Please wait a minute...
浙江大学学报(医学版)  2016, Vol. 45 Issue (2): 161-169    DOI: 10.3785/j.issn.1008-9292.2016.03.09
运动系统再生医学专题     
碳纳米管在骨组织工程支架中的研究进展
姚梦竹1, 盛晓霞2, 林军3, 高建青1
1. 浙江大学药学院药物制剂研究所, 浙江 杭州 310058;
2. 杭州领业医药科技有限公司, 浙江 杭州 310058;
3. 浙江大学医学院附属第一医院口腔科, 浙江 杭州 310006
Research progress on application of carbon nanotubes in bone tissue engineering scaffold
YAO Mengzhu1, SHENG Xiaoxia2, LIN Jun3, GAO Jianqing1
1. Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China;
2. Hangzhou Solipharma Co. Ltd, Hangzhou 310058,China;
3. Department of Stomatology,the First Affiliated Hospital,Zhejiang University School of Medicine, Hangzhou 310009, China
全文: PDF(1009 KB)  
摘要: 

碳纳米管具有良好的机械力学性能、导电性,作为最为广泛使用的纳米材料之一,在医药领域也展现了广阔的应用前景。采用粒子致孔法、热致相分离(冷冻干燥法)、微球聚集法、静电纺丝和三维打印等方法,可实现碳纳米管与无机材料、天然可降解高分子材料、人工合成可降解高分子材料等的复合,构建复合骨组织工程支架。不同材料的组合克服了单一材料的缺点,可以制备出与骨组织天然构造更加吻合,同时具有良好的生物相容性、骨传导性以及骨诱导性的骨组织工程支架。随着碳纳米管表面化学、毒理学研究的深入,生物相容性良好、具有一定降解性或降解产物安全的"人体友好型"碳纳米管的诞生值得期待。

关键词 纳米管,碳骨和骨组织支架组织工程综述    
Abstract

Carbon nanotubes possess excellent mechanical and electrical properties and demonstrate broad application prospects in medical fields. Carbon nanotubes are composed of inorganic materials, natural biodegradable polymer or synthetic biodegradable polymer. The composite bone tissue engineering scaffolds are constructed by particle-hole method, lyophilization, microsphere aggregation method, electrostatic spinning or three-dimensional printing. Composite scaffolds overcome the shortcomings of single material and have good biocompatibility, osteoconduction and osteoinduction. With the study of surface chemistry, toxicology, and biocompatibility, a degradable "human-friendly" carbon nanotubes composite bone tissue scaffold will be available; and under the drive of new fabrication techniques, the clinical application of carbon nanotubes composite bone tissue engineering scaffolds will be better developed.

Key wordsNanotubes, carbon    Bone and bone    Scaffolds    Tissue engineering    Review
收稿日期: 2016-01-07     
CLC:  R68  
基金资助:

国家自然科学基金(81271955)

通讯作者: 高建青(1969-),男,博士,教授,博士生导师,从事新型药物靶向系统的研究;E-mail:gaojianqing@zju.edu.cn     E-mail: gaojianqing@zju.edu.cn
作者简介: 姚梦竹(1989-),女,硕士研究生,从事组织工程支架研究;E-mail:yao_mengzhu@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

姚梦竹 等. 碳纳米管在骨组织工程支架中的研究进展[J]. 浙江大学学报(医学版), 2016, 45(2): 161-169.
YAO Mengzhu, SHENG Xiaoxia, LIN Jun, GAO Jianqing. Research progress on application of carbon nanotubes in bone tissue engineering scaffold. Journal of ZheJiang University(Medical Science), 2016, 45(2): 161-169.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2016.03.09      或      http://www.zjujournals.com/xueshu/med/CN/Y2016/V45/I2/161

