Please wait a minute...
浙江大学学报(医学版)  2016, Vol. 45 Issue (2): 132-140    DOI: 10.3785/j.issn.1008-9292.2016.03.05
运动系统再生医学专题     
椎间盘纤维环组织工程研究进展
周平辉1, 过倩萍2, 凌峰1, 钱忠来1, 李斌1,2
1. 苏州大学附属第一医院骨科, 江苏 苏州 215006;
2. 苏州大学骨科研究所, 江苏 苏州 215007
Progress and challenges in tissue engineering of intervertebral disc annulus fibrosus
ZHOU Pinghui1, GUO Qianping2, LING Feng1, QIAN Zhonglai1, LI Bin1,2
1. Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China;
2. Orthopedic Institute, Soochow University, Suzhou 215007, China
全文: PDF(997 KB)  
摘要: 

椎间盘退行性疾病是引起下腰痛的主要病因,严重影响患者的生活质量。纤维环损伤能导致椎间盘严重退变。然而,由于纤维环组织本身在细胞、生物化学和生物力学方面的异质性,纤维环的修复和再生治疗仍面临挑战。近年来,随着组织工程学的发展,利用组织工程化的纤维环为治疗退变椎间盘提供了新的途径。本文从组织工程的主要要素,即细胞、支架、生长因子和力学刺激等方面简要介绍纤维环组织工程业已取得的成果和面临的挑战。进一步研究需结合多学科手段,选取高效的细胞来源、制备多重仿生的支架、利用合适的生长因子和力学刺激等,充分模拟实际纤维环组织及其微环境,从而有效地促进纤维环组织再生,最终实现纤维环组织工程应用于椎间盘退行性疾病的临床治疗。

关键词 椎间盘移位/治疗细胞移植支架腰椎/病理学转化生长因子β1/代谢椎间盘/病理学纤维化组织工程综述    
Abstract

Degenerative disc disease (DDD) is a leading cause of low back pain, which severely affects the quality of life and incurs significant medical cost. Annulus fibrosus(AF) injuries can lead to substantial deterioration of intervertebral disc degeneration. However, the AF repair/regeneration remains a challenge due to the intrinsic cellular, biochemical and biomechanical heterogeneity of AF tissue. Tissue engineering would be a promising approach for AF regeneration. This article aims to provide a brief overview of the fundamental aspects of AF, the current achievements and future challenges of AF tissue engineering. A multidisciplinary approach is proposed for future studies to fully mimic the native AF tissue and its microenvironment, including choosing adequate cell source, preparing scaffolds with hierarchical microstructures, supplementing appropriate growth factors, and enforcing suitable mechanical stimulation. Hopefully, the engineered AF tissues would be effectively used to facilitate the treatment of DDD in the future.

Key wordsIntervertebral disk displacement/therapy    Cell transplantation    Scaffolds    Lumbar vertebrae/pathology    Transforming growth factor beta1/metabolism    Intervertebral disk/pathology    Fibrosis    Tissue engineering    Review
收稿日期: 2015-10-12     
CLC:  R68  
基金资助:

国家自然科学基金(81171479,31530024)

通讯作者: 李斌(1974-),男,博士,特聘教授,博士生导师,从事骨科生物材料与再生医学研究;E-mail:binli@suda.edu.cn     E-mail: binli@suda.edu.cn
作者简介: 周平辉(1983-),男,博士研究生,主治医师,从事脊柱疾病的临床与基础研究;E-mail:37601745@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

周平辉 等. 椎间盘纤维环组织工程研究进展[J]. 浙江大学学报(医学版), 2016, 45(2): 132-140.
ZHOU Pinghui, GUO Qianping, LING Feng, QIAN Zhonglai, LI Bin. Progress and challenges in tissue engineering of intervertebral disc annulus fibrosus. Journal of ZheJiang University(Medical Science), 2016, 45(2): 132-140.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2016.03.05      或      http://www.zjujournals.com/xueshu/med/CN/Y2016/V45/I2/132

