目

通讯作者: 潘建平(1962-),男,博士,教授,博士生导师,从事免疫学研究;E-mail:jppan@zucc.edu.cn;http://orchid.org/0000-0001-9636-1561     E-mail: jppan@zucc.edu.cn
作者简介: 周云(1990-),女,硕士研究生,主要从事感染免疫学研究;E-mail:zhyun0813@163.com;http://orcid.org/0000-0001-8394-0409
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

周云 等. Toll样受体在抗白假丝酵母菌感染中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(3): 302-307.
ZHOU Yun, PAN Jianping. Progress on the role of Toll-like receptors in Candida albicans infections. Journal of ZheJiang University(Medical Science), 2016, 45(3): 302-307.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2016.05.14      或      http://www.zjujournals.com/xueshu/med/CN/Y2016/V45/I3/302

[1] ILIEV I D, FUNARI V A, TAYLOR K D, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis[J]. Science, 2012, 336(6086): 1314-1317.
[2] NOBILE C J, JOHNSON A D. Candida albicans biofilms and human disease[J]. Annu Rev Microbiol, 2015, 69: 71-92.
[3] SUN L, LIAO K, WANG D. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans[J/OL]. PLoS One, 2015, 10(2): e0117695.
[4] VYLKOVA S, LORENZ M C. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport[J/OL]. PLoS Pathog, 2014, 10(3): e1003995.
[5] SIMPSON-ABELSON M R, CHILDS E E, FERREIRA MC, et al. C/EBPbeta promotes immunity to oral Candidiasis through regulation of beta-defensins[J/OL]. PLoS One, 2015, 10(8): e0136538.
[6] WANG L, WANG C, MEI H, et al. Combination of estrogen and immunosuppressive agents to establish a mouse model of candidiasis with concurrent oral and vaginal mucosal infection[J]. Mycopathologia, 2016, 181(1-2): 29-39.
[7] THIND S K, TABORDA C P, NOSANCHUK J D. Dendritic cell interactions with Histoplasma and Paracoccidioides[J]. Virulence, 2015, 6(5): 424-432.
[8] JIMENEZ-DALMARONI M J, GERSWHIN M E, ADAMOPOULOS I E. The critical role of toll-like receptors from microbial recognition to autoimmunity: a comprehensive review[J]. Autoimmun Rev, 2016, 15(1): 1-8.
[9] WANG J, ZHANG Z, LIU J, et al. Structural characterization and evolutionary analysis of fish-specific TLR27[J]. Fish Shellfish Immunol, 2015, 45(2): 940-945.
[10] LEE P T, ZOU J, HOLLAND J W, et al. Identification and characterisation of TLR18-21 genes in Atlantic salmon (Salmo salar)[J]. Fish Shellfish Immunol, 2014, 41(2): 549-559.
[11] COUTURE L A, PIAO W, RU L W, et al. Targeting Toll-like receptor (TLR) signaling by Toll/interleukin-1 receptor (TIR) domain-containing adapter protein/MyD88 adapter-like (TIRAP/Mal)-derived decoy peptides[J]. J Biol Chem, 2012, 287(29): 24641-24648.
[12] AKAZAWA T, OHASHI T, NAKAJIMA H, et al. Development of a dendritic cell-targeting lipopeptide as an immunoadjuvant that inhibits tumor growth without inducing local inflammation[J]. Int J Cancer, 2014, 135(12): 2847-2856.
[13] JHENG H F, TSAI P J, CHUANG Y L, et al. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy[J]. Dis Model Mech, 2015, 8(10): 1311-1321.
[14] HUH J W, SHIBATA T, HWANG M, et al. UNC93B1 is essential for the plasma membrane localization and signaling of Toll-like receptor 5[J]. Proc Natl Acad Sci U S A, 2014, 111(19): 7072-7077.
[15] SONG W, WANG J, HAN Z, et al. Structural basis for specific recognition of single-stranded RNA by Toll-like receptor 13[J]. Nat Struct Mol Biol, 2015, 22(10): 782-787.
[16] RIMBACH K, KAISER S, HELM M, et al. 2'-O-methylation within bacterial RNA acts as suppressor of TLR7/TLR8 activation in human innate immune cells[J]. J Innate Immun, 2015, 7(5): 482-493.