[1] CYPHER T J, GROSSMAN J P. Biological principles of bone graft healing [J]. J Foot Ankle Surg, 1996, 35(5): 413-417.
[2] CRANE G M, ISHAUG S L, MIKOS A G. Bone tissue engineering [J]. Nat Med, 1995, 1(12): 1322-1324.
[3] BLACK C R, GORIAINOV V, GIBBS D, et al. Bone tissue engineering [J]. Curr Mol Biol Rep, 2015, 1(3): 132-140.
[4] GONG T, XIE J, LIAO J, et al. Nanomaterials and bone regeneration [J]. Bone Res, 2015, 3: 15029.
[5] BURG K J L, PORTER S, KELLAM J F. Biomaterial developments for bone tissue engineering [J]. Biomaterials, 2000, 21(23): 2347-2359.
[6] SILVA G A, COUTINHO O P, DUCHEYNE P, et al. Materials in particulate form for tissue engineering. 2. Applications in bone [J]. J Tissue Eng Regen Med, 2007, 1(2): 97-109.
[7] EARTHMAN J C, LI Y, VANSCHOIACK L R, et al. Reconstructive materials and bone tissue engineering in implant dentistry [J]. Dent Clin North Am, 2006, 50(2): 229-244.
[8] 何创龙, 王远亮, 杨立华,等. 骨组织工程天然衍生细胞外基质材料[J].中国生物工程杂志, 2003, 23(8): 11-17. HE Chuanglong, WANG Yuanliang, YANG Lihua, et al. Recent advances in natural derived extracellular matrix materials in bone tissue engineering [J]. Journal of Chinese Biotechnology, 2003, 23(8): 11-17. (in Chinese)
[9] ZHANG L, WEBSTER T J. Nanotechnology and nanomaterials: promises for improved tissue regeneration [J]. Nano Today, 2009, 4(1): 66-80.
[10] HOPLEY E L, SALMASI S, KALASKAR D M, et al. Carbon nanotubes leading the way forward in new generation 3D tissue engineering [J]. Biotechnol Adv, 2014, 32(5): 1000-1014.
[11] ABARRATEGI A, GUTIÉRREZ M C, MORENO-VICENTE C, et al. Multiwall carbon nanotube scaffolds for tissue engineering purposes [J]. Biomaterials, 2008, 29(1): 94-102.
[12] FERREIRA L, KARP J M, NOBRE L, et al. New opportunities: the use of nanotechnologies to manipulate and track stem cells [J]. Cell Stem Cell, 2008, 3(2): 136-146.
[13] BARI S, CHU P P Y, LIM A, et al. Protective role of functionalized single walled carbon nanotubes enhance ex vivo expansion of hematopoietic stem and progenitor cells in human umbilical cord blood [J].Nanomedicine, 2013, 9(8): 1304-1316.
[14] ZHAO B, HU H, MANDAL S K, et al. A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes [J]. Chem Mater, 2005, 17(12): 3235-3241.
[15] MATTSON M P, HADDON R C, RAO A M. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth [J]. J Mol Neurosci, 2000, 14(3): 175-182.
[16] IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56-58.
[17] TREACY M M J, EBBESEN T W, GIBSON J M. Exceptionally high Young's modulus observed for individual carbon nanotubes [J]. Nature, 1996, 381(6584): 678-680.
[18] WONG E W, SHEEHAN P E, LIEBER C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes [J]. Science, 1997, 277(5334): 1971-1975.
[19] VAGASKA B, BACAKOVA L, FILOVA E, et al. Osteogenic cells on bio-inspired materials for bone tissue engineering [J]. Physiol Res, 2010, 59(3): 309-322.
[20] ANTONIOLI E, LOBO A O, FERRETTI M, et al. An evaluation of chondrocyte morphology and gene expression on superhydrophilic vertically-aligned multi-walled carbon nanotube films [J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(2): 641-647.
[21] CHAHINE N O, COLLETTE N M, THOMAS C B, et al. Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering: effects of carbon nanotube surface functionalization [J]. Tissue Eng Part A, 2014, 20(17-18): 2305-2315.
[22] BARRIENTOS-DURÁN A, CARPENTER E M, ZUR NIEDEN N I, et al. Carboxyl-modified single-wall carbon nanotubes improve bone tissue formation in vitro and repair in an in vivo rat model [J]. Int J Nanomed, 2014, 9: 4277-4291.
[23] NAYAK T R, JIAN L, PHUA L C, et al. Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation [J]. ACS Nano, 2010, 4(12): 7717-7725.
[24] EDWARDS S L, WERKMEISTER J A, RAMSHAW J A. Carbon nanotubes in scaffolds for tissue engineering [J]. Expert Rev Med Devic, 2009, 6(5): 499-505.
[25] SAHITHI K, SWETHA M, RAMASAMYA K, et al. Polymeric composites containing carbon nanotubes for bone tissue engineering [J]. Int J Biol Macromol, 2010, 46(3): 281-283.
[26] GU M, LIU Y, CHEN T, et al. Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering? [J]. Tissue Eng Part B Rev, 2014, 20(5): 477-491.
[27] MARTINS-JUNIOR P A, ALCANTARA C E, RESENDE R R, et al. Carbon nanotubes: directions and perspectives in oral regenerative medicine [J]. J Dent Res, 2013, 92(7): 575-583.
[28] SHAO S, ZHOU S, LI L, et al. Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers [J]. Biomaterials, 2011, 32(11): 2821-2833.
[29] GUO X, XU H. Research and development of biomedical application of carbon nanotubes and related composites [J]. J Biomed Eng, 2006, 23(2): 438-441.
[30] SAHITHI K, SWETHA M, RAMASAMY K, et al. Polymeric composites containing carbon nanotubes for bone tissue engineering [J]. Int J Biol Macromol, 2010, 46(3): 281-283.
[31] VENKATESAN J, NITHYA R, SUDHA P N, et al. Role of alginate in bone tissue engineering [J]. Adv Food Nutr Res, 2014, 73: 45-57.
[32] BALANI K, ANDERSON R, LAHA T, et al. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro [J]. Biomaterials, 2007, 28(4): 618-624.
[33] LIU J, GAO C, FENG P, et al. A bioactive glass nanocomposite scaffold toughed by multi-wall carbon nanotubes for tissue engineering [J]. J Ceram Soc Jap, 2015, 123(1438): 485-491.
[34] NEWMAN P, LU Z, ROOHANI-ESFAHANI S I, et al. Porous and strong three-dimensional carbon nanotube coated ceramic scaffolds for tissue engineering [J]. J Mater Chem B, 2015, 3(42): 8337-8347.
