Please wait a minute...
浙江大学学报(医学版)  2016, Vol. 45 Issue (2): 141-146    DOI: 10.3785/j.issn.1008-9292.2016.03.06
运动系统再生医学专题     
三维打印技术在骨缺损修复和椎间盘组织工程中的研究进展
杨泽川, 李淳德, 孙浩林
北京大学第一医院脊柱外科, 北京 100034
Research advances of three-dimension printing technology in vertebrae and intervertebral disc tissue engineering
YANG Zechuan, LI Chunde, SUN Haolin
Department of Spinal Surgery, Department of Orthopedics, Peking University First Hospital, Beijing 100034, China
全文: PDF(964 KB)  
摘要: 

三维打印技术具有"由内向外"的堆叠制造特点,与传统支架制造技术比较,该技术具有个性化和高精度的制造优势。采用三维打印技术制造的骨与椎间盘支架,在外形和内部结构上能做到极度仿生和自由构建。三维生物打印技术能够做到支架材料和种子细胞或细胞因子的精确共沉积。但由于目前材料和打印技术的限制,三维生物打印尚处于早期研究阶段,支架打印材料的选择和共打印技术的精确和完善是未来研究发展的方向。利用三维生物打印技术构建个性化和极度仿生的支架有利于骨缺损修复和椎间盘的重建。相信随着三维打印技术的进步和发展,该技术将在骨和椎间盘的重建中做出更大的贡献。

关键词 脊柱椎间盘成像,三维计算机辅助设计组织工程支架(骨科)综述    
Abstract

Three-dimensional (3D) printing technology is characterized by "inside-out" stack manufacturing. Compared with conventional technologies, 3D printing has the advantage of personalization and precision. Therefore, the shape and internal structure of the scaffolds made by 3D printing technology are highly biomimetic. Besides, 3D bioprinting can precisely deposit the biomaterials, seeding cells and cytokines at the same time, which is a breakthrough in printing technique and material science. With the development of 3D printing, it will make great contributions to the reconstruction of vertebrae and intervertebral disc in the future.

Key wordsSpine    Intervertebral disk    Bones    Imaging, three-dimensional    Computer-aided design    Tissue engineering    Braces    Review
收稿日期: 2015-10-12     
CLC:  R68  
通讯作者: 李淳德(1964-),男,学士,主任医师,博士生导师,从事脊柱矢状位失衡、脊柱再生医学的研究;E-mail:lichunde@medmail.com.cn     E-mail: lichunde@medmail.com.cn
作者简介: 杨泽川(1990-),男,博士研究生,住院医师,从事三维打印技术在脊柱外科中的应用研究;E-mail:yangzechuan900618@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨泽川 等. 三维打印技术在骨缺损修复和椎间盘组织工程中的研究进展[J]. 浙江大学学报(医学版), 2016, 45(2): 141-146.
YANG Zechuan, LI Chunde, SUN Haolin. Research advances of three-dimension printing technology in vertebrae and intervertebral disc tissue engineering. Journal of ZheJiang University(Medical Science), 2016, 45(2): 141-146.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2016.03.06      或      http://www.zjujournals.com/xueshu/med/CN/Y2016/V45/I2/141

