[1] CYPHER T J, GROSSMAN J P. Biological principles of bone graft healing [J]. J Foot Ankle Surg, 1996, 35(5): 413-417.
[2] CRANE G M, ISHAUG S L, MIKOS A G. Bone tissue engineering [J]. Nat Med, 1995, 1(12): 1322-1324.
[3] BLACK C R, GORIAINOV V, GIBBS D, et al. Bone tissue engineering [J]. Curr Mol Biol Rep, 2015, 1(3): 132-140.
[4] GONG T, XIE J, LIAO J, et al. Nanomaterials and bone regeneration [J]. Bone Res, 2015, 3: 15029.
[5] BURG K J L, PORTER S, KELLAM J F. Biomaterial developments for bone tissue engineering [J]. Biomaterials, 2000, 21(23): 2347-2359.
[6] SILVA G A, COUTINHO O P, DUCHEYNE P, et al. Materials in particulate form for tissue engineering. 2. Applications in bone [J]. J Tissue Eng Regen Med, 2007, 1(2): 97-109.
[7] EARTHMAN J C, LI Y, VANSCHOIACK L R, et al. Reconstructive materials and bone tissue engineering in implant dentistry [J]. Dent Clin North Am, 2006, 50(2): 229-244.
[8] 何创龙, 王远亮, 杨立华,等. 骨组织工程天然衍生细胞外基质材料[J].中国生物工程杂志, 2003, 23(8): 11-17. HE Chuanglong, WANG Yuanliang, YANG Lihua, et al. Recent advances in natural derived extracellular matrix materials in bone tissue engineering [J]. Journal of Chinese Biotechnology, 2003, 23(8): 11-17. (in Chinese)
[9] ZHANG L, WEBSTER T J. Nanotechnology and nanomaterials: promises for improved tissue regeneration [J]. Nano Today, 2009, 4(1): 66-80.
[10] HOPLEY E L, SALMASI S, KALASKAR D M, et al. Carbon nanotubes leading the way forward in new generation 3D tissue engineering [J]. Biotechnol Adv, 2014, 32(5): 1000-1014.
[11] ABARRATEGI A, GUTIÉRREZ M C, MORENO-VICENTE C, et al. Multiwall carbon nanotube scaffolds for tissue engineering purposes [J]. Biomaterials, 2008, 29(1): 94-102.
[12] FERREIRA L, KARP J M, NOBRE L, et al. New opportunities: the use of nanotechnologies to manipulate and track stem cells [J]. Cell Stem Cell, 2008, 3(2): 136-146.
[13] BARI S, CHU P P Y, LIM A, et al. Protective role of functionalized single walled carbon nanotubes enhance ex vivo expansion of hematopoietic stem and progenitor cells in human umbilical cord blood [J].Nanomedicine, 2013, 9(8): 1304-1316.
[14] ZHAO B, HU H, MANDAL S K, et al. A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes [J]. Chem Mater, 2005, 17(12): 3235-3241.
[15] MATTSON M P, HADDON R C, RAO A M. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth [J]. J Mol Neurosci, 2000, 14(3): 175-182.
[16] IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56-58.
[17] TREACY M M J, EBBESEN T W, GIBSON J M. Exceptionally high Young's modulus observed for individual carbon nanotubes [J]. Nature, 1996, 381(6584): 678-680.
[18] WONG E W, SHEEHAN P E, LIEBER C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes [J]. Science, 1997, 277(5334): 1971-1975.
[19] VAGASKA B, BACAKOVA L, FILOVA E, et al. Osteogenic cells on bio-inspired materials for bone tissue engineering [J]. Physiol Res, 2010, 59(3): 309-322.
[20] ANTONIOLI E, LOBO A O, FERRETTI M, et al. An evaluation of chondrocyte morphology and gene expression on superhydrophilic vertically-aligned multi-walled carbon nanotube films [J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(2): 641-647.
[21] CHAHINE N O, COLLETTE N M, THOMAS C B, et al. Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering: effects of carbon nanotube surface functionalization [J]. Tissue Eng Part A, 2014, 20(17-18): 2305-2315.
[22] BARRIENTOS-DURÁN A, CARPENTER E M, ZUR NIEDEN N I, et al. Carboxyl-modified single-wall carbon nanotubes improve bone tissue formation in vitro and repair in an in vivo rat model [J]. Int J Nanomed, 2014, 9: 4277-4291.