[35] BHATTACHARYYA S, GUILLOT S, DABBOUE H, et al. Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds [J]. Biomacromolecules, 2008, 9(2): 505-509.
[36] DA SILVA E E, DELLA COLLETA H H M, FERLAUTO A S, et al. Nanostructured 3-D collagen/nanotube biocomposites for future bone regeneration scaffolds [J]. Nano Res, 2009, 2(6): 462-473.
[37] PARK S, PARK J, JO I, et al. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds [J]. Biomaterials, 2015, 58: 93-102.
[38] VENKATESAN J, KIM SK. Chitosan composites for bone tissue engineering-an overview [J]. Marine Drugs, 2010, 8(8): 2252-2266.
[39] VENKATESAN J, RYU B, SUDHA P N, et al. Preparation and characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering [J]. Int J Biol Macromol, 2012, 50(2): 393-402.
[40] RAY S S. Polylactide-based bionanocomposites: a promising class of hybrid materials [J]. Acc Chem Res, 2012, 45(10): 1710-1720.
[41] PAN L, PEI X, HE R, et al. Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application [J]. Colloid Surface B, 2012, (93): 226-234.
[42] MIKAEL P E, AMINI A R, BASU J, et al. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation [J]. Biomed Mater, 2014, 9(3): 035001.
[43] DAS B, CHATTOPADHYAY P, MAJI S, et al. Bio-functionalized MWCNT/ hyperbranched polyurethane bionanocomposite for bone regeneration [J]. Biomed Mater, 2015, 10(2): 025011.
[44] CHENG Q, RUTLEDGE K, JABBARZADEH E. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications [J]. Ann Biomed Eng, 2013, 41(5): 904-916.
[45] WANG H, CHU C, CAI R, et al. Synthesis and bioactivity of gelatin/multiwalled carbon nanotubes/hydroxyapatite nanofibrous scaffolds towards bone tissue engineering [J]. RSC Adv, 2015, 5(66): 53550-53558.
[46] CHEN L, HU J, SHEN X, et al. Synthesis and characterization of chitosan-multiwalled carbon nanotubes/hydroxyapatite nanocomposites for bone tissue engineering [J]. J Mater Sci-Mater EL, 2013, 24(8): 1843-1851.
[47] FONSECA-GARCÍA A, MOTA-MORALES J D, QUINTERO-ORTEGA I A, et al. Effect of doping in carbon nanotubes on the viability of biomimetic chitosan-carbon nanotubes-hydroxyapatite scaffolds [J]. J Biomed Mater Res A, 2014, 102(10): 3341-3351.
[48] RAJESH R, DOMINIC RAVICHANDRAN Y. Development of a new carbon nanotube-alginate-hydroxyapatite tricomponent composite scaffold for application in bone tissue engineering [J]. Int J Nanomed, 2015, 10(Suppl 1): 7-15.
[49] GONÜALVES E M, OLIVEIRA F J, SILVA R F, et al. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation [J]. J Biomed Mater Res B Appl Biomater, 2015: 33432.
[50] SIQUEIRA I A, CORAT M A, CAVALCANTI B, et al. In vitro and in vivo studies of novel poly(D,L-lactic acid), superhydrophilic carbon nanotubes, and nanohydroxyapatite scaffolds for bone regeneration [J]. ACS Appl Mater Inter, 2015, 7(18): 9385-9398.
[51] DORJ B, WON J E, KIM J H, et al. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction [J]. J Biomed Mater Res A, 2013, 101(6): 1670-1681.
[52] SHI X, SITHARAMAN B, PHAM Q P, et al. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering [J]. Biomaterials, 2007, 28(28): 4078-4090.
[53] VENKATESAN J, QIAN Z J, RYU B, et al. Preparation and characterization of carbon nanotube-grafted-chitosan-natural hydroxyapatite composite for bone tissue engineering [J]. Carbohyd Polym, 2011, 83(2): 569-577.
[54] BORDEN M, ATTAWIA M, KHAN Y, et al. Tissue engineered microsphere-based matrices for bone repair: design and evaluation [J]. Biomaterials, 2002, 23(2): 551-559.
[55] GUPTA A, MAIN B J, TAYLOR B L, et al. In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering [J]. J Biomed Mater Res A, 2014, 102(11): 4118-4126.
[56] ZHANG H, CHEN Z. Fabrication and characterization of electrospun PLGA/MWNTs/hydroxyapatite biocomposite scaffolds for bone tissue engineering [J]. J Bioact Compat Pol, 2010, 25(3): 241-259.
[57] SHARMA Y, TIWARI A, HATTORI S, et al. Fabrication of conducting electrospun nanofibers scaffold for three-dimensional cells culture [J]. Int J Biol Macromol, 2012, 51(4): 627-631.
[58] SAHAY R, KUMAR P S, SRIDHAR R, et al. Electrospun composite nanofibers and their multifaceted applications [J]. J Mater Chem, 2012, 22(26): 12953-12971.
[59] JAKUS A E, SECOR E B, RUTZ A L, et al. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications [J]. ACS Nano, 2015, 9(4): 4636-4648.
[60] BUTSCHER A, BOHNER M, HOFMANN S, et al. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing [J]. Acta Biomater, 2011, 7(3): 907-920.
[61] KAO C T, LIN C C, CHEN Y W, et al. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering [J]. Mater Sci Eng C Mater Biol Appl, 2015, 56: 165-173.
[62] SOLEYMAN R, HIRBOD S, ADELI M. Advances in the biomedical application of polymer-functionalized carbon nanotubes [J]. Biomater Sci, 2015, 3(5): 695-711.
[63] LI X, FAN Y, WATARI F. Current investigations into carbon nanotubes for biomedical application [J]. Biomed Mater, 2010, 5(2): 3422-3428.
[64] LIN C, WANG Y, LAI Y, et al. Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly(lactic-co-glycolic acid) for bone tissue engineering [J]. Colloid Surface B, 2011, 83(2): 367-375.
[65] CIAPETTI G, GRANCHI D, DEVESCOVI V, et al. Enhancing osteoconduction of PLLA-based nanocomposite scaffolds for bone regeneration using different biomimetic signals to MSCs [J]. Int J Mol Sci, 2012, 13(2): 2439-2458.