[1] FINCH P. Technology insight: imaging of low back pain[J]. Nat Clin Pract Rheumatol, 2006, 2(10):554-561.
[2] HÄKKINEN A, KIVIRANTA I, NEVA M H, et al. Reoperations after first lumbar disc herniation surgery; a special interest on residives during a 5-year follow-up[J]. BMC Musculoskelet Disord, 2007, 8(1):1-6.
[3] HUGHES S P, FREEMONT A J, HUKINS D W, et al. The pathogenesis of degeneration of the intervertebral disc and emerging therapies in the management of back pain[J]. J Bone Joint Surg Br, 2012, 94(10):1298-1304.
[4] SHARIFI S, BULSTRA S K, GRIJPMA D W, et al. Treatment of the degenerated intervertebral disc; closure, repair and regeneration of the annulus fibrosus[J]. J Tissue Eng Regen Med, 2015, 9(10):1120-1132.
[5] SMITH L J, FAZZALARI N L. Regional variations in the density and arrangement of elastic fibres in the anulus fibrosus of the human lumbar disc[J]. J Anat, 2006, 209(3):359-367.
[6] LEWIS N T, HUSSAIN M A, MAO J J. Investigation of nano-mechanical properties of annulus fibrosus using atomic force microscopy[J]. Micron, 2008, 39(7):1008-1019.
[7] IATRIDIS J C. Tissue engineering: function follows form[J]. Nat Mater, 2009, 8(12):923-924.
[8] 单 治, 范顺武, 赵凤东. 腰椎间盘纤维环的生物力学性能研究进展[J]. 中华骨科杂志, 2014, 34(3):330-335. SHAN Zhi, FAN Shunwu, ZHAO Fengdong. Research progress on the biomechanical properties of the lumbar intervertebral disc annulus fibrosus[J]. Chinese Journal of Orthopaedics, 2014, 34(3):330-335. (in Chinese)
[9] WAN Y, FENG G, SHEN F H, et al. Novel biodegradable poly(1, 8-octanediol malate) for annulus fibrosus regeneration[J]. Macromol Biosci, 2007, 7(11):1217-1224.
[10] NERURKAR N L, MAUCK R L, ELLIOTT D M. ISSLS prize winner: integrating theoretical and experimental methods for functional tissue engineering of the annulus fibrosus[J]. Spine(Phila Pa 1976), 2008, 33(25):2691-2701.
[11] BOWLES R D, GEBHARD H H, HARTL R, et al. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine[J]. Proc Natl Acad Sci U S A, 2011, 108(32):13106-13111.
[12] MIZUNO H, ROY A K, VACANTI C A, et al. Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement[J]. Spine(Phila Pa 1976), 2004, 29(12):1290-1297.
[13] WAN Y, FENG G, SHEN F H, et al. Biphasic scaffold for annulus fibrosus tissue regeneration[J]. Biomaterials, 2008, 29(6):643-652.
[14] BHATTACHARJEE M, MIOT S, GORECKA A, et al. Oriented lamellar silk fibrous scaffolds to drive cartilage matrix orientation: towards annulus fibrosus tissue engineering[J]. Acta Biomater, 2012, 8(9):3313-3325.
[15] DRISCOLL T P, NAKASONE R H, SZCZESNY S E, et al. Biaxial mechanics and inter-lamellar shearing of stem-cell seeded electrospun angle-ply laminates for annulus fibrosus tissue engineering[J]. J Orthop Res, 2013, 31(6):864-870.
[16] NERURKAR N L, BAKER B M, SEN S, et al. Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus[J]. Nat Mater, 2009, 8(12):986-992.
[17] GOU S, OXENTENKO S C, ELDRIGE J S, et al. Stem cell therapy for intervertebral disk regeneration[J]. Am J Phys Med Rehabil, 2014, 93(3):122-131.
[18] LIU C, GUO Q, LI J, et al. Identification of rabbit annulus fibrosus-derived stem cells[J]. PLoS One, 2014, 9(9):e108239.
[19] BRUEHLMANN S B, RATTNER J B, MATYAS J R, et al. Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc[J]. J Anat, 2002, 201(2):159-171.
[20] CHOU A I, REZA A T, NICOL S B. Distinct intervertebral disc cell populations adopt similar phenotypes in three-dimensional culture[J]. Tissue Eng Part A, 2008, 14(12):2079-2087.
[21] CHOU A I, BANSAL A, MILLERR G J, et al. The effect of serial monolayer passaging on the collagen expression profile of outer and inner anulus fibrosus cells[J]. Spine(Phila Pa 1976), 2006, 31(17):1875-1881.
[22] LIEBSCHER T, HAEFELI M, WUERTZ K, et al. Age-related variation in cell density of human lumbar intervertebral disc[J]. Spine(Phila Pa 1976), 2011, 36(2):153-159.
[23] PAESOLD G, NERLISH A G, BOOS N. Biological treatment strategies for disc degeneration: potentials and shortcomings[J]. Eur Spine J, 2007, 16(4):447-468.