[1] HORN T J, HARRYSSON O L. Overview of current additive manufacturing technologies and selected applications[J]. Sci Prog, 2012,95(Pt3): 255-282.
[2] PARK S H, GIL E S, CHO N,et al. Intervertebral disk tissue engineering using biphasic silk composite scaffolds[J]. Tissue Eng Part A, 2012,18(5-6): 447-458.
[3] CHOY A T, CHAN B P. A structurally and functionally biomimetic biphasic scaffold for intervertebral disc tissue engineering[J].PLoS One, 2015,10(6): e0131827.
[4] XU B, XU H, WU Y, et al. Intervertebral disc tissue engineering with natural extracellular matrix-derived biphasic composite scaffolds[J].PLoS One, 2015,10(4): e0124774.
[5] VELASCO M A, NARVÁEZ-TOVAR C A, GARZÓN-ALVARADO D A. Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering[J]. Biomed Res Int, 2015,2015: 729076.
[6] DERBY B. Bioprinting: inkjet printing proteins and hybrid cell-containing materials and structures[J]. J Mater Chem, 2008, 18(47): 5717-5721.
[7] BIASE M D, SAUNDERS R E, TIRELLIA N, et al. Inkjet printing and cell seeding thermoreversible photocurable gel structures[J].Soft Matter, 2011,7(6): 2639-2646.
[8] FERMEIRO J B L, CALADO M R A, CORREIA I J S. State of the art and challenges in bioprinting technologies, contribution of the 3D bioprinting in Tissue Engineering[J]. Bioengineering, 2015,2015:1-6.
[9] HUTMACHER D W, SCHANTZ J T, LAM C X, et al. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective[J].J Tissue Eng Regen Med , 2007, 1(4): 245-260.
[10] YUNUS BASHA R,SAMPATH KUMAR T S, DOBLE M. Design of biocomposite materials for bone tissue regeneration[J].Mater Sci Eng C Mater Biol Appl, 2015, 57: 452-463.
[11] BOCCACCINI A R, VERRIER S. Bioactive composite materials for bone tissue engineering scaffolds[J]. Expert Rev Med Devices, 2005,2(3): 303-317.
[12] RICCI J L, CLARK E A, MURRIKY A, et al. Three-dimensional printing of bone repair and replacement materials: impact on craniofacial surgery[J].J Craniofac Surg, 2012, 23(1): 304-308.
[13] TARAFDER S, BALLA V K, DAVIES N M, et al. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering[J].J Tissue Eng Regen Med, 2013,7(8): 631-641.
[14] INZANA J A, OLVERA D, FULLER S M, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration[J].Biomaterials, 2014,35(13): 4026-4034.
[15] XU N, WEI F, LIU X, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with ewing sarcoma[J].Spine (Phila Pa 1976), 2016, 41(1): E50-E54.
[16] MOHAMMADSHAHI M H, NIKOLAOU V S, GIANNITSIOS D, et al. The effect of angular mismatch between vertebral endplate and vertebral body replacement endplate on implant subsidence[J].J Spinal Disord Tech, 2013, 26(5): 268-273.
[17] XUE W, KRISHNA B V, BANDYOPADHYAY A, et al. Processing and biocompatibility evaluation of laser processed porous titanium[J].Acta Biomater, 2007,3(6): 1007-1018.
[18] KRUYT M, DE BRUIJN J, ROUWKEMA J, et al. Analysis of the dynamics of bone formation, effect of cell seeding density, and potential of allogeneic cells in cell-based bone tissue engineering in goats[J].Tissue Eng Part A, 2008,14(6): 1081-1088.
[19] KONOPNICKI S, SHARAF B, RESNICK C, et al. Tissue-engineered bone with 3-dimensionally printed beta-tricalcium phosphate and polycaprolactone scaffolds and early implantation: an in vivo pilot study in a porcine mandible model[J]. J Oral Maxillofac Surg, 2015,73(5): 1016.e1-1016.e11.
[20] PIARD C M, CHEN Y, FISHER J P. Cell-laden 3D printed scaffolds for bone tissue engineering[J].Clin Rev Bone Miner Metabol, 2015,13(4): 245-255.
[21] ZHU M, LI K, ZHU Y, et al. 3D-printed hierarchical scaffold for localized isoniazid/rifampin drug delivery and osteoarticular tuberculosis therapy[J].Acta Biomater, 2015,16: 145-155.
[22] MARTÍNEZ-VÁZQUEZ F J, CABAÑAS M V, PARIS J L, et al. Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration[J].Acta Biomater, 2015, 15: 200-209.
[23] MIZUNO H, ROY A K, VACANTI C A, et al. Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement[J].Spine (Phila Pa 1976), 2004,29(12): 1290-1298.
[24] MIZUNO H, ROY A K, ZAPOROJAN V, et al. Biomechanical and biochemical characterization of composite tissue-engineered intervertebral discs[J].Biomaterials, 2006, 27(3): 362-370.
[25] NERURKAR N L, SEN S, HUANG A H, et al. Engineered disc-like angle-ply structures for intervertebral disc replacement[J].Spine (Phila Pa 1976), 2010, 35(8): 867-873.
[26] PICKETT G E, SEKHON LH, SEARS W R, et al. Complications with cervical arthroplasty[J].J Neurosurg Spine, 2006,4(2): 98-105.
[27] HALLAB N, LINK H D, MCAFEE P C. Biomaterial optimization in total disc arthroplasty[J].Spine (Phila Pa 1976), 2003,28(20): S139-S152.
[28] VAN UDEN S, SILVA-CORREIA J, CORRELO V M, et al. Custom-tailored tissue engineered polycaprolactone scaffolds for total disc replacement[J].Biofabrication, 2015,7(1): 015008.
[29] WHATLEY B R, KUO J, SHUAI C, et al. Fabrication of a biomimetic elastic intervertebral disk scaffold using additive manufacturing[J]. Biofabrication, 2011,3(1): 015004.
[30] SHIM J H, LEE J S, KIM J Y, et al. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system[J]. J Micromech Microeng, 2012,22(8): 085014.
[31] BOWLES R D, GEBHARD H H, DYKE J P, et al. Image-based tissue engineering of a total intervertebral disc implant for restoration of function to the rat lumbar spine[J].NMR Biomed, 2012,25(3): 443-451.
[32] BOWLES R D, WILLIAMS R M, ZIPFEL W R, et al. Self-assembly of aligned tissue-engineered annulus fibrosus and intervertebral disc composite via collagen gel contraction[J].Tissue Eng Part A, 2010,16(4): 1339-1348.
[33] BOWLES R D, GEBHARD H H, HÄRTL R, et al. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine[J].Proc Natl Acad Sci U S A, 2011,108(32): 13106-13111.
[34] RUAN D, HE Q, DING Y, et al. Intervertebral disc transplantation in the treatment of degenerative spine disease: a preliminary study[J]. Lancet, 2007,369(9566): 993-999.

