Please wait a minute...
浙江大学学报(医学版)  2016, Vol. 45 Issue (2): 152-160    DOI: 10.3785/j.issn.1008-9292.2016.03.08
运动系统再生医学专题     
蚕丝相关组织工程支架在肌腱和韧带再生修复中的应用
胡叶君1, 乐辉辉2, 金张楚1,2, 陈晓1, 茵梓1, 沈炜亮1,2, 欧阳宏伟1
1. 浙江大学医学院干细胞与再生医学系 浙江大学李达三·叶耀珍干细胞与再生医学研究中心 浙江省组织工程与再生医学技术重点实验室, 浙江 杭州 310058;
2. 浙江大学医学院附属第二医院骨科 浙江大学骨科研究所, 浙江 杭州 310009
Application of silk-based tissue engineering scaffold for tendon / ligament regeneration
HU Yejun1, LE Huihui2, JIN Zhangchu1,2, CHEN Xiao1, YIN Zi1, SHEN Weiliang1,2, OUYANG Hongwei1
1. Center of Stem Cell and Tissue Engineering, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China;
2. Department of Orthopedic Surgery, Orthopedics Research Iustitute of Zhejiang University, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
全文: PDF(995 KB)  
摘要: 

肌腱和韧带损伤是临床常见运动系统损伤之一。传统治疗手段因供体来源有限、机体免疫排斥等局限,尚无法达到令人满意的临床疗效,尤其是对那些竞技运动员。目前的组织工程学手段能够突破传统治疗的局限,促进肌腱和韧带损伤的修复再生。蚕丝是一种天然的生物材料,具有生物相容性较好、力学强度跨度大和物理结构可调节等特性,可以作为肌腱和韧带的组织工程支架。以蚕丝支架为核心提供力学支持,复合胶原等其他生物成分能增加支架的三维空间,促进更多细胞黏附,并提升材料的生物相容性。体内研究逐步验证了蚕丝支架在发病率较高的肌腱和韧带(前交叉韧带、内侧副韧带、跟腱、肩袖韧带)修复中的临床应用潜能。生物力学良好,宿主自然整合的组织工程肌腱和韧带需要深入基础微观领域研究和延伸临床操作领域研究,促进产品走出实验室,开辟临床应用新航路,为肌腱和韧带损伤患者带来新的希望。本文就蚕丝相关组织工程支架的历史演变及其用于肌腱和韧带损伤修复的效果进行综述和展望。

关键词 蚕属腱损伤韧带支架修复外科手术组织工程再生综述    
Abstract

Tendon/ligament injury is one of the most common impairments in sports medicine. The traditional treatments of damaged tissue repair are unsatisfactory, especially for athletes, due to lack of donor and immune rejection. The strategy of tissue engineering may break through these limitations, and bring new hopes to tendon/ligament repair, even regeneration. Silk is a kind of natural biomaterials, which has good biocompatibility, wide range of mechanical properties and tunable physical structures; so it could be applied as tendon/ligament tissue engineering scaffolds. The silk-based scaffold has robust mechanical properties; combined with other biological ingredients, it could increase the surface area, promote more cell adhesion and improve the biocompatibility. The potential clinical application of silk-based scaffold has been confirmed by in vivo studies on tendon/ligament repairing, such as anterior cruciate ligament, medial collateral ligament, achilles tendon and rotator cuff. To develop novel biomechanically stable and host integrated tissue engineered tendon/ligament needs more further micro and macro studies, combined with product development and clinical application, which will give new hope to patients with tendon/ligament injury.