[24] GRUBER H E, INGRAM J A, NORTON H J, et al. Senescence in cells of the aging and degenerating intervertebral disc: immunolocalization of senescence-associated beta-galactosidase in human and sand rat discs[J]. Spine(Phila Pa 1976), 2007, 32(3):321-327.
[25] POIRAUDEAU S, MONTEIRO I, ANRACT P, et al. Phenotypic characteristics of rabbit intervertebral disc cells. Comparison with cartilage cells from the same animals[J]. Spine(Phila Pa 1976), 1999, 24(9):837-844.
[26] WANG Y, ZHANG J, HUANG X, et al. Preparation of stir cake sorptive extraction based on polymeric ionic liquid for the enrichment of benzimidazole anthelmintics in water, honey and milk samples[J]. Anal Chim Acta, 2014, 840: 33-41.
[27] RAJABI H R, SHAMSIPUR M, POURMORTAZAVI S M. Preparation of a novel potassium ion imprinted polymeric nanoparticles based on dicyclohexyl 18C6 for selective determination of K+ion in different water samples[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(6):3374-3381.
[28] BRITTBERG M, LINDAHL A, NILSSON A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation[J]. N Engl J Med, 1994, 331(14):889-895.
[29] BLUM B, BAR-NUR O, GOLAN-LEV T, et al. The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells[J]. Nat Biotechnol, 2009, 27(3):281-287.
[30] LI J, LIU C, GUO Q, et al. Regional variations in the cellular, biochemical, and biomechanical characteristics of rabbit annulus fibrosus[J]. PLoS One, 2014, 9(3):e91799.
[31] RICHARDSON S M, KALAMEGAM G, PUSHPARRAJ P N, et al. Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration[J]. Methods, 2015, pii: S1046-2023(15)30091-8.
[32] LIANG C, LI H, TAO Y, et al. Responses of human adipose-derived mesenchymal stem cells to chemical microenvironment of the intervertebral disc[J]. J Transl Med, 2012, 10(1):1-10.
[33] YIM R L, LEE J T, BOW C H, et al. A systematic review of the safety and efficacy of mesenchymal stem cells for disc degeneration: insights and future directions for regenerative therapeutics[J]. Stem Cells Dev, 2014, 23(21):2553-2567.
[34] ALEXANIAN A R, KWORK W M, PRAVDIC D, et al. Survival of neurally induced mesenchymal cells may determine degree of motor recovery in injured spinal cord rats[J]. Restor Neurol Neurosci, 2010, 28(6):761-767.
[35] HENRIKSSON H, THORNEMO M, KARLSSON C, et al. Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: a study in four species[J]. Spine(Phila Pa 1976), 2009, 34(21):2278-2287.
[36] WISMER N, GRAD S, FORTUNATO G, et al. Biodegradable electrospun scaffolds for annulus fibrosus tissue engineering: effect of scaffold structure and composition on annulus fibrosus cells in vitro[J]. Tissue Eng Part A, 2014, 20(3-4):672-682.
[37] GUILLAUME O, DALY A, LENNON K, et al. Shape-memory porous alginate scaffolds for regeneration of the annulus fibrosus: effect of TGF-beta3 supplementation and oxygen culture conditions[J]. Acta Biomaterialia, 2014, 10(5):1985-1995.
[38] HELEN W, GOUGH J E. Cell viability, proliferation and extracellular matrix production of human annulus fibrosus cells cultured within PDLLA/Bioglass composite foam scaffolds in vitro[J]. Acta Biomater, 2008, 4(2):230-243.
[39] CHAN L K Y, LEUNG V Y L, TAM V, et al. Decellularized bovine intervertebral disc as a natural scaffold for xenogenic cell studies[J]. Acta Biomater, 2013, 9(2):5262-5272.
[40] CHANG G, KIM H J, VUNJAK-NOVAKOVIC G, et al. Enhancing annulus fibrosus tissue formation in porous silk scaffolds[J]. J Biomed Mater Res A, 2010, 92(1):43-51.
[41] BOWLES R D, WILLIAMS R M, ZIPFEL W R, et al. Self-assembly of aligned tissue-engineered annulus fibrosus and intervertebral disc composite via collagen gel contraction[J]. Tissue Eng Part A, 2010, 16(4):1339-1348.
[42] SCHEK R M, MICHALEK A J, IATRIDIS J C. Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair[J]. Eur Cell Mater, 2011, 21(1):373-383.
