[1] ABBAH S A, SPANOUDES K, O'BRIEN T, et al. Assessment of stem cell carriers for tendon tissue engineering in pre-clinical models[J]. Stem Cell Res Ther, 2014, 5(38):444-453.
[2] BUTLER D L, JUNCOSA N, DRESSLER M R. Functional efficacy of tendon repair processes[J]. Annu Rev Biomed Eng, 2004, 6(1):303-329.
[3] DOCHEVA D, MVLLER S A, MAJEWSKI M, et al. Biologics for tendon repair[J]. Adv Drug Deliv Rev, 2014, 84: 222-239.
[4] VOLETI P B, BUCKLEY M R, SOSLOWSKY L J. Tendon healing: repair and regeneration[J]. Annu Rev Biomed Eng, 2012, 14: 47-71.
[5] 梁华伟. 肌腱损伤的治疗进展[J]. 中华物理医学与康复杂志, 2010, 32(9):715-717. LIANG Huawei. Advances in the treatment of tendon injuries[J]. Chin J Phys Med Rehabil, 2010, 32(9):715-717. (in Chinese)
[6] SHRIVATS A R, MCDERMOTT M C, HOLLINGER J O. Bone tissue engineering: state of the union[J]. Drug Discov Today, 2014, 19(6):781-786.
[7] ZMISTOWSKI B, KARAM J A, DURINKA J B, et al. Periprosthetic joint infection increases the risk of one-year mortality[J]. J Bone Joint Surg Am, 2013, 95(24):2177-2184.
[8] 卢宏章, 刘震宁, 张道俭, 等. 慢性前交叉韧带损伤合并骨关节炎患者的特点及治疗[J]. 中华医学杂志, 2012, 92(7):472-475. LU Hongzhang, LIU Zhenning, ZHANG Daojian, et al. Treatment of unstable chronic anterior cruciate ligament-deficient knee with osteoarthritis[J]. Chinese Medical Journal, 2012, 92(7):472-475. (in Chinese)
[9] MURPHY C M, O'BRIEN F J, LITTLE D G, et al. Cell-scaffold interactions in the bone tissue engineering triad[J]. Eur Cell Mater, 2013, 26(4):120-132.
[10] HOLLISTER S J, MURPHY W L. Scaffold translation: barriers between concept and clinic[J]. Tissue Eng Part B Rev, 2011, 17(6):459-474.
[11] BARBER F A, BURNS J P, DEUTSCH A, et al. A prospective, randomized evaluation of acellular human dermal matrix augmentation for arthroscopic rotator cuff repair[J]. Arthroscopy, 2012, 28(1):8-15.
[12] WONG I, BURNS J, SNYDER S. Arthroscopic GraftJacket repair of rotator cuff tears[J]. J Shoulder Elbow Surg, 2010, 19(2 Suppl):104-109.
[13] SCLAMBERG S G, TIBONE J E, ITAMURA J M, et al. Six-month magnetic resonance imaging follow-up of large and massive rotator cuff repairs reinforced with porcine small intestinal submucosa[J]. J Shoulder Elbow Surg, 2004, 13(5):538-541.
[14] GOTT M, AST M, LANE L B, et al. Tendon phenotype should dictate tissue engineering modality in tendon repair: a review[J]. Discov Med, 2011, 12(62):75-84.
[15] ALTMANG H, DIAZ F, JAKUBA C, et al. Silk-based biomaterials[J]. Biomaterials, 2003, 24(3):401-416.
[16] INOUYE K, KUROKAWA M, NISHIKAWA S, et al. Use of bombyx mori silk fibroin as a substratum for cultivation of animal cells[J]. J Biochem Biophys Methods, 1998, 37(3):159-164.
[17] MINOURA N, AIBA S, HIGUCHI M, et al. Attachment and growth of fibroblast cells on silk fibroin[J]. Biochem Biophys Res Commun, 1995, 208(2):511-516.
[18] 吴徵宇. 丝素蛋白作为生物医用材料的研究[J]. 材料导报, 2001, 15(2):50-51. WU Huiyu. Studies on applications of silk fibroin as a biomedical material[J]. Materials Review, 2001, 15(2):50-51. (in Chinese)
[19] OMENETTO F G, KAPLAN D L. New opportunities for an ancient material[J]. Science, 2010, 329(5991):528-531.