Key wordsBombyx    Tendon injuries    Ligaments    Scaffolds    Reconstructive surgical procedures    Tissue engineering    Regeneration    Review
收稿日期: 2015-11-26     
CLC:  R686  
基金资助:

国家自然科学基金(81572157,81201396,81572115);国家自然科学青年基金(81271970);浙江省自然科学基金(LY14H060003)

通讯作者: 欧阳宏伟(1971-),男,博士,教授,博士生导师,从事干细胞与组织工程、运动医学研究;E-mail:hwoy@zju.edu.cn;沈炜亮(1982-),男,博士,主治医师,硕士生导师,从事骨科疾病研究;E-mail:shenweiliang365@163.com     E-mail: hwoy@zju.edu.cn;shenweiliang365@163.com
作者简介: 胡叶君(1988-),男,博士研究生,从事运动医学研究;E-mail:huyejun@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

胡叶君 等. 蚕丝相关组织工程支架在肌腱和韧带再生修复中的应用[J]. 浙江大学学报(医学版), 2016, 45(2): 152-160.
HU Yejun, LE Huihui, JIN Zhangchu, CHEN Xiao, YIN Zi, SHEN Weiliang, OUYANG Hongwei. Application of silk-based tissue engineering scaffold for tendon / ligament regeneration. Journal of ZheJiang University(Medical Science), 2016, 45(2): 152-160.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2016.03.08      或      http://www.zjujournals.com/xueshu/med/CN/Y2016/V45/I2/152

[1] ABBAH S A, SPANOUDES K, O'BRIEN T, et al. Assessment of stem cell carriers for tendon tissue engineering in pre-clinical models[J]. Stem Cell Res Ther, 2014, 5(38):444-453.
[2] BUTLER D L, JUNCOSA N, DRESSLER M R. Functional efficacy of tendon repair processes[J]. Annu Rev Biomed Eng, 2004, 6(1):303-329.
[3] DOCHEVA D, MVLLER S A, MAJEWSKI M, et al. Biologics for tendon repair[J]. Adv Drug Deliv Rev, 2014, 84: 222-239.
[4] VOLETI P B, BUCKLEY M R, SOSLOWSKY L J. Tendon healing: repair and regeneration[J]. Annu Rev Biomed Eng, 2012, 14: 47-71.
[5] 梁华伟. 肌腱损伤的治疗进展[J]. 中华物理医学与康复杂志, 2010, 32(9):715-717. LIANG Huawei. Advances in the treatment of tendon injuries[J]. Chin J Phys Med Rehabil, 2010, 32(9):715-717. (in Chinese)
[6] SHRIVATS A R, MCDERMOTT M C, HOLLINGER J O. Bone tissue engineering: state of the union[J]. Drug Discov Today, 2014, 19(6):781-786.
[7] ZMISTOWSKI B, KARAM J A, DURINKA J B, et al. Periprosthetic joint infection increases the risk of one-year mortality[J]. J Bone Joint Surg Am, 2013, 95(24):2177-2184.
[8] 卢宏章, 刘震宁, 张道俭, 等. 慢性前交叉韧带损伤合并骨关节炎患者的特点及治疗[J]. 中华医学杂志, 2012, 92(7):472-475. LU Hongzhang, LIU Zhenning, ZHANG Daojian, et al. Treatment of unstable chronic anterior cruciate ligament-deficient knee with osteoarthritis[J]. Chinese Medical Journal, 2012, 92(7):472-475. (in Chinese)
[9] MURPHY C M, O'BRIEN F J, LITTLE D G, et al. Cell-scaffold interactions in the bone tissue engineering triad[J]. Eur Cell Mater, 2013, 26(4):120-132.
[10] HOLLISTER S J, MURPHY W L. Scaffold translation: barriers between concept and clinic[J]. Tissue Eng Part B Rev, 2011, 17(6):459-474.
[11] BARBER F A, BURNS J P, DEUTSCH A, et al. A prospective, randomized evaluation of acellular human dermal matrix augmentation for arthroscopic rotator cuff repair[J]. Arthroscopy, 2012, 28(1):8-15.
[12] WONG I, BURNS J, SNYDER S. Arthroscopic GraftJacket repair of rotator cuff tears[J]. J Shoulder Elbow Surg, 2010, 19(2 Suppl):104-109.
