Please wait a minute...
浙江大学学报(医学版)  2016, Vol. 45 Issue (3): 249-255    DOI: 10.3785/j.issn.1008-9292.2016.05.05
艾滋病专题     
人类免疫缺陷病毒感染相关神经认知功能障碍的免疫学发病机制研究进展
纪永佳1, 卢洪洲1,2
1. 上海市公共卫生临床中心感染一科, 上海 201508;
2. 复旦大学附属华山医院感染病科, 上海 200040
Advances of immunological pathogenesis research in HIV related neurocognitive disorder
JI Yongjia1, LU Hongzhou1,2
1. Department of Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, China;
2. Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
全文: PDF(980 KB)  
摘要: 

随着HIV感染者接受高效抗逆转录病毒治疗后生存时间延长,HIV感染相关神经认知功能障碍(HAND)引起广泛关注。研究证据表明,HIV感染过程中各种细胞因子上调,导致血脑屏障通透性上升。受益于此,外周游离HIV病毒以及被HIV感染的免疫细胞(单核/巨噬细胞、T淋巴细胞)可加速穿越血脑屏障进入中枢神经系统,并导致中枢神经细胞感染HIV。此外,HIV感染的单核/巨噬细胞或T淋巴细胞进入中枢系统后还分泌多种促炎性细胞因子如TNF、IL-1ß等激活小胶质细胞以及星形胶质细胞。脑胶质细胞被激活后与血管周围外来巨噬细胞等免疫细胞共同作用分泌炎症介质,导致HIV感染相关中枢神经系统炎症以及神经功能损伤。HAND发病尽管受多种因素影响,但越来越多证据表明,HIV相关神经炎症反应是导致HIV感染者出现神经认知功能以及行为异常最重要的原因,未来应当围绕于此进行HAND相关治疗研究。本文就近年来HAND免疫发病机制相关研究进展做一综述。

关键词 HIV感染/并发症认知障碍/病因学认知障碍/病理生理学神经系统/病理生理学免疫综述    
Abstract

With extended life of HIV-infected patients due to highly active anti-retroviral therapy (HAART), the rate of HIV associated neurocognitive disorder (HAND) remains high and attracts much attention. The evidence is clear that cytokines are elevated in the blood of patients with HIV infection, which contribute to elevating the permeability of blood-brain barrier. Benefiting from that, cells in the brain are infected with HIV that has accelerated through the blood-brain barrier both as cell-free virus and infected immune cells including monocytes and T cells. Upon migration into the central nervous system, HIV-infected monocytes and T cells not only infect brain resident cells but also produce proinflammatory cytokines such as TNF and IL-1ß, which further activate microglia and astrocytes. These activated brain glial cells and perivascular macrophages, which release inflammatory mediators, are the main contributors to neuroinflammation resulting in neuronal dysfunction. The pathogenesis of HAND is multifaceted, however, mounting evidence indicates that HIV related neuroinflammation plays a major role, which should be the focus of therapeutic research for HAND in future.

Key wordsHIV infections/complications    Cognition disorders/etiology    Cognition disorders/physiopathology    Cognition disorders/physiopathology    Nervous system/physiopathology    Immunity    Review
收稿日期: 2016-01-11
CLC:  R512.91  
基金资助:

国家自然科学基金(81571977)

通讯作者: 卢洪洲(1966-),男,博士,教授,主任医师,博士生导师,主要从事艾滋病基础与临床研究;E-mail:luhongzhou@fudan.edu.cn;http://orcid.org/0000-0002-8308-5534     E-mail: luhongzhou@fudan.edu.cn
作者简介: 纪永佳(1981-),男,博士研究生,从事艾滋病发病相关机制研究;E-mail:jiyongjia@hotmail.com;http://orcid.org/0000-0002-1373-6012
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

纪永佳 等. 人类免疫缺陷病毒感染相关神经认知功能障碍的免疫学发病机制研究进展[J]. 浙江大学学报(医学版), 2016, 45(3): 249-255.
JI Yongjia, LU Hongzhou. Advances of immunological pathogenesis research in HIV related neurocognitive disorder. Journal of ZheJiang University(Medical Science), 2016, 45(3): 249-255.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2016.05.05      或      http://www.zjujournals.com/xueshu/med/CN/Y2016/V45/I3/249