[1] 高思倩,沈咏梅,耿福能,李艳华,高建青. 颞叶癫痫与海马成体神经再生[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[2] 王颖,汪仪,陈忠. 中枢胆碱能系统与癫痫关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 15-21.
[3] 高思倩,沈咏梅,耿福能,李艳华,高建青. 糖尿病溃疡动物模型的建立及相关治疗研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[4] 李文龙,瞿海斌. 近红外光谱应用于中药质量控制及生产过程监控的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 80-88.
[5] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[6] 陈刚,张鼎,应亚草,王志峰,陶伟,朱皓,张景峰,彭志毅. 国产载药微球经动脉化疗栓塞治疗不可切除原发性肝癌的临床研究[J]. 浙江大学学报(医学版), 2017, 46(1): 44-51.
[7] 封盛 等. 糖皮质激素受体信号通路在膀胱癌治疗中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 655-660.
[8] 李统宇 等. 杜氏肌营养不良疾病模型及基因治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 648-654.
[9] 高玉海 等. 淫羊藿总黄酮胶囊对生长期大鼠骨密度和骨形态计量学的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 581-586.
[10] 曹鹏 等. 双氢青蒿素抗肿瘤分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 501-507.
[11] 李亭亭 等. 中性粒细胞在哮喘中作用的研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 544-549.
[12] 王雪 等. TANK结合激酶1在抗病毒免疫应答中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 550-557.
[13] 杜苗苗 等. 钙化性主动脉瓣疾病药物治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(4): 432-438.
[14] 何斌 等. 贝伐珠单克隆抗体在难治性子宫颈癌中的应用进展[J]. 浙江大学学报(医学版), 2016, 45(4): 395-402.
[15] 历雪莹 等. DNA甲基化及其靶向治疗在急性髓系白血病中的研究进展[J]. 浙江大学学报(医学版), 2016, 45(4): 387-394.