[13] SCLAMBERG S G, TIBONE J E, ITAMURA J M, et al. Six-month magnetic resonance imaging follow-up of large and massive rotator cuff repairs reinforced with porcine small intestinal submucosa[J]. J Shoulder Elbow Surg, 2004, 13(5):538-541.
[14] GOTT M, AST M, LANE L B, et al. Tendon phenotype should dictate tissue engineering modality in tendon repair: a review[J]. Discov Med, 2011, 12(62):75-84.
[15] ALTMANG H, DIAZ F, JAKUBA C, et al. Silk-based biomaterials[J]. Biomaterials, 2003, 24(3):401-416.
[16] INOUYE K, KUROKAWA M, NISHIKAWA S, et al. Use of bombyx mori silk fibroin as a substratum for cultivation of animal cells[J]. J Biochem Biophys Methods, 1998, 37(3):159-164.
[17] MINOURA N, AIBA S, HIGUCHI M, et al. Attachment and growth of fibroblast cells on silk fibroin[J]. Biochem Biophys Res Commun, 1995, 208(2):511-516.
[18] 吴徵宇. 丝素蛋白作为生物医用材料的研究[J]. 材料导报, 2001, 15(2):50-51. WU Huiyu. Studies on applications of silk fibroin as a biomedical material[J]. Materials Review, 2001, 15(2):50-51. (in Chinese)
[19] OMENETTO F G, KAPLAN D L. New opportunities for an ancient material[J]. Science, 2010, 329(5991):528-531.
[20] WENK E, MURPHY A R, KAPLAN D L, et al. The use of sulfonated silk fibroin derivatives to control binding, delivery and potency of FGF-2 in tissue regeneration[J]. Biomaterials, 2010, 31(6):1403-1413.
[21] ROCKWOOD D N, PREDA R C, YUCEL T, et al. Materials fabrication from Bombyx mori silk fibroin[J]. Nat Protoc, 2011, 6(10):1612-1631.
[22] VEPARI C, KAPLAN D L. Silk as a biomaterial[J]. Prog Polym Sci, 2007, 32(8-9):991-1007.
[23] ALTMAN G H, HORAN R L, LU H H, et al. Silk matrix for tissue engineered anterior cruciate ligaments[J]. Biomaterials, 2002, 23(20):4131-4141.
[24] WANG X, KIM H J, XU P, et al. Biomaterial coatings by stepwise deposition of silk fibroin[J]. Langmuir, 2005, 21(24):11335-11341.
[25] HU Y, ZHANG Q, YOU R, et al. The relationship between secondary structure and biodegradation behavior of silk fibroin scaffolds[J]. Advances in Materials Science and Engineering, 2012.http://dx.doi.org/10.1155/2012/185905.
[26] TAO H, KAPLAN D L, OMENETTO F G. Silk materials—a road to sustainable high technology[J]. Advanced Materials, 2012, 24(21):2824-2837.
[27] WANG H, LIU X Y, CHUAH Y J, et al. Design and engineering of silk fibroin scaffolds with biomimetic hierarchical structures[J]. Chem Commun, 2013, 49(14):1431-1433.
[28] WANG X, KLUGE J A, LEISK G G, et al. Sonication-induced gelation of silk fibroin for cell encapsulation[J]. Biomaterials, 2008, 29(8):1054-1064.
[29] AK F, OZTOPRAK Z, KARAKUTUK I, et al. Macroporous silk fibroin cryogels[J]. Biomacromolecules, 2013, 14(3):719-727.
[30] KUNDU B, KUNDU S C. Bio-inspired fabrication of fibroin cryogels from the muga silkworm Antheraea assamensis for liver tissue engineering[J]. Biomed Mater, 2013, 8(5):055003.
[31] CRITCHFIELD A S, MCCABE R, KLEBANOV N, et al. Biocompatibility of a sonicated silk gel for cervical injection during pregnancy: in vivo and in vitro study[J]. Reprod Sci, 2014, 21(10):1266-1273.
[32] YODMUANG S, MCNAMARA S L, NOVER A B, et al. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair[J]. Acta Biomater, 2014, 11: 27-36.