[43] KOEPSELL L, REMUND T, BAO J, et al. Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers[J]. J Biomed Mater Res A, 2011, 99(4):564-575.
[44] MARTIN J T, MILBY A H, CHIARO J A, et al. Translation of an engineered nanofibrous disc-like angle-ply structure for intervertebral disc replacement in a small animal model[J]. Acta Biomater, 2014, 10(6):2473-2481.
[45] TURNER K G, AHMED N, SANTERRE J P, et al. Modulation of annulus fibrosus cell alignment and function on oriented nanofibrous polyurethane scaffolds under tension[J]. Spine J, 2014, 14(3):424-434.
[46] SHARIFI S, VAN KOOTEN T G, KRANENBURG H J, et al. An annulus fibrosus closure device based on a biodegradable shape-memory polymer network[J]. Biomaterials, 2013, 34(33):8105-8113.
[47] PIRVU T, BLANQUER S B, BENNEKER L M, et al. A combined biomaterial and cellular approach for annulus fibrosus rupture repair[J]. Biomaterials, 2015, 42: 11-19.
[48] SHAO X, HUNTER C J. Developing an alginate/chitosan hybrid fiber scaffold for annulus fibrosus cells[J]. J Biomed Mater Res A, 2007, 82(3):701-710.
[49] GRUBER H E, HOELSCHER G, INGRAM J A, et al. Culture of human anulus fibrosus cells on polyamide nanofibers: extracellular matrix production[J]. Spine(Phila Pa 1976), 2009(1), 34(1):4-9.
[50] YU J, SCHOLLUM M L, WADE K R, et al. ISSLS Prize Winner: a detailed examination of the elastic network leads to a new understanding of annulus fibrosus organization[J]. Spine(Phila Pa 1976), 2015, 40(15):1149-1157.
[51] PARK S H, GIL E S, CHO H, et al. Intervertebral disk tissue engineering using biphasic silk composite scaffolds[J]. Tissue Eng Part A, 2012, 18(5-6):447-458.
[52] NERURKAR N L, ELLIOTT D M, MAUCK R L. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering[J]. J Orthop Res, 2007, 25(8):1018-1028.
[53] LIU C, ZHU C, LI J, et al. The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells[J]. Bone Res, 2015, 3(2):15012.
[54] BAKER B M, HANDORF A M, IONESCU L C, et al. New directions in nanofibrous scaffolds for soft tissue engineering and regeneration[J]. Expert Rev Med Devices, 2009, 6(5):515-532.
[55] NERURKAR N L, MAUCK R L, ELLIOTT D M. Modeling interlamellar interactions in angle-ply biologic laminates for annulus fibrosus tissue engineering[J]. Biomech Model Mechanobiol, 2011, 10(6):973-984.
[56] NERURKAR N L, SEN S, HUANG A H, et al. Engineered disc-like angle-ply structures for intervertebral disc replacement[J]. Spine(Phila Pa 1976), 2010, 35(8):867-873.
[57] ENGLER A J, SEN S, SWEENEY H L, et al. Matrix elasticity directs stem cell lineage specification[J]. Cell, 2006, 126(4):677-689.
[58] PARK J S, CHU J S, TSOU A D, et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta[J]. Biomaterials, 2011, 32(16):3921-3930.
[59] GUO Q, LIU C, LI J, et al. Gene expression modulation in TGF-beta3-mediated rabbit bone marrow stem cells using electrospun scaffolds of various stiffness[J]. J Cell Mol Med, 2015, 19(7):1582-1592.
[60] HAYES A J, RALPHS J R. The response of foetal annulus fibrosus cells to growth factors: modulation of matrix synthesis by TGF-beta1 and IGF-1[J]. Histochem Cell Biol, 2011, 136(2):163-175.
[61] VADALÀ G, MOZETIC P, RAINER A, et al. Bioactive electrospun scaffold for annulus fibrosus repair and regeneration[J]. Eur Spine J, 2012, 21(Suppl 1):S20-S26.
[62] CHO H, LEE S, PARK S H, et al. Synergistic effect of combined growth factors in porcine intervertebral disc degeneration[J]. Connect Tissue Res, 2013, 54(3):181-186.
[63] MOON S H, NISHIDA K, GILBERTSON L G, et al. Biologic response of human intervertebral disc cells to gene therapy cocktail[J]. Spine(Phila Pa 1976), 2008, 33(17):1850-1855.
[64] PATTISON S T, MELROSE J, GHOSH P, et al. Regulation of gelatinase-A(MMP-2) production by ovine intervertebral disc nucleus pulposus cells grown in alginate bead culture by Transforming Growth Factor-beta(1)and insulin like growth factor-I[J]. Cell Biol Int, 2001, 25(7):679-689.
