Please wait a minute...
浙江大学学报(医学版)  2016, Vol. 45 Issue (2): 147-151    DOI: 10.3785/j.issn.1008-9292.2016.03.07
运动系统再生医学专题     
诱导多能干细胞治疗失神经性肌肉萎缩的研究进展
姚中凯, 杨晨松, 孙贵新
上海同济大学附属东方医院创伤外科, 上海 200120
Research progress of induced pluripotent stem cells in treatment of muscle atrophy
YAO Zhongkai, YANG Chensong, SUN Guixin
Department of Trauma Surgery, East Hospital Affiliated to Tongji University, Shanghai 200120, China
全文: PDF(958 KB)  
摘要: 

诱导多能干细胞(iPSC)是一种类似于胚胎干细胞具有多向分化潜能的组织干细胞,又有胚胎干细胞不可比拟的优势。iPSC移植到受损区域后,经病损部位神经源信号的引导,可分泌修复损伤必需的营养因子,帮助无髓或新生轴突形成髓鞘,为轴突生长提供基质等物质,参与神经立体空间结构的重建,恢复神经系统功能,对周围神经的再生具有非常重要的意义。因此,应用iPSC治疗延缓失神经性肌肉萎缩成为一种可能。

关键词 多潜能干细胞/免疫学肌萎缩/药物疗法周围神经/损伤神经系统疾病/药物疗法综述    
Abstract

Muscle atrophy caused by nerve injury is a common and difficult clinical problem. The development of stem cell researches has opened up a new way for the treatment of nerve injury-induced muscle atrophy. The induced pluripotent stem cells(iPSCs)can differentiate into various types of cells and have more advantages than embryonic stem cells (ESCs). After being transplanted into the damaged area, iPSCs are guided by neurogenic signals to the lesion sites, to repair the damaged nerve, promote generation of axon myelination, rebuild neural circuits and restore physiological function. Meanwhile, iPSCs can also differentiate into muscle cells and promote muscle tissue regeneration. Therefore, it would be possible to attenuate muscle atrophy caused by nerve injury with iPSCs treatment.

Key wordsPluripotent stem cells/immunology    Muscular atrophy/drug therapy    Peripheral nerves/ injuries    Nervous system diseases/drug therapy    Review
收稿日期: 2015-10-12     
CLC:  Q81  
基金资助:

上海市自然科学基金(13ZR1434100);上海市卫生局面上项目(20124328)

通讯作者: 孙贵新(1971-),男,博士,主任医师,硕士生导师,从事创伤骨科研究;E-mail:sunguixin@sina.com     E-mail: sunguixin@sina.com
作者简介: 姚中凯(1987-),男,硕士研究生,从事创伤骨科研究;E-mail:yzhkai007@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

姚中凯 等. 诱导多能干细胞治疗失神经性肌肉萎缩的研究进展[J]. 浙江大学学报(医学版), 2016, 45(2): 147-151.
YAO Zhongkai, YANG Chensong, SUN Guixin. Research progress of induced pluripotent stem cells in treatment of muscle atrophy. Journal of ZheJiang University(Medical Science), 2016, 45(2): 147-151.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2016.03.07      或      http://www.zjujournals.com/xueshu/med/CN/Y2016/V45/I2/147