[23] NAYAK T R, JIAN L, PHUA L C, et al. Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation [J]. ACS Nano, 2010, 4(12): 7717-7725.
[24] EDWARDS S L, WERKMEISTER J A, RAMSHAW J A. Carbon nanotubes in scaffolds for tissue engineering [J]. Expert Rev Med Devic, 2009, 6(5): 499-505.
[25] SAHITHI K, SWETHA M, RAMASAMYA K, et al. Polymeric composites containing carbon nanotubes for bone tissue engineering [J]. Int J Biol Macromol, 2010, 46(3): 281-283.
[26] GU M, LIU Y, CHEN T, et al. Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering? [J]. Tissue Eng Part B Rev, 2014, 20(5): 477-491.
[27] MARTINS-JUNIOR P A, ALCANTARA C E, RESENDE R R, et al. Carbon nanotubes: directions and perspectives in oral regenerative medicine [J]. J Dent Res, 2013, 92(7): 575-583.
[28] SHAO S, ZHOU S, LI L, et al. Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers [J]. Biomaterials, 2011, 32(11): 2821-2833.
[29] GUO X, XU H. Research and development of biomedical application of carbon nanotubes and related composites [J]. J Biomed Eng, 2006, 23(2): 438-441.
[30] SAHITHI K, SWETHA M, RAMASAMY K, et al. Polymeric composites containing carbon nanotubes for bone tissue engineering [J]. Int J Biol Macromol, 2010, 46(3): 281-283.
[31] VENKATESAN J, NITHYA R, SUDHA P N, et al. Role of alginate in bone tissue engineering [J]. Adv Food Nutr Res, 2014, 73: 45-57.
[32] BALANI K, ANDERSON R, LAHA T, et al. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro [J]. Biomaterials, 2007, 28(4): 618-624.
[33] LIU J, GAO C, FENG P, et al. A bioactive glass nanocomposite scaffold toughed by multi-wall carbon nanotubes for tissue engineering [J]. J Ceram Soc Jap, 2015, 123(1438): 485-491.
[34] NEWMAN P, LU Z, ROOHANI-ESFAHANI S I, et al. Porous and strong three-dimensional carbon nanotube coated ceramic scaffolds for tissue engineering [J]. J Mater Chem B, 2015, 3(42): 8337-8347.
[35] BHATTACHARYYA S, GUILLOT S, DABBOUE H, et al. Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds [J]. Biomacromolecules, 2008, 9(2): 505-509.
[36] DA SILVA E E, DELLA COLLETA H H M, FERLAUTO A S, et al. Nanostructured 3-D collagen/nanotube biocomposites for future bone regeneration scaffolds [J]. Nano Res, 2009, 2(6): 462-473.
[37] PARK S, PARK J, JO I, et al. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds [J]. Biomaterials, 2015, 58: 93-102.
[38] VENKATESAN J, KIM SK. Chitosan composites for bone tissue engineering-an overview [J]. Marine Drugs, 2010, 8(8): 2252-2266.
[39] VENKATESAN J, RYU B, SUDHA P N, et al. Preparation and characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering [J]. Int J Biol Macromol, 2012, 50(2): 393-402.
[40] RAY S S. Polylactide-based bionanocomposites: a promising class of hybrid materials [J]. Acc Chem Res, 2012, 45(10): 1710-1720.
[41] PAN L, PEI X, HE R, et al. Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application [J]. Colloid Surface B, 2012, (93): 226-234.
[42] MIKAEL P E, AMINI A R, BASU J, et al. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation [J]. Biomed Mater, 2014, 9(3): 035001.
[43] DAS B, CHATTOPADHYAY P, MAJI S, et al. Bio-functionalized MWCNT/ hyperbranched polyurethane bionanocomposite for bone regeneration [J]. Biomed Mater, 2015, 10(2): 025011.
[44] CHENG Q, RUTLEDGE K, JABBARZADEH E. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications [J]. Ann Biomed Eng, 2013, 41(5): 904-916.
[45] WANG H, CHU C, CAI R, et al. Synthesis and bioactivity of gelatin/multiwalled carbon nanotubes/hydroxyapatite nanofibrous scaffolds towards bone tissue engineering [J]. RSC Adv, 2015, 5(66): 53550-53558.
