综述 |
|
|
|
|
足细胞功能紊乱与微小病变性肾病 |
柳珊珊, 陈江华 |
浙江大学医学院附属第一医院肾脏病中心, 浙江 杭州 310003 |
|
New insight in pathogenesis of podocyte disfunction in minimal change disease |
LIU Shanshan, CHEN Jianghua |
Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China |
[1] LE BERRE L, HERVE C, BUZELIN F, et al. Renal macrophage activation and Th2 polarization precedes the development of nephritic syndromein Buffalo/Mna rasts[J]. Kidney Int, 2005, 68(5):2079-2090.
[2] KHOSHNOODI J, TRYGGVASON K. Unraveling the molecular make-up of the glomemlar podocyte slit diaphragm[J]. Exp Nephrol, 2001, 9(6):355-359.
[3] RANTANEN M, PALMEN T, PATARI A, et a1. Nephrin TRAP mice lack slit diaphragms and show fibrotic glomemli and cystic tubular lesions[J]. J Am Soc Nephrol, 2002, 13(6):1586-1594.
[4] ROSELLI S, HEIDET L, SICH M, et a1. Early glomerular filtration defect and severe renal disease in podocin-deftcient mice[J]. Mol Cell Biol, 2004, 24(2):550-560.
[5] WERNERSON A, DUNER F, PETTERSSON E, et a1. Altered ultrastructural distribution of nephrin in minimal change nephrotic syndrome[J]. Nephrol Dial Transplant, 2003, 18(1):70-76.
[6] DOUBLIER S, RUOTSALAINEN V, SALVIDIO G, et a1. Nephrin redistribution on podocytes is a potential mechanism for proteinuria in patients with primary acquired nephritic syndrome[J]. Am J Pathol, 2001, 158(5):1723-1731.
[7] AGRAWAL V, PRASAD N, JAIN M, et al. Reduced podocin expression in minimal change disease and focal segmental glomerulosclerosis is related to the level of proteinuria[J]. Clin Exp Nephrol, 2013, 17(6):811-818.
[8] MUNDEL P, HEID H W, MUNDEL T M, et al. Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes[J]. J Cell Biol, 1997, 139(1):193-204.
[9] BARISONI L, KRIZ W, MUNDEL P, et al. The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy[J]. J Am Soc Nephrol, 1999, 10(1):51-61.
[10] KEMENY E, DURMULLER U, NICKELEIT V, et al. Distribution of podocyte protein(44 KD)in different types of glomerular diseases[J]. Virchows Arch, 1997, 431(6):425-430.
[11] SRIVASTAVA T, GAROLA R E, WHITING J M, et al. Synaptopodin expression in idiopathic nephrotic syndrome of childhood[J]. Kidney Int, 2001, 59(1):118-125.
[12] WAGROWSKA-DANILEWICZ M, DANILEWICZ M. Synaptopodin immunoexpression in steroid-responsive and steroid-resistant minimal change disease and focal segmental glomerulosclerosis[J]. Nefrologia, 2007, 27(6):710-715.
[13] HENRY J, MILLER M M, PONTAROTTI P. Structure and evolution of the extended B7 family[J]. Immunol Today, 1999, 20(6):285-288.
[14] CHAMBERS C A, ALLISON J P. Costimulatory regulation of T cell function[J]. Curr Opin Cell Biol, 1999, 11(2):203-210.
[15] REISER J, VON GERSDORFF G, LOOS M, et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome[J]. J Clin Invest, 2004, 113(10):1390-1397.
[16] REISER J, MUNDEL P. Danger signaling by glomerular podocytes defines a novel function of inducible B7-1 in the pathogenesis of nephrotic syndrome[J]. J Am Soc Nephrol, 2004, 15(9):2246-2248.
[17] GARIN E H, MU W, ARTHUR J M, et al. Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis[J]. Kidney Int, 2010, 78(3):296-302.
[18] GARIN E H, DIAZ L N, MU W, et al. Urinary CD80 excretion increases in idiopathic minimal change disease[J]. J Am Soc Nephrol, 2009, 20(2):260-266.
[19] CARA-FUENTES G, WASSERFALL C H, WANG H, et al. Minimal change disease: a dysregulation of the podocyte CD80-CTLA-4 axis?[J]. Pediatr Nephrol, 2014, 29(12):2333-2340.
[20] ISHIMOTO T, CARA-FUENTES G, WANG H, et al. Serum from minimal change patients in relapse increases CD80 expression in cultured podocytes[J]. Pediatr Nephrol, 2013, 28(9):1803-1812.
[21] LAI K W, WEI C L, TAN L K, et al. Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats[J]. J Am Soc Nephrol, 2007, 18(5):1476-1485.
[22] ISHIMOTO T, SHIMADA M, GABRIELA G, et al. Toll-like receptor 3 ligand, polylC induces proteinuria and glomerular CD80, and increases urinary CD80 in mice[J]. Nephrol Dial Transplant, 2013, 28(6):1439-1446.
[23] SHIMADA M, ISHIMOTO T, LEE P Y, et al. Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-κβ-dependent pathway[J]. Nephrol Dial Transplant, 2012, 27(1):81-89.
[24] SAHALI D, PAWLAK A, LE G S, et al. Transcriptional and post-transcriptional alterations of Iκβ in active minimal-change nephrotic syndrome[J]. J Am Soc Nephrol, 2001, 12(8):1648-1658.
[25] AUDARD V, PAWLAK A, CANDELIER M, et al. Upregulation of nuclear factor-related κβ suggests a disorder of transcriptional regulation in minimal change nephrotic syndrome[J]. PLoS One, 2012, 7(1):E30523.
[26] SHIMO T, ADACHI Y, YAMANOUCHI S, et al. A novel nuclear factor kβ inhibitor, dehydro-xymethylepoxyquinomicin, ameliorates puromycin aminonucleoside-induced nephrosis in mice[J]. Am J Nephrol, 2013, 37(4):302-309.
[27] SHIMADA M, ARAYA C, RIVARD C, et al. Minimal change disease a "two-hit" podocyte immune disorder?[J]. Pediatr Nephrol, 2011, 26(4):645-649.
[28] WING K, ONISHI Y, PRIETO-MARTIN P, et al. CTLA-4 control over Foxp3+ regulatory T cell function[J]. Science, 2008, 322(5899):271-275.
[29] MOSSER D M, ZHANG X. Interleukin-10: new perspectives on an old cytokine[J]. Immunol Rev, 2008, 226: 205-218.
[30] ARAYA C, DIAZ L, WASSERFALL C, et al. T regulatory cell function in idiopathic minimal lesion nephrotic syndrome[J]. Pediatr Nephrol, 2009, 24(9):1691-1698.
[31] CLEMENT L C, AVILA-CASADO C, MACE C, et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome[J]. Nat Med, 2011, 17(1):117-122.
[32] CHUGH S S, MACE C, CLEMENT L C, et al. Angiopoietin-like 4 based therapeutics for proteinuria and kidney disease[J]. Front Pharmacol, 2014, 5: 23. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|