[20] WENK E, MURPHY A R, KAPLAN D L, et al. The use of sulfonated silk fibroin derivatives to control binding, delivery and potency of FGF-2 in tissue regeneration[J]. Biomaterials, 2010, 31(6):1403-1413.
[21] ROCKWOOD D N, PREDA R C, YUCEL T, et al. Materials fabrication from Bombyx mori silk fibroin[J]. Nat Protoc, 2011, 6(10):1612-1631.
[22] VEPARI C, KAPLAN D L. Silk as a biomaterial[J]. Prog Polym Sci, 2007, 32(8-9):991-1007.
[23] ALTMAN G H, HORAN R L, LU H H, et al. Silk matrix for tissue engineered anterior cruciate ligaments[J]. Biomaterials, 2002, 23(20):4131-4141.
[24] WANG X, KIM H J, XU P, et al. Biomaterial coatings by stepwise deposition of silk fibroin[J]. Langmuir, 2005, 21(24):11335-11341.
[25] HU Y, ZHANG Q, YOU R, et al. The relationship between secondary structure and biodegradation behavior of silk fibroin scaffolds[J]. Advances in Materials Science and Engineering, 2012.http://dx.doi.org/10.1155/2012/185905.
[26] TAO H, KAPLAN D L, OMENETTO F G. Silk materials—a road to sustainable high technology[J]. Advanced Materials, 2012, 24(21):2824-2837.
[27] WANG H, LIU X Y, CHUAH Y J, et al. Design and engineering of silk fibroin scaffolds with biomimetic hierarchical structures[J]. Chem Commun, 2013, 49(14):1431-1433.
[28] WANG X, KLUGE J A, LEISK G G, et al. Sonication-induced gelation of silk fibroin for cell encapsulation[J]. Biomaterials, 2008, 29(8):1054-1064.
[29] AK F, OZTOPRAK Z, KARAKUTUK I, et al. Macroporous silk fibroin cryogels[J]. Biomacromolecules, 2013, 14(3):719-727.
[30] KUNDU B, KUNDU S C. Bio-inspired fabrication of fibroin cryogels from the muga silkworm Antheraea assamensis for liver tissue engineering[J]. Biomed Mater, 2013, 8(5):055003.
[31] CRITCHFIELD A S, MCCABE R, KLEBANOV N, et al. Biocompatibility of a sonicated silk gel for cervical injection during pregnancy: in vivo and in vitro study[J]. Reprod Sci, 2014, 21(10):1266-1273.
[32] YODMUANG S, MCNAMARA S L, NOVER A B, et al. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair[J]. Acta Biomater, 2014, 11: 27-36.
[33] GUZIEWICZ N A, MASSETTI A J, PEREZ-RAMIREZ B J, et al. Mechanisms of monoclonal antibody stabilization and release from silk biomaterials[J]. Biomaterials, 2013, 34(31):7766-7775.
[34] 党婷婷,陈爱政,王士斌. 丝素蛋白微球作为药物缓释载体的研究进展[J]. 化工进展, 2012, (7): 1587-1591. DANG Tingting, CHEN Aizheng, WANG Shibin. Research progress of silk fibroin microsphere as sustained-release carrier of drug[J]. Chemical Industry and Engineering Progress, 2012(7): 1587-1591. (in Chinese)
[35] LI M Z, WU Z Y, ZHANG C S, et al. Study on porous silk fibroin materials. Ⅱ. Preparation and characteristics of spongy silk fibroin materials[J]. J Appl Polym Sci, 2001, 79(12):2192-2199.
[36] TSUKADA M, FREDDI G, MINOURA N, et al. Preparation and application of porous silk fibroin materials[J]. J Appl Polym Sci, 1994, 54(4):507-514.
[37] RAJKHOWA R, GIL E S, KLUGE J, et al. Reinforcing silk scaffolds with silk particles[J]. Macromol Biosci, 2010, 10(6):599-611.
[38] MANDAL B B, GRINBERG A, GIL E S, et al. High-strength silk protein scaffolds for bone repair[J]. Proc Natl Acad Sci U S A, 2012, 109(20):7699-7704.
