综述 |
|
|
|
|
Toll样受体在抗白假丝酵母菌感染中的作用研究进展 |
周云1,2, 潘建平1 |
1. 浙江大学城市学院医学院, 浙江 杭州 310015;
2. 浙江大学医学院病原生物学系, 浙江 杭州 310058 |
|
Progress on the role of Toll-like receptors in Candida albicans infections |
ZHOU Yun1,2, PAN Jianping1 |
1. Zhejiang University City College School of Medicine, Hangzhou 310015, China;
2. Department of Pathogen Biology, Zhejiang University School of Medicine, Hangzhou 310058, China |
[1] |
ILIEV I D, FUNARI V A, TAYLOR K D, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis[J]. Science, 2012, 336(6086): 1314-1317.
|
[2] |
NOBILE C J, JOHNSON A D. Candida albicans biofilms and human disease[J]. Annu Rev Microbiol, 2015, 69: 71-92.
|
[3] |
SUN L, LIAO K, WANG D. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans[J/OL]. PLoS One, 2015, 10(2): e0117695.
|
[4] |
VYLKOVA S, LORENZ M C. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport[J/OL]. PLoS Pathog, 2014, 10(3): e1003995.
|
[5] |
SIMPSON-ABELSON M R, CHILDS E E, FERREIRA MC, et al. C/EBPbeta promotes immunity to oral Candidiasis through regulation of beta-defensins[J/OL]. PLoS One, 2015, 10(8): e0136538.
|
[6] |
WANG L, WANG C, MEI H, et al. Combination of estrogen and immunosuppressive agents to establish a mouse model of candidiasis with concurrent oral and vaginal mucosal infection[J]. Mycopathologia, 2016, 181(1-2): 29-39.
|
[7] |
THIND S K, TABORDA C P, NOSANCHUK J D. Dendritic cell interactions with Histoplasma and Paracoccidioides[J]. Virulence, 2015, 6(5): 424-432.
|
[8] |
JIMENEZ-DALMARONI M J, GERSWHIN M E, ADAMOPOULOS I E. The critical role of toll-like receptors from microbial recognition to autoimmunity: a comprehensive review[J]. Autoimmun Rev, 2016, 15(1): 1-8.
|
[9] |
WANG J, ZHANG Z, LIU J, et al. Structural characterization and evolutionary analysis of fish-specific TLR27[J]. Fish Shellfish Immunol, 2015, 45(2): 940-945.
|
[10] |
LEE P T, ZOU J, HOLLAND J W, et al. Identification and characterisation of TLR18-21 genes in Atlantic salmon (Salmo salar)[J]. Fish Shellfish Immunol, 2014, 41(2): 549-559.
|
[11] |
COUTURE L A, PIAO W, RU L W, et al. Targeting Toll-like receptor (TLR) signaling by Toll/interleukin-1 receptor (TIR) domain-containing adapter protein/MyD88 adapter-like (TIRAP/Mal)-derived decoy peptides[J]. J Biol Chem, 2012, 287(29): 24641-24648.
|
[12] |
AKAZAWA T, OHASHI T, NAKAJIMA H, et al. Development of a dendritic cell-targeting lipopeptide as an immunoadjuvant that inhibits tumor growth without inducing local inflammation[J]. Int J Cancer, 2014, 135(12): 2847-2856.
|
[13] |
JHENG H F, TSAI P J, CHUANG Y L, et al. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy[J]. Dis Model Mech, 2015, 8(10): 1311-1321.
|
[14] |
HUH J W, SHIBATA T, HWANG M, et al. UNC93B1 is essential for the plasma membrane localization and signaling of Toll-like receptor 5[J]. Proc Natl Acad Sci U S A, 2014, 111(19): 7072-7077.
|
[15] |
SONG W, WANG J, HAN Z, et al. Structural basis for specific recognition of single-stranded RNA by Toll-like receptor 13[J]. Nat Struct Mol Biol, 2015, 22(10): 782-787.
|
[16] |
RIMBACH K, KAISER S, HELM M, et al. 2'-O-methylation within bacterial RNA acts as suppressor of TLR7/TLR8 activation in human innate immune cells[J]. J Innate Immun, 2015, 7(5): 482-493.
|
[17] |
SAITO K, KUKITA K, KUTOMI G, et al. Heat shock protein 90 associates with Toll-like receptors 7/9 and mediates self-nucleic acid recognition in SLE[J]. Eur J Immunol, 2015, 45(7): 2028-2041.
|
[18] |
KOYMANS K J, FEITSMA L J, BRONDIJK T H, et al. Structural basis for inhibition of TLR2 by staphylococcal superantigen-like protein 3(SSL3)[J]. Proc Natl Acad Sci USA, 2015, 112(35): 11018-11023.
|
[19] |
ROMMLER F, HAMMEL M, WALDHUBER A, et al. Guanine-modified inhibitory oligonucleotides efficiently impair TLR7-and TLR9-mediated immune responses of human immune cells[J/OL]. PLoS One, 2015, 10(2): e0116703.
|
[20] |
REGAN T, NALLY K, CARMODY R, et al. Identification of TLR10 as a key mediator of the inflammatory response to Listeria monocytogenes in intestinal epithelial cells and macrophages[J]. J Immunol, 2013, 191(12): 6084-6092.
|
[21] |
OOSTING M, CHENG S C, BOLSCHER J M, et al. Human TLR10 is an anti-inflammatory pattern-recognition receptor[J]. Proc Natl Acad Sci U S A, 2014, 111(42): E4478-4484.