[33] GUZIEWICZ N A, MASSETTI A J, PEREZ-RAMIREZ B J, et al. Mechanisms of monoclonal antibody stabilization and release from silk biomaterials[J]. Biomaterials, 2013, 34(31):7766-7775.
[34] 党婷婷,陈爱政,王士斌. 丝素蛋白微球作为药物缓释载体的研究进展[J]. 化工进展, 2012, (7): 1587-1591. DANG Tingting, CHEN Aizheng, WANG Shibin. Research progress of silk fibroin microsphere as sustained-release carrier of drug[J]. Chemical Industry and Engineering Progress, 2012(7): 1587-1591. (in Chinese)
[35] LI M Z, WU Z Y, ZHANG C S, et al. Study on porous silk fibroin materials. Ⅱ. Preparation and characteristics of spongy silk fibroin materials[J]. J Appl Polym Sci, 2001, 79(12):2192-2199.
[36] TSUKADA M, FREDDI G, MINOURA N, et al. Preparation and application of porous silk fibroin materials[J]. J Appl Polym Sci, 1994, 54(4):507-514.
[37] RAJKHOWA R, GIL E S, KLUGE J, et al. Reinforcing silk scaffolds with silk particles[J]. Macromol Biosci, 2010, 10(6):599-611.
[38] MANDAL B B, GRINBERG A, GIL E S, et al. High-strength silk protein scaffolds for bone repair[J]. Proc Natl Acad Sci U S A, 2012, 109(20):7699-7704.
[39] WANG Y, BLASIOLI D J, KIM H J, et al. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes[J]. Biomaterials, 2006, 27(25):4434-4442.
[40] KARDESTUNCER T, MCCARTHY M B, KARAGEORGIOU V, et al. RGD-tethered silk substrate stimulates the differentiation of human tendon cells[J]. Clin Orthop Relat Res, 2006, 448: 234-239.
[41] WANG X, ZHANG X, CASTELLOT J, et al. Controlled release from multilayer silk biomaterial coatings to modulate vascular cell responses[J]. Biomaterials, 2008, 29(7):894-903.
[42] LAWRENCE B D, MARCHANT J K, PINDRUS M A, et al. Silk film biomaterials for cornea tissue engineering[J]. Biomaterials, 2009, 30(7):1299-1308.
[43] HAN F, LIU S, LIU X, et al. Woven silk fabric-reinforced silk nanofibrous scaffolds for regenerating load-bearing soft tissues[J]. Acta Biomater, 2014, 10(2):921-930.
[44] BHUMIRATANA S, GRAYSON W L, CASTANEDA A, et al. Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds[J]. Biomaterials, 2011, 32(11):2812-2820.
[45] MANDAL B B, PARK S H, GIL E S, et al. Multilayered silk scaffolds for meniscus tissue engineering[J]. Biomaterials, 2011, 32(2):639-651.
[46] KASOJU N, BORA U. Silk fibroin based biomimetic artificial extracellular matrix for hepatic tissue engineering applications[J]. Biomed Mater, 2012, 7(4):045004.
[47] SHEN Y, QIAN Y, ZHANG H, et al. Guidance of olfactory ensheathing cell growth and migration on electrospun silk fibroin scaffolds[J]. Cell Transplant, 2010, 19(2):147-157.
[48] ENOMOTO S, SUMI M, KAJIMOTO K, et al. Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material[J]. J Vasc Surg, 2010, 51(1):155-164.
[49] PERRONE G S, LEISK G G, LO T J, et al. The use of silk-based devices for fracture fixation[J]. Nat Commun, 2014, 5: 3385.
[50] FAN H, LIU H, TOH S L, et al. Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model[J]. Biomaterials, 2009, 30(28):4967-4977.
[51] HUANG W, BEGUM R, BARBER T, et al. Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats[J]. Biomaterials, 2012, 33(1):59-71.
[52] DAS S, SHARMA M, SAHARIA D, et al. In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration[J]. Biomaterials, 2015, 62: 66-75.