[39] WANG Y, BLASIOLI D J, KIM H J, et al. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes[J]. Biomaterials, 2006, 27(25):4434-4442.
[40] KARDESTUNCER T, MCCARTHY M B, KARAGEORGIOU V, et al. RGD-tethered silk substrate stimulates the differentiation of human tendon cells[J]. Clin Orthop Relat Res, 2006, 448: 234-239.
[41] WANG X, ZHANG X, CASTELLOT J, et al. Controlled release from multilayer silk biomaterial coatings to modulate vascular cell responses[J]. Biomaterials, 2008, 29(7):894-903.
[42] LAWRENCE B D, MARCHANT J K, PINDRUS M A, et al. Silk film biomaterials for cornea tissue engineering[J]. Biomaterials, 2009, 30(7):1299-1308.
[43] HAN F, LIU S, LIU X, et al. Woven silk fabric-reinforced silk nanofibrous scaffolds for regenerating load-bearing soft tissues[J]. Acta Biomater, 2014, 10(2):921-930.
[44] BHUMIRATANA S, GRAYSON W L, CASTANEDA A, et al. Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds[J]. Biomaterials, 2011, 32(11):2812-2820.
[45] MANDAL B B, PARK S H, GIL E S, et al. Multilayered silk scaffolds for meniscus tissue engineering[J]. Biomaterials, 2011, 32(2):639-651.
[46] KASOJU N, BORA U. Silk fibroin based biomimetic artificial extracellular matrix for hepatic tissue engineering applications[J]. Biomed Mater, 2012, 7(4):045004.
[47] SHEN Y, QIAN Y, ZHANG H, et al. Guidance of olfactory ensheathing cell growth and migration on electrospun silk fibroin scaffolds[J]. Cell Transplant, 2010, 19(2):147-157.
[48] ENOMOTO S, SUMI M, KAJIMOTO K, et al. Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material[J]. J Vasc Surg, 2010, 51(1):155-164.
[49] PERRONE G S, LEISK G G, LO T J, et al. The use of silk-based devices for fracture fixation[J]. Nat Commun, 2014, 5: 3385.
[50] FAN H, LIU H, TOH S L, et al. Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model[J]. Biomaterials, 2009, 30(28):4967-4977.
[51] HUANG W, BEGUM R, BARBER T, et al. Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats[J]. Biomaterials, 2012, 33(1):59-71.
[52] DAS S, SHARMA M, SAHARIA D, et al. In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration[J]. Biomaterials, 2015, 62: 66-75.
[53] MAUNEY J R, CANNON G M, LOVETT M L, et al. Evaluation of gel spun silk-based biomaterials in a murine model of bladder augmentation[J]. Biomaterials, 2011, 32(3):808-818.
[54] CHUNG E J, JU H W, PARK H J, et al. Three-layered scaffolds for artificial esophagus using poly(varepsilon-caprolactone) nanofibers and silk fibroin: an experimental study in a rat model[J]. J Biomed Mater Res A, 2015, 103(6):2057-2065.
[55] STINCO G, PICCIRILLO F, VALENT F. A randomized double-blind study to investigate the clinical efficacy of adding a non-migrating antimicrobial to a special silk fabric in the treatment of atopic dermatitis[J]. Dermatology, 2008, 217(3):191-195.
[56] TWERSKY J, MONTGOMERY T, SLOANE R, et al. A randomized, controlled study to assess the effect of silk-like textiles and high-absorbency adult incontinence briefs on pressure ulcer prevention[J]. Ostomy Wound Manage, 2012, 58(12): 18-24.
[57] TÄHTINEN O I, MANNINEN H I, VANNINEN R L, et al. The silk flow-diverting stent in the endovascular treatment of complex intracranial aneurysms: technical aspects and midterm results in 24 consecutive patients[J]. Neurosurgery, 2012, 70(3):617-624.
[58] FINE N A, LEHFELDT M, GROSS J E, et al. SERI surgical scaffold, prospective clinical trial of a silk-derived biological scaffold in two-stage breast reconstruction: 1-year data[J]. Plast Reconstr Surg, 2015, 135(2):339-351.
[59] CLEMENS M W, DOWNEY S, AGULLO F, et al. Clinical application of a silk fibroin protein biologic scaffold for abdominal wall fascial reinforcement[J]. Plast Reconstr Surg Glob Open, 2014, 2(11):e246. doi:10.1097/GOX.0000000000000217.