|
[22] |
RAETZ M, KIBARDIN A, STURGE C R, et al. Cooperation of TLR12 and TLR11 in the IRF8-dependent IL-12 response to Toxoplasma gondii profilin[J]. J Immunol, 2013, 191(9): 4818-4827.
|
[23] |
ANDRADE W A, SOUZA MDO C, RAMOS-MARTINEZ E, et al. Combined action of nucleic acid-sensing Toll-like receptors and TLR11/TLR12 heterodimers imparts resistance to Toxoplasma gondii in mice[J]. Cell Host Microbe, 2013, 13(1): 42-53.
|
[24] |
KOBLANSKY A A, JANKOVIC D, OH H, et al. Recognition of profilin by Toll-like receptor 12 is critical for host resistance to Toxoplasma gondii[J]. Immunity, 2013, 38(1): 119-130.
|
[25] |
RAMIREZ-ORTIZ Z G, MEANS T K. The role of dendritic cells in the innate recognition of pathogenic fungi (A. fumigatus, C. neoformans and C. albicans)[J]. Virulence, 2012, 3(7): 635-646.
|
[26] |
SKEVAKI C, PARARAS M, KOSTELIDOU K, et al. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases[J]. Clin Exp Immunol, 2015, 180(2): 165-177.
|
[27] |
ROSENTUL D C, DELSING C E, JAEGER M, et al. Gene polymorphisms in pattern recognition receptors and susceptibility to idiopathic recurrent vulvovaginal candidiasis[J]. Front Microbiol, 2014, 5: 483.
|
[28] |
TAFESSE F G, RASHIDFARROKHI A, SCHMIDT F I, et al. Disruption of sphingolipid biosynthesis blocks phagocytosis of Candida albicans[J/OL]. PLoS Pathog, 2015, 11(10): e1005188.
|
[29] |
PINKE K H, LIMA H G, CUNHA F Q, et al. Mast cells phagocyte Candida albicans and produce nitric oxide by mechanisms involving TLR2 and Dectin-1[J]. Immunobiology, 2016, 221(2): 220-227.
|
[30] |
XU R, SUN H F, WILLIAMS D W, et al. IL-34 suppresses Candida albicans induced TNF-α production in M1 macrophages by downregulating expression of Dectin-1 and TLR2[J]. J Immunol Res, 2015, 2015: 328146-328152.
|
[31] |
OHTANI M, IYORI M, SAEKI A, et al. Involvement of suppressor of cytokine signalling-1-mediated degradation of MyD88-adaptor-like protein in the suppression of Toll-like receptor 2-mediated signalling by the murine C-type lectin SIGNR1-mediated signalling[J]. Cell Microbiol, 2012, 14(1): 40-57.
|
[32] |
TRINATH J, HOLLA S, MAHADIK K, et al. The WNT signaling pathway contributes to dectin-1-dependent inhibition of Toll-like receptor-induced inflammatory signature[J]. Mol Cell Biol, 2014, 34(23): 4301-4314.
|
[33] |
TAPIA C V, FALCONER M, TEMPIO F, et al. Melanocytes and melanin represent a first line of innate immunity against Candida albicans[J]. Med Mycol, 2014, 52(5): 445-454.
|
[34] |
VAN DER GRAAF C A, NETEA M G, VERSCHUEREN I, et al. Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae[J]. Infect Immun, 2005, 73(11): 7458-7464.
|
[35] |
GASPAROTO T H, TESSAROLLI V, GARLET T P, et al. Absence of functional TLR4 impairs response of macrophages after Candida albicans infection[J]. Med Mycol, 2010, 48(8): 1009-1017.
|
[36] |
NAKAMURA K, MIYAGI K, KOGUCHI Y, et al. Limited contribution of Toll-like receptor 2 and 4 to the host response to a fungal infectious pathogen, Cryptococcus neoformans[J]. FEMS Immunol Med Microbiol, 2006, 47(1): 148-154.
|
[37] |
NETEA M G, SUTMULLER R, HERMANN C, et al. Toll-Like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells[J]. J Immunol, 2004, 172(6): 3712-3718.
|
[38] |
ZHANG X, G E Y, LI W, et al. Diversities of interaction of murine macrophages with three strains of Candida albicans represented by MyD88, CARD9 gene expressions and ROS, IL-10 and TNF-α secretion[J]. Int J Clin Exp Med, 2014, 7(12): 5235-5243.
|
[39] |
GIL M L, GOZALBO D. Role of Toll-like receptors in systemic Candida albicans infections[J]. Front Biosci, 2009, (14): 570-582.
|
[40] |
NAHUM A, DADI H, BATES A, et al. The biological significance of TLR3 variant, L412F, in conferring susceptibility to cutaneous candidiasis, CMV and autoimmunity[J]. Autoimmun Rev, 2012, 11(5): 341-347.
|
[41] |
BIONDO C, MALARA A, COSTA A, et al. Recognition of fungal RNA by TLR7 has a nonredundant role in host defense against experimental candidiasis[J]. Eur J Immunol, 2012, 42(10): 2632-2643.
|
[42] |
MIYAZATO A, NAKAMURA K, YAMAMOTO N, et al. Toll-like receptor 9-dependent activation of myeloid dendritic cells by Deoxynucleic acids from Candida albicans[J]. Infect Immun, 2009, 77(7): 3056-3064.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|