[1] HONG S, BANKS W A. Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications[J]. Brain Behav Immun, 2015, 45:1-12.
[2] MIND EXCHANGE WORKING GROUP. Assessment, diagnosis, and treatment of HIV-associated neurocognitive disorder: a consensus report of the mind exchange program[J]. Clin Infect Dis, 2013, 56(7): 1004-1017.
[3] RAPPAPORT J, VOLSKY D J. Role of the macrophage in HIV-associated neurocognitive disorders and other comorbidities in patients on effective antiretroviral treatment[J]. J Neurovirol, 2015, 21(3): 235-241.
[4] GRAUER O M, REICHELT D, GRVNEBERG U, et al. Neurocognitive decline in HIV patients is associated with ongoing T-cell activation in the cerebrospinal fluid[J]. Ann Clin Transl Neurol, 2015, 2(9): 906-919.
[5] BURDO T H, LACKNER A, WILLIAMS K C. Monocyte/macrophages and their role in HIV neuropathogenesis[J]. Immunol Rev, 2013, 254(1): 102-113.
[6] BONNAN M, BARROSO B, DEMASLES S, et al. Compartmentalized intrathecal immunoglobulin synthesis during HIV infection-a model of chronic CNS inflammation?[J]. J Neuroimmunol, 2015, 285:41-52.
[7] DOHGU S, BANKS W. Brain pericytes increase the lipopolysaccharide-enhanced transcytosis of HIV-1 free virus across the in vitro blood-brain barrier: evidence for cytokine-mediated pericyte-endothelial cell crosstalk[J]. Fluids Barriers CNS, 2013, 10(1): 23.
[8] BARUCH K, SCHWARTZ M. CNS-specific T cells shape brain function via the choroid plexus[J]. Brain Behav Immu, 2013, 34:11-16.
[9] FISCHER-SMITH T, CROUL S, SVERSTIUK A E, et al. CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection[J]. J Neurovirol, 2001, 7(6): 528-541.
[10] WILLIAMS R, DHILLON N K, HEGDE S T, et al. Proinflammatory cytokines and HIV-1 synergistically enhance CXCL10 expression in human astrocytes[J]. Glia, 2009, 57(7): 734-743.
[11] WILLIAMS D W, EUGENIN E A, CALDERON T M, et al. Monocyte maturation, HIV susceptibility, and transmigration across the blood brain barrier are critical in HIV neuropathogenesis[J]. J Leukoc Biol, 2012, 91(3): 401-415.
[12] CHAN P, BREW B J. HIV associated neurocognitive disorders in the modern antiviral treatment era: prevalence, characteristics, biomarkers, and effects of treatment[J]. Curr HIV/AIDS Rep, 2014,11(3): 317-324.
[13] PEREYRA F, PALMER S, MIURA T. et al. Persistent low-level viremia in HIV-1 elite controllers and relationship to immunologic parameters[J]. J Infect Dis, 2009, 200(6): 984-990.
[14] CRIBBS S K, LENNOX J, CALIENDO A M, et al. Healthy HIV-1-infected individuals on highly active antiretroviral therapy harbor HIV-1 in their alveolar macrophages[J]. AIDS Res Hum Retroviruses, 2015, 31(1): 64-70.
[15] THOMPSON K A, CHERRY C L, BELL J E, et al. Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals[J]. Am J Pathol, 2011, 179(4): 1623-1629.
[16] TAVAZZI E, MORRISON D, SULLIVAN P, et al. Brain inflammation is a common feature of HIV-infected patients without HIV encephalitis or productive brain infection[J]. Curr HIV Res, 2014, 12(2): 97-110.
[17] MCGUIRE J L, GILL A J, DOUGLAS S D, et al. Central and peripheral markers of neurodegeneration and monocyte activation in HIV-associated neurocognitive disorders[J]. J Neurovirol, 2015, 21(4): 439-448.
[18] BROWN A. Understanding the MIND phenotype: macrophage/microglia inflammation in neurocognitive disorders related to human immunodeficiency virus infection[J]. Clin Transl Med, 2015, 4:7.
[19] BROWN J N, KOHLER J J, COBERLEY C R, et al. HIV-1 activates macrophages independent of Toll-like receptors[J/OL]. PLoS One, 2008, 3(12): e3664.
[20] HUANG X, STONE D K, YU F, et al. Functional proteomic analysis for regulatory T cell surveillance of the HIV-1-infected macrophage[J]. J Proteome Res, 2010, 9(12): 6759-6773.
[21] WANG Z, ZHENG Y, LIU L, et al. High prevalence of HIV-associated neurocognitive disorder in HIV-infected patients with a baseline CD4 count ≤350 cells/μL in Shanghai, China[J]. Biosci Trends, 2013, 7(6): 284-289.
[22] SHAN L, DENG K, SHROFF N S, et al. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation[J]. Immunity, 2012, 36(3): 491-501.
[23] HORNIK A, RODRIGUEZ-PORCEL F, WALLERY S, et al. Late onset CNS immune reconstitution inflammatory syndrome in an immunocompetent patient[J]. Front Neurol, 2013, 4:12.
[24] GRAY F, LESCURE F X, ADLE-BIASSETTE H, et al. Encephalitis with infiltration by CD8+lymphocytes in HIV patients receiving combination antiretroviral treatment[J]. Brain Pathol, 2013, 23(5): 525-533.