[60] GLEZOS C M, WALLER A, BOURKE H E, et al. Disabling synovitis associated with LARS artificial ligament use in anterior cruciate ligament reconstruction: a case report[J]. Am J Sports Med, 2012, 40(5):1167-1171.
[61] ALTMAN G, HORAN R, MARTIN I, et al. Cell differentiation by mechanical stress[J]. FASEB J, 2002, 16(2):270-272.
[62] ALTMAN G H, LU H H, HORAN R L, et al. Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering[J]. J Biomech Eng, 2002, 124(6):742-749.
[63] CHEN X, YIN Z, CHEN J L, et al. Force and scleraxis synergistically promote the commitment of human ES cells derived MSCs to tenocytes[J]. Sci Rep, 2012, 2: 977.
[64] HORAN R L, COLLETTE A L, LEE C, et al. Yarn design for functional tissue engineering[J]. J Biomech, 2006, 39(12):2232-2240.
[65] FAN H, LIU H, WONG E J, et al. In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold[J]. Biomaterials, 2008, 29(23):3324-3337.
[66] CHEN X, QI Y Y, WANG L L, et al. Ligament regeneration using a knitted silk scaffold combined with collagen matrix[J]. Biomaterials, 2008, 29(27):3683-3692.
[67] LIU H, FAN H, WANG Y, et al. The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering[J]. Biomaterials, 2008, 29(6):662-674.
[68] CHEN K, SAHOO S, HE P, et al. A hybrid silk/RADA-based fibrous scaffold with triple hierarchy for ligament regeneration[J]. Tissue Eng Part A, 2012, 18(13-14):1399-1409.
[69] SEO Y K, YOON H H, SONG K Y, et al. Increase in cell migration and angiogenesis in a composite silk scaffold for tissue-engineered ligaments[J]. J Orthop Res, 2009, 27(4):495-503.
[70] SEO Y, YOUN H, PARK J, et al. Effect of collagen-GAG on the anterior cruciate ligament regeneration of rabbit[J]. J Tissue Eng, 2010, 7(5):548-555.
[71] HE P, SAHOO S, NG K S, et al. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold[J]. J Biomed Mater Res A, 2013, 101(2):555-566.
[72] SHI P, TEH T K, TOH S L, et al. Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration[J]. Biomaterials, 2013, 34(24):5947-5957.
[73] SUN L, LI H, QU L, et al. Immobilized lentivirus vector on chondroitin sulfate-hyaluronate acid-silk fibroin hybrid scaffold for tissue-engineered ligament-bone junction[J]. Biomed Res Int, 2014, 2014: 816979.
[74] LI X, HE J, BIAN W, et al. A novel silk-based artificial ligament and tricalcium phosphate/polyether ether ketone anchor for anterior cruciate ligament reconstruction-safety and efficacy in a porcine model[J]. Acta Biomater, 2014, 10(8):3696-3704.
[75] LI X, HE J, BIAN W, et al. A novel silk-TCP-PEEK construct for anterior cruciate ligament reconstruction: an off-the shelf alternative to a bone-tendon-bone autograft[J]. Biofabrication, 2014, 6(1):15010.
[76] CHEN J L, YIN Z, SHEN W L, et al. Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles[J]. Biomaterials, 2010, 31(36):9438-9451.
[77] SHEN W, CHEN X, CHEN J, et al. The effect of incorporation of exogenous stromal cell-derived factor-1 alpha within a knitted silk-collagen sponge scaffold on tendon regeneration[J]. Biomaterials, 2010, 31(28): 7239-7249.
[78] RECKNOR J B, SAKAGUCHI D S, MALLAPRAGADA S K. Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates[J]. Biomaterials, 2006, 27(22):4098-4108.
[79] YIN Z, CHEN X, CHEN J L, et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers[J]. Biomaterials, 2010, 31(8):2163-2175.
[80] TEH T K, TOH S L, GOH J C. Aligned fibrous scaffolds for enhanced mechanoresponse and tenogenesis of mesenchymal stem cells[J]. Tissue Eng Part A, 2013, 19(11-12):1360-1372. |