[53] MAUNEY J R, CANNON G M, LOVETT M L, et al. Evaluation of gel spun silk-based biomaterials in a murine model of bladder augmentation[J]. Biomaterials, 2011, 32(3):808-818.
[54] CHUNG E J, JU H W, PARK H J, et al. Three-layered scaffolds for artificial esophagus using poly(varepsilon-caprolactone) nanofibers and silk fibroin: an experimental study in a rat model[J]. J Biomed Mater Res A, 2015, 103(6):2057-2065.
[55] STINCO G, PICCIRILLO F, VALENT F. A randomized double-blind study to investigate the clinical efficacy of adding a non-migrating antimicrobial to a special silk fabric in the treatment of atopic dermatitis[J]. Dermatology, 2008, 217(3):191-195.
[56] TWERSKY J, MONTGOMERY T, SLOANE R, et al. A randomized, controlled study to assess the effect of silk-like textiles and high-absorbency adult incontinence briefs on pressure ulcer prevention[J]. Ostomy Wound Manage, 2012, 58(12): 18-24.
[57] TÄHTINEN O I, MANNINEN H I, VANNINEN R L, et al. The silk flow-diverting stent in the endovascular treatment of complex intracranial aneurysms: technical aspects and midterm results in 24 consecutive patients[J]. Neurosurgery, 2012, 70(3):617-624.
[58] FINE N A, LEHFELDT M, GROSS J E, et al. SERI surgical scaffold, prospective clinical trial of a silk-derived biological scaffold in two-stage breast reconstruction: 1-year data[J]. Plast Reconstr Surg, 2015, 135(2):339-351.
[59] CLEMENS M W, DOWNEY S, AGULLO F, et al. Clinical application of a silk fibroin protein biologic scaffold for abdominal wall fascial reinforcement[J]. Plast Reconstr Surg Glob Open, 2014, 2(11):e246. doi:10.1097/GOX.0000000000000217.
[60] GLEZOS C M, WALLER A, BOURKE H E, et al. Disabling synovitis associated with LARS artificial ligament use in anterior cruciate ligament reconstruction: a case report[J]. Am J Sports Med, 2012, 40(5):1167-1171.
[61] ALTMAN G, HORAN R, MARTIN I, et al. Cell differentiation by mechanical stress[J]. FASEB J, 2002, 16(2):270-272.
[62] ALTMAN G H, LU H H, HORAN R L, et al. Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering[J]. J Biomech Eng, 2002, 124(6):742-749.
[63] CHEN X, YIN Z, CHEN J L, et al. Force and scleraxis synergistically promote the commitment of human ES cells derived MSCs to tenocytes[J]. Sci Rep, 2012, 2: 977.
[64] HORAN R L, COLLETTE A L, LEE C, et al. Yarn design for functional tissue engineering[J]. J Biomech, 2006, 39(12):2232-2240.
[65] FAN H, LIU H, WONG E J, et al. In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold[J]. Biomaterials, 2008, 29(23):3324-3337.
[66] CHEN X, QI Y Y, WANG L L, et al. Ligament regeneration using a knitted silk scaffold combined with collagen matrix[J]. Biomaterials, 2008, 29(27):3683-3692.
[67] LIU H, FAN H, WANG Y, et al. The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering[J]. Biomaterials, 2008, 29(6):662-674.
[68] CHEN K, SAHOO S, HE P, et al. A hybrid silk/RADA-based fibrous scaffold with triple hierarchy for ligament regeneration[J]. Tissue Eng Part A, 2012, 18(13-14):1399-1409.
[69] SEO Y K, YOON H H, SONG K Y, et al. Increase in cell migration and angiogenesis in a composite silk scaffold for tissue-engineered ligaments[J]. J Orthop Res, 2009, 27(4):495-503.
[70] SEO Y, YOUN H, PARK J, et al. Effect of collagen-GAG on the anterior cruciate ligament regeneration of rabbit[J]. J Tissue Eng, 2010, 7(5):548-555.