[1] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[2] 李文龙,瞿海斌. 近红外光谱应用于中药质量控制及生产过程监控的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 80-88.
[3] 高思倩,沈咏梅,耿福能,李艳华,高建青. 糖尿病溃疡动物模型的建立及相关治疗研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[4] 王颖,汪仪,陈忠. 中枢胆碱能系统与癫痫关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 15-21.
[5] 高思倩,沈咏梅,耿福能,李艳华,高建青. 颞叶癫痫与海马成体神经再生[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[6] 高秋明 等. Ⅰ期植骨联合非接触钢板技术治疗股骨创伤后感染性骨缺损八例[J]. 浙江大学学报(医学版), 2016, 45(6): 631-635.
[7] 李统宇 等. 杜氏肌营养不良疾病模型及基因治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 648-654.
[8] 封盛 等. 糖皮质激素受体信号通路在膀胱癌治疗中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 655-660.
[9] 周延峰 等. 1.8 mT不同频率正弦电磁场对青年大鼠骨生物力学性能的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 561-567.
[10] 方清清 等. 低频脉冲电磁场促进成骨细胞分化的基因调节和非基因调节探究[J]. 浙江大学学报(医学版), 2016, 45(6): 568-574.
[11] 杨晓红 等. 微RNA-705对MC3T3-E1细胞成骨分化能力的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 575-580.
[12] 屈涛 等. 丹参素对去势大鼠骨质量的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 587-591.
[13] 高玉海 等. 淫羊藿总黄酮胶囊对生长期大鼠骨密度和骨形态计量学的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 581-586.
[14] 李文波 等. 手术和非手术治疗老年人肱骨近端三、四部分骨折疗效的meta分析[J]. 浙江大学学报(医学版), 2016, 45(6): 641-647.
[15] 刘军 等. 机体炎症因子和氧化应激标志物介导姜黄素抑制骨性关节炎的作用机制[J]. 浙江大学学报(医学版), 2016, 45(5): 461-468.