[1] 杨 渐, 俞昌喜. 周围神经损伤的药物治疗进展[J]. 中国实用神经疾病杂志, 2010, 13(11):91-93. YANG Jian, YU Changxi. Drug-treatment for peripheral nerve injures[J]. Chinese Journal of Practical Nervous Diseases, 2010, 13(11):91-93. (in Chinese)
[2] 裴艳宏, 刘坤祥. 失神经骨骼肌萎缩机制及治疗的研究进展[J]. 中国医疗前沿, 2013, 8(5):15-17. PEI Yanhong, LIU Kunxiang. Research progress on mechanism and treatment of denervated skeletal muscle atrophy[J]. National Medical Frontiers of China, 2013, 8(5):15-17. (in Chinese)
[3] HALL V J, STOJKOVIC P, STOJKOVIC M. Using therapeutic cloning to fight human disease: a conundrum or reality?[J]. Stem Cells, 2006, 24(7):1628-1637.
[4] RUSSO F B, CUGOLA F R, FERNANDES I R, et al. Induced pluripotent stem cells for modeling neurological disorders[J]. World J Transplant, 2015, 5(4):209-221.
[5] WINNER B, MARCHETTO M C, WINKLER J, et al. Human-induced pluripotent stem cells pave the road for a better understanding of motor neuron disease[J]. Hum Mol Genet, 2014, 23(R1):R27-R34.
[6] OHUCHI K, FUNATO M, KATO Z, et al. Established stem cell model of spinal muscular atrophy is applicable in the evaluation of the efficacy of thyrotropin-releasing hormone analog[J]. Stem Cells Transl Med, 2016, 5(2):152-163.
[7] SHOJI E, SAKURAI H, NISHINO T, et al. Early pathogenesis of duchenne muscular dystrophy modelled in patient-derived human induced pluripotent stem cells[J]. Sci Rep, 2015, 5:12831.
[8] TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
[9] JAENISCH R, YOUNG R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming[J]. Cell, 2008, 132(4):567-582.
[10] NISHIKAWA S, GOLDSTEIN R A, NIERRAS C R. The promise of human induced pluripotent stem cells for research and therapy[J]. Nat Rev Mol Cell Biol, 2008, 9(9):725-729.
[11] GRAF T, ENVER T. Forcing cells to change lineages[J]. Nature, 2009, 462(7273):587-594.
[12] KAJI K, NORRBY K, PACA A, et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors[J]. Nature, 2009, 458(7239):771-775.
[13] HANNA J, MARKOULAKI S, SCHORDERET P, et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency[J]. Cell, 2008, 133(2):250-264.
[14] QUATTROCELLI M, PALAZZOLO G, FLORIS G, et al. Intrinsic cell memory reinforces myogenic commitment of pericyte-derived iPSCs[J]. J Pathol, 2011, 223(5):593-603.
[15] MARZETTI E, HUANG J C, LEES H A, et al. Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy[J]. Biochim Biophys Acta, 2010, 1800(3):235-244.
[16] GROSS J G, MORGAN J E. Muscle precursor cells injected into irradiated mdx mouse muscle persist after serial injury[J]. Muscle Nerve, 1999, 22(2):174-185.
[17] RODRIGUES ADE C, SCHMALBRUCH H. Satellite cells and myonuclei in long-term denervated rat muscles[J]. Anat Rec, 1995, 243(4):430-437.
[18] 肖雅娟. iPSCs定向分化为运动神经元的电生理特性研究[D]. 中国科学院研究生院, 2011. XIAO Yajuan. Electrophysiological characteristics of iPSCs in the direction of differentiation into motor neurons[D]. Graduate University of Chinese Academy of Sciences, 2011. (in Chinese)
[19] DIMOS J T, RODOLFA K T, NIAKAN K K, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons[J]. Science, 2008, 321(5893):1218-1221.
[20] LI L, BAROJA M L, MAJUMDAR A, et al. Human embryonic stem cells possess immune-privileged properties[J]. Stem Cells, 2004, 22(4):448-456.
[21] LI X J, DU Z W, ZARNOWSKA E D, et al. Specification of motoneurons from human embryonic stem cells[J]. Nat Biotechnol, 2005, 23(2):215-221.
[22] WERNIG M, ZHAO J P, PRUSZAK J, et al. Neurons derived from reprogrammed fibroblasts functionally tegrate into the fetal brain and improve symptoms of rats with Parkinson's disease[J]. Proc Natl Acad Sci U S A, 2008, 105(15):5856-5861.
[23] NISHIYAMA T, TAKEDA S. Induced pluripotent stem (iPS) cell-based cell therapy for muscular dystrophy: current progress and future prospects[J]. Brain Nerve, 2012, 64(1):39-46.
[24] ASAKURA A, SEALE P, GIRGIS-GABARDO A, et al. Myogenic specification of side population cells in skeletal muscle[J]. J Cell Biol, 2002, 159(1):123-134.
[25] DARABI R, PAN W, BOSNAKOVSKI D, et al. Functional myogenic engraftment from mouse iPS cells[J]. Stem Cell Rev, 2011, 7(4):948-957.
[26] PRICE F D, KURODA K, RUDNICKI M A. Stem cell based therapies to treat muscular dystrophy[J]. Biochim Biophys Acta, 2007, 772(2):272-283.
[27] NIWA H, MIYAZAKI J, SMITH A G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells[J]. Nat Genet, 2000, 24(4):372-376.
[28] SILVA J, BARRANDON O, NICHOLS J, et al. Promotion of reprogramming to ground state pluripotency by signal inhibition[J]. PLoS Biol, 2008, 6(10):e253.
[29] TAKAHASHI K, TANABE K, OHNUKI M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
[30] SHI Y, DESPONTS C, DO J T, et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds[J]. Cell Stem Cell, 2008, 3(5):568-574.
[31] YU J, HU K, SMUGA-OTTO K, et al. Human induced pluripotent stem cells free of vector and transgene sequences[J]. Science, 2009, 324(5928):797-801.
[32] 押村 光雄, 香月 康宏, 宇野 愛海. ヒト人工染色体をもちいたデュシャンヌ型筋ジストロフィー 遺伝子治療への挑戦[J]. 臨床神経学, 2012, 52(11):1139-1142. OSHIMURA M, KAZUKI Y, UNO N. Challenge toward gene-therapy using iPS cells for Duchenne muscular dystrophy[J]. Rinsho Shinkeigaku, 2012, 52(11):1139-1142. (in Japanese)