[17] SAITO K, KUKITA K, KUTOMI G, et al. Heat shock protein 90 associates with Toll-like receptors 7/9 and mediates self-nucleic acid recognition in SLE[J]. Eur J Immunol, 2015, 45(7): 2028-2041.
[18] KOYMANS K J, FEITSMA L J, BRONDIJK T H, et al. Structural basis for inhibition of TLR2 by staphylococcal superantigen-like protein 3(SSL3)[J]. Proc Natl Acad Sci USA, 2015, 112(35): 11018-11023.
[19] ROMMLER F, HAMMEL M, WALDHUBER A, et al. Guanine-modified inhibitory oligonucleotides efficiently impair TLR7-and TLR9-mediated immune responses of human immune cells[J/OL]. PLoS One, 2015, 10(2): e0116703.
[20] REGAN T, NALLY K, CARMODY R, et al. Identification of TLR10 as a key mediator of the inflammatory response to Listeria monocytogenes in intestinal epithelial cells and macrophages[J]. J Immunol, 2013, 191(12): 6084-6092.
[21] OOSTING M, CHENG S C, BOLSCHER J M, et al. Human TLR10 is an anti-inflammatory pattern-recognition receptor[J]. Proc Natl Acad Sci U S A, 2014, 111(42): E4478-4484.
[22] RAETZ M, KIBARDIN A, STURGE C R, et al. Cooperation of TLR12 and TLR11 in the IRF8-dependent IL-12 response to Toxoplasma gondii profilin[J]. J Immunol, 2013, 191(9): 4818-4827.
[23] ANDRADE W A, SOUZA MDO C, RAMOS-MARTINEZ E, et al. Combined action of nucleic acid-sensing Toll-like receptors and TLR11/TLR12 heterodimers imparts resistance to Toxoplasma gondii in mice[J]. Cell Host Microbe, 2013, 13(1): 42-53.
[24] KOBLANSKY A A, JANKOVIC D, OH H, et al. Recognition of profilin by Toll-like receptor 12 is critical for host resistance to Toxoplasma gondii[J]. Immunity, 2013, 38(1): 119-130.
[25] RAMIREZ-ORTIZ Z G, MEANS T K. The role of dendritic cells in the innate recognition of pathogenic fungi (A. fumigatus, C. neoformans and C. albicans)[J]. Virulence, 2012, 3(7): 635-646.
[26] SKEVAKI C, PARARAS M, KOSTELIDOU K, et al. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases[J]. Clin Exp Immunol, 2015, 180(2): 165-177.
[27] ROSENTUL D C, DELSING C E, JAEGER M, et al. Gene polymorphisms in pattern recognition receptors and susceptibility to idiopathic recurrent vulvovaginal candidiasis[J]. Front Microbiol, 2014, 5: 483.
[28] TAFESSE F G, RASHIDFARROKHI A, SCHMIDT F I, et al. Disruption of sphingolipid biosynthesis blocks phagocytosis of Candida albicans[J/OL]. PLoS Pathog, 2015, 11(10): e1005188.
[29] PINKE K H, LIMA H G, CUNHA F Q, et al. Mast cells phagocyte Candida albicans and produce nitric oxide by mechanisms involving TLR2 and Dectin-1[J]. Immunobiology, 2016, 221(2): 220-227.
[30] XU R, SUN H F, WILLIAMS D W, et al. IL-34 suppresses Candida albicans induced TNF-α production in M1 macrophages by downregulating expression of Dectin-1 and TLR2[J]. J Immunol Res, 2015, 2015: 328146-328152.
[31] OHTANI M, IYORI M, SAEKI A, et al. Involvement of suppressor of cytokine signalling-1-mediated degradation of MyD88-adaptor-like protein in the suppression of Toll-like receptor 2-mediated signalling by the murine C-type lectin SIGNR1-mediated signalling[J]. Cell Microbiol, 2012, 14(1): 40-57.
[32] TRINATH J, HOLLA S, MAHADIK K, et al. The WNT signaling pathway contributes to dectin-1-dependent inhibition of Toll-like receptor-induced inflammatory signature[J]. Mol Cell Biol, 2014, 34(23): 4301-4314.