[46] CHEN L, HU J, SHEN X, et al. Synthesis and characterization of chitosan-multiwalled carbon nanotubes/hydroxyapatite nanocomposites for bone tissue engineering [J]. J Mater Sci-Mater EL, 2013, 24(8): 1843-1851.
[47] FONSECA-GARCÍA A, MOTA-MORALES J D, QUINTERO-ORTEGA I A, et al. Effect of doping in carbon nanotubes on the viability of biomimetic chitosan-carbon nanotubes-hydroxyapatite scaffolds [J]. J Biomed Mater Res A, 2014, 102(10): 3341-3351.
[48] RAJESH R, DOMINIC RAVICHANDRAN Y. Development of a new carbon nanotube-alginate-hydroxyapatite tricomponent composite scaffold for application in bone tissue engineering [J]. Int J Nanomed, 2015, 10(Suppl 1): 7-15.
[49] GONÜALVES E M, OLIVEIRA F J, SILVA R F, et al. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation [J]. J Biomed Mater Res B Appl Biomater, 2015: 33432.
[50] SIQUEIRA I A, CORAT M A, CAVALCANTI B, et al. In vitro and in vivo studies of novel poly(D,L-lactic acid), superhydrophilic carbon nanotubes, and nanohydroxyapatite scaffolds for bone regeneration [J]. ACS Appl Mater Inter, 2015, 7(18): 9385-9398.
[51] DORJ B, WON J E, KIM J H, et al. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction [J]. J Biomed Mater Res A, 2013, 101(6): 1670-1681.
[52] SHI X, SITHARAMAN B, PHAM Q P, et al. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering [J]. Biomaterials, 2007, 28(28): 4078-4090.
[53] VENKATESAN J, QIAN Z J, RYU B, et al. Preparation and characterization of carbon nanotube-grafted-chitosan-natural hydroxyapatite composite for bone tissue engineering [J]. Carbohyd Polym, 2011, 83(2): 569-577.
[54] BORDEN M, ATTAWIA M, KHAN Y, et al. Tissue engineered microsphere-based matrices for bone repair: design and evaluation [J]. Biomaterials, 2002, 23(2): 551-559.
[55] GUPTA A, MAIN B J, TAYLOR B L, et al. In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering [J]. J Biomed Mater Res A, 2014, 102(11): 4118-4126.
[56] ZHANG H, CHEN Z. Fabrication and characterization of electrospun PLGA/MWNTs/hydroxyapatite biocomposite scaffolds for bone tissue engineering [J]. J Bioact Compat Pol, 2010, 25(3): 241-259.
[57] SHARMA Y, TIWARI A, HATTORI S, et al. Fabrication of conducting electrospun nanofibers scaffold for three-dimensional cells culture [J]. Int J Biol Macromol, 2012, 51(4): 627-631.
[58] SAHAY R, KUMAR P S, SRIDHAR R, et al. Electrospun composite nanofibers and their multifaceted applications [J]. J Mater Chem, 2012, 22(26): 12953-12971.
[59] JAKUS A E, SECOR E B, RUTZ A L, et al. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications [J]. ACS Nano, 2015, 9(4): 4636-4648.
[60] BUTSCHER A, BOHNER M, HOFMANN S, et al. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing [J]. Acta Biomater, 2011, 7(3): 907-920.
[61] KAO C T, LIN C C, CHEN Y W, et al. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering [J]. Mater Sci Eng C Mater Biol Appl, 2015, 56: 165-173.
[62] SOLEYMAN R, HIRBOD S, ADELI M. Advances in the biomedical application of polymer-functionalized carbon nanotubes [J]. Biomater Sci, 2015, 3(5): 695-711.
[63] LI X, FAN Y, WATARI F. Current investigations into carbon nanotubes for biomedical application [J]. Biomed Mater, 2010, 5(2): 3422-3428.
[64] LIN C, WANG Y, LAI Y, et al. Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly(lactic-co-glycolic acid) for bone tissue engineering [J]. Colloid Surface B, 2011, 83(2): 367-375.
[65] CIAPETTI G, GRANCHI D, DEVESCOVI V, et al. Enhancing osteoconduction of PLLA-based nanocomposite scaffolds for bone regeneration using different biomimetic signals to MSCs [J]. Int J Mol Sci, 2012, 13(2): 2439-2458. |