[1] 高思倩,沈咏梅,耿福能,李艳华,高建青. 颞叶癫痫与海马成体神经再生[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[2] 王颖,汪仪,陈忠. 中枢胆碱能系统与癫痫关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 15-21.
[3] 高思倩,沈咏梅,耿福能,李艳华,高建青. 糖尿病溃疡动物模型的建立及相关治疗研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[4] 李文龙,瞿海斌. 近红外光谱应用于中药质量控制及生产过程监控的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 80-88.
[5] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[6] 封盛 等. 糖皮质激素受体信号通路在膀胱癌治疗中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 655-660.
[7] 李统宇 等. 杜氏肌营养不良疾病模型及基因治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 648-654.
[8] 曹鹏 等. 双氢青蒿素抗肿瘤分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 501-507.
[9] 李亭亭 等. 中性粒细胞在哮喘中作用的研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 544-549.
[10] 王雪 等. TANK结合激酶1在抗病毒免疫应答中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 550-557.
[11] 杜苗苗 等. 钙化性主动脉瓣疾病药物治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(4): 432-438.
[12] 何斌 等. 贝伐珠单克隆抗体在难治性子宫颈癌中的应用进展[J]. 浙江大学学报(医学版), 2016, 45(4): 395-402.
[13] 历雪莹 等. DNA甲基化及其靶向治疗在急性髓系白血病中的研究进展[J]. 浙江大学学报(医学版), 2016, 45(4): 387-394.
[14] 竺天虹 等. 上皮间充质转化介导子宫内膜异位症发生发展的研究进展[J]. 浙江大学学报(医学版), 2016, 45(4): 439-445.
[15] 徐玉兰 等. 秀丽隐杆线虫神经胶质细胞对神经系统发育和功能的影响[J]. 浙江大学学报(医学版), 2016, 45(3): 315-322.