[25] EVERALL I, VAIDA F, KHANLOU N, et al. Cliniconeuropathologic correlates of human immunodeficiency virus in the era of antiretroviral therapy[J]. J Neurovirol, 2009, 15(5-6): 360-370.
[26] ANTHONY I C, BELL J E. The neuropathology of HIV/AIDS[J]. Int Rev Psychiatry, 2008, 20(1): 15-24.
[27] WALSH J G, REINKE S N, MAMIK M K, et al. Rapid inflammasome activation in microglia contributes to brain disease in HIV/AIDS[J]. Retrovirology, 2014, 11:35.
[28] HUANG Y, ZHAO L, JIA B, et al. Glutaminase dysregulation in HIV-1-infected human microglia mediates neurotoxicity: relevant to HIV-1-associated neurocognitive disorders[J]. J Neurosci, 2011, 31(42): 15195-15204.
[29] GUILLEMIN G J, KERR S J, BREW B J. Involvement of quinolinic acid in AIDS dementia complex[J]. Neurotox Res, 2005, 7(1-2): 103-123.
[30] MEUCCI O, FATATIS A, SIMEN A A, et al. Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival[J]. Proc Natl Acad Sci U S A, 2000, 97(14): 8075-8080.
[31] MURATORI C, MANGINO G, AFFABRIS E, et al. Astrocytes contacting HIV-1-infected macrophages increase the release of CCL2 in response to the HIV-1-dependent enhancement of membrane-associated TNFα in macrophages[J]. Glia, 2010, 58(16): 1893-1904.
[32] BEZZI P, DOMERCQ M, BRAMBILLA L, et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity[J]. Nat Neurosci, 2001, 4(7): 702-710.
[33] MEHLA R, BIVALKAR-MEHLA S, NAGARKATTI M, et al. Programming of neurotoxic cofactor CXCL-10 in HIV-1-associated dementia: abrogation of CXCL-10-induced neuro-glial toxicity in vitro by PKC activator[J]. J Neuroinflammation, 2012, 9:239.
[34] PULLIAM L. Cognitive consequences of a sustained monocyte type 1 IFN response in HIV-1 infection[J]. Curr HIV Res, 2014, 12(2): 77-84.
[35] PERRELLA O, CARREIRI P B, PERRELLA A, et al. Transforming growth factor beta-1 and interferon-alpha in the AIDS dementia complex(ADC): possible relationship with cerebral viral load?[J]. Eur Cytokine Netw, 2001, 12(1): 51-55.
[36] SAS A R, BIMONTE-NELSON H, SMOTHERS C T, et al. Interferon-alpha causes neuronal dysfunction in encephalitis[J]. J Neurosci, 2009, 29(12): 3948-3955.
[37] MAJOR E O. Progressive multifocal leukoencephalopathy in patients on immunomodulatory therapies[J]. Annu Rev Med, 2010, 61:35-47.
[38] BELTRAMI S, GORDON J. Immune surveillance and response to JC virus infection and PML[J]. J Neuro Virol, 2014, 20(2): 137-149.
[39] SCHWAB N, ULZHEIMER J C, FOX R J, et al. Fatal PML associated with efalizumab therapy: insights into integrin αLβ2 in JC virus control[J]. Neurology, 2012, 78(7): 458-467.
[40] CROSS S A, COOK D R, CHI A W, et al. Dimethyl fumarate, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and macrophage-mediated neurotoxicity: a novel candidate for HIV neuroprotection[J]. J Immunol, 2011, 187(10): 5015-5025.
[41] SACKTOR N, MIYAHARA S, DENG L, et al. Minocycline treatment for HIV-associated cognitive impairment: results from a randomized trial[J]. Neurology, 2011, 77(12): 1135-1142.
[1] 蔡成,王建平,钟志凤,戴志慧,王庆华,董武真,施红旗,刘庆伟,杜金林. 缺氧诱导因子1α和CD133预测直肠癌患者新辅助放化疗疗效的临床研究[J]. 浙江大学学报(医学版), 2017, 46(1): 36-43.
[2] 吴菡,王钟瑾,明文杰,王爽,丁美萍. 长程视频脑电图监测癫痫患者发作间期痫样放电的时段分析[J]. 浙江大学学报(医学版), 2017, 46(1): 30-35.
[3] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[4] 李文龙,瞿海斌. 近红外光谱应用于中药质量控制及生产过程监控的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 80-88.
[5] 卢伸,王青青. 第14届国际树突状细胞会议热点解读[J]. 浙江大学学报(医学版), 2017, 46(1): 106-109.
[6] 高思倩,沈咏梅,耿福能,李艳华,高建青. 糖尿病溃疡动物模型的建立及相关治疗研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[7] 王颖,汪仪,陈忠. 中枢胆碱能系统与癫痫关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 15-21.
[8] 高思倩,沈咏梅,耿福能,李艳华,高建青. 颞叶癫痫与海马成体神经再生[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[9] 封盛 等. 糖皮质激素受体信号通路在膀胱癌治疗中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 655-660.
[10] 李统宇 等. 杜氏肌营养不良疾病模型及基因治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 648-654.
[11] 曹鹏 等. 双氢青蒿素抗肿瘤分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 501-507.
[12] 吴志华 等. 异基因造血干细胞移植受者T细胞受体β链CDR3谱型表达与巨细胞病毒激活[J]. 浙江大学学报(医学版), 2016, 45(5): 515-521.
[13] 李亭亭 等. 中性粒细胞在哮喘中作用的研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 544-549.
[14] 王雪 等. TANK结合激酶1在抗病毒免疫应答中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 550-557.
[15] 杜苗苗 等. 钙化性主动脉瓣疾病药物治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(4): 432-438.