[33] TAPIA C V, FALCONER M, TEMPIO F, et al. Melanocytes and melanin represent a first line of innate immunity against Candida albicans[J]. Med Mycol, 2014, 52(5): 445-454.
[34] VAN DER GRAAF C A, NETEA M G, VERSCHUEREN I, et al. Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae[J]. Infect Immun, 2005, 73(11): 7458-7464.
[35] GASPAROTO T H, TESSAROLLI V, GARLET T P, et al. Absence of functional TLR4 impairs response of macrophages after Candida albicans infection[J]. Med Mycol, 2010, 48(8): 1009-1017.
[36] NAKAMURA K, MIYAGI K, KOGUCHI Y, et al. Limited contribution of Toll-like receptor 2 and 4 to the host response to a fungal infectious pathogen, Cryptococcus neoformans[J]. FEMS Immunol Med Microbiol, 2006, 47(1): 148-154.
[37] NETEA M G, SUTMULLER R, HERMANN C, et al. Toll-Like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells[J]. J Immunol, 2004, 172(6): 3712-3718.
[38] ZHANG X, G E Y, LI W, et al. Diversities of interaction of murine macrophages with three strains of Candida albicans represented by MyD88, CARD9 gene expressions and ROS, IL-10 and TNF-α secretion[J]. Int J Clin Exp Med, 2014, 7(12): 5235-5243.
[39] GIL M L, GOZALBO D. Role of Toll-like receptors in systemic Candida albicans infections[J]. Front Biosci, 2009, (14): 570-582.
[40] NAHUM A, DADI H, BATES A, et al. The biological significance of TLR3 variant, L412F, in conferring susceptibility to cutaneous candidiasis, CMV and autoimmunity[J]. Autoimmun Rev, 2012, 11(5): 341-347.
[41] BIONDO C, MALARA A, COSTA A, et al. Recognition of fungal RNA by TLR7 has a nonredundant role in host defense against experimental candidiasis[J]. Eur J Immunol, 2012, 42(10): 2632-2643.
[42] MIYAZATO A, NAKAMURA K, YAMAMOTO N, et al. Toll-like receptor 9-dependent activation of myeloid dendritic cells by Deoxynucleic acids from Candida albicans[J]. Infect Immun, 2009, 77(7): 3056-3064.
[1] 高思倩,沈咏梅,耿福能,李艳华,高建青. 颞叶癫痫与海马成体神经再生[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[2] 王颖,汪仪,陈忠. 中枢胆碱能系统与癫痫关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 15-21.
[3] 高思倩,沈咏梅,耿福能,李艳华,高建青. 糖尿病溃疡动物模型的建立及相关治疗研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[4] 李文龙,瞿海斌. 近红外光谱应用于中药质量控制及生产过程监控的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 80-88.
[5] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[6] 封盛 等. 糖皮质激素受体信号通路在膀胱癌治疗中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 655-660.
[7] 李统宇 等. 杜氏肌营养不良疾病模型及基因治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 648-654.
[8] 曹鹏 等. 双氢青蒿素抗肿瘤分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 501-507.
[9] 李亭亭 等. 中性粒细胞在哮喘中作用的研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 544-549.
[10] 王雪 等. TANK结合激酶1在抗病毒免疫应答中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 550-557.
[11] 杜苗苗 等. 钙化性主动脉瓣疾病药物治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(4): 432-438.
[12] 何斌 等. 贝伐珠单克隆抗体在难治性子宫颈癌中的应用进展[J]. 浙江大学学报(医学版), 2016, 45(4): 395-402.
[13] 历雪莹 等. DNA甲基化及其靶向治疗在急性髓系白血病中的研究进展[J]. 浙江大学学报(医学版), 2016, 45(4): 387-394.
[14] 竺天虹 等. 上皮间充质转化介导子宫内膜异位症发生发展的研究进展[J]. 浙江大学学报(医学版), 2016, 45(4): 439-445.
[15] 徐玉兰 等. 秀丽隐杆线虫神经胶质细胞对神经系统发育和功能的影响[J]. 浙江大学学报(医学版), 2016, 45(3): 315-322.