[71] HE P, SAHOO S, NG K S, et al. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold[J]. J Biomed Mater Res A, 2013, 101(2):555-566.
[72] SHI P, TEH T K, TOH S L, et al. Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration[J]. Biomaterials, 2013, 34(24):5947-5957.
[73] SUN L, LI H, QU L, et al. Immobilized lentivirus vector on chondroitin sulfate-hyaluronate acid-silk fibroin hybrid scaffold for tissue-engineered ligament-bone junction[J]. Biomed Res Int, 2014, 2014: 816979.
[74] LI X, HE J, BIAN W, et al. A novel silk-based artificial ligament and tricalcium phosphate/polyether ether ketone anchor for anterior cruciate ligament reconstruction-safety and efficacy in a porcine model[J]. Acta Biomater, 2014, 10(8):3696-3704.
[75] LI X, HE J, BIAN W, et al. A novel silk-TCP-PEEK construct for anterior cruciate ligament reconstruction: an off-the shelf alternative to a bone-tendon-bone autograft[J]. Biofabrication, 2014, 6(1):15010.
[76] CHEN J L, YIN Z, SHEN W L, et al. Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles[J]. Biomaterials, 2010, 31(36):9438-9451.
[77] SHEN W, CHEN X, CHEN J, et al. The effect of incorporation of exogenous stromal cell-derived factor-1 alpha within a knitted silk-collagen sponge scaffold on tendon regeneration[J]. Biomaterials, 2010, 31(28): 7239-7249.
[78] RECKNOR J B, SAKAGUCHI D S, MALLAPRAGADA S K. Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates[J]. Biomaterials, 2006, 27(22):4098-4108.
[79] YIN Z, CHEN X, CHEN J L, et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers[J]. Biomaterials, 2010, 31(8):2163-2175.
[80] TEH T K, TOH S L, GOH J C. Aligned fibrous scaffolds for enhanced mechanoresponse and tenogenesis of mesenchymal stem cells[J]. Tissue Eng Part A, 2013, 19(11-12):1360-1372.

[1] 陈刚,张鼎,应亚草,王志峰,陶伟,朱皓,张景峰,彭志毅. 国产载药微球经动脉化疗栓塞治疗不可切除原发性肝癌的临床研究[J]. 浙江大学学报(医学版), 2017, 46(1): 44-51.
[2] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[3] 李文龙,瞿海斌. 近红外光谱应用于中药质量控制及生产过程监控的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 80-88.
[4] 高思倩,沈咏梅,耿福能,李艳华,高建青. 糖尿病溃疡动物模型的建立及相关治疗研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[5] 王颖,汪仪,陈忠. 中枢胆碱能系统与癫痫关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 15-21.
[6] 高思倩,沈咏梅,耿福能,李艳华,高建青. 颞叶癫痫与海马成体神经再生[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[7] 李统宇 等. 杜氏肌营养不良疾病模型及基因治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 648-654.
[8] 封盛 等. 糖皮质激素受体信号通路在膀胱癌治疗中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 655-660.
[9] 曹鹏 等. 双氢青蒿素抗肿瘤分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 501-507.
[10] 李亭亭 等. 中性粒细胞在哮喘中作用的研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 544-549.
[11] 王雪 等. TANK结合激酶1在抗病毒免疫应答中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 550-557.
[12] 何斌 等. 贝伐珠单克隆抗体在难治性子宫颈癌中的应用进展[J]. 浙江大学学报(医学版), 2016, 45(4): 395-402.
[13] 历雪莹 等. DNA甲基化及其靶向治疗在急性髓系白血病中的研究进展[J]. 浙江大学学报(医学版), 2016, 45(4): 387-394.
[14] 竺天虹 等. 上皮间充质转化介导子宫内膜异位症发生发展的研究进展[J]. 浙江大学学报(医学版), 2016, 45(4): 439-445.
[15] 杜苗苗 等. 钙化性主动脉瓣疾病药物治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(4): 432-438.