[65] WANG Z, HUTTON W C, YOON S T. Bone morphogenetic protein-7 antagonizes tumor necrosis factor-alpha-induced activation of nuclear factor kappaB and up-regulation of the ADAMTS, leading to decreased degradation of disc matrix macromolecules aggrecan and collagenⅡ[J]. Spine J, 2014, 14(3):505-512.
[66] WANG S Z, RUI Y F, TAN Q, et al. Enhancing intervertebral disc repair and regeneration through biology: platelet-rich plasma as an alternative strategy[J]. Arthritis Res Ther, 2013, 15(5):220.
[67] KARAMICHOS D, SKINNER J, BROWN R, et al. Matrix stiffness and serum concentration effects matrix remodelling and ECM regulatory genes of human bone marrow stem cells[J]. J Tissue Eng Regen Med, 2008, 2(2-3):97-105.
[68] LI B, LIN M, TANG Y, et al. A novel functional assessment of the differentiation of micropatterned muscle cells[J]. J Biomech, 2008, 41(16):3349-3353.
[69] WINTER A, BREIT S, PARSCH D, et al. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells[J]. Arthritis Rheum, 2003, 48(2):418-429.
[70] SIEMINSKI A L, HEBBEL R P, GOOCH K J. The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro[J]. Exp Cell Res, 2004, 297(2):574-584.
[71] NESTI L J, Li W J, SHANTI R M, et al. Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold(HANFS) amalgam[J]. Tissue Eng Part A, 2008, 14(9):1527-1537.
[72] KLUBA T, NIEMEYER T, GAISSMAIER C, et al. Human anulus fibrosis and nucleus pulposus cells of the intervertebral disc: effect of degeneration and culture system on cell phenotype[J]. Spine(Phila Pa 1976), 2005, 30(24):2743-2748.
[73] YOSHIMURA H, MUNETA T, NIMURA A, et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle[J]. Cell Tissue Res, 2007, 327(3):449-462.
[74] MATSUDA C, TAKAGI M, HATTORI T, et al. Differentiation of human bone marrow mesenchymal stem cells to chondrocytes for construction of three-dimensional cartilage tissue[J]. Cytotechnology, 2005, 47(1-3):11-17.
[75] DEZAWA M. Systematic neuronal and muscle induction systems in bone marrow stromal cells: the potential for tissue reconstruction in neurodegenerative and muscle degenerative diseases[J]. Med Mol Morphol, 2008, 41(1):14-19.
[76] PARK K, JU Y M, SON J S, et al. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts[J]. J Biomater Sci Polym Ed, 2007, 18(4):369-382.
[77] GEIGER B, BERSHADSKY A. Exploring the neighborhood: adhesion-coupled cell mechanosensors[J]. Cell, 2002, 110(2):139-142.
[78] VO N V, HARTMAN R A, YURUBE T, et al. Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration[J]. Spine J, 2013, 13(3):331-341.
[79] KUNSMANN L, RUTER C, BAUWENS A, et al. Virulence from vesicles: novel mechanisms of host cell injury by Escherichia coli O104: H4 outbreak strain[J]. Sci Rep, 2015, 5: 13252.
[80] SEE E Y, TOH S L, GOH J C. Effects of radial compression on a novel simulated intervertebral disc-like assembly using bone marrow-derived mesenchymal stem cell cell-sheets for annulus fibrosus regeneration[J]. Spine(Phila Pa 1976), 2011, 36(21):1744-1751.
[81] GILBERT H T, HOYLAND J A, FREEMONT A J, et al. The involvement of interleukin-1 and interleukin-4 in the response of human annulus fibrosus cells to cyclic tensile strain: an altered mechanotransduction pathway with degeneration[J]. Arthritis Res Ther, 2011, 13(1):R8.
[82] GILBERT H T, HOYLAND J A, MILLWARD-SADLER S J. The response of human anulus fibrosus cells to cyclic tensile strain is frequency-dependent and altered with disc degeneration[J]. Arthritis Rheum, 2010, 62(11):3385-3394.
[83] CHIK T K, CHOOI W H, LI Y Y, et al. Bioengineering a multicomponent spinal motion segment construct a 3D model for complex tissue engineering[J]. Adv Healthc Mater, 2015, 4(1):99-112.

[1] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[2] 李文龙,瞿海斌. 近红外光谱应用于中药质量控制及生产过程监控的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 80-88.
[3] 高思倩,沈咏梅,耿福能,李艳华,高建青. 糖尿病溃疡动物模型的建立及相关治疗研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[4] 王颖,汪仪,陈忠. 中枢胆碱能系统与癫痫关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 15-21.
[5] 高思倩,沈咏梅,耿福能,李艳华,高建青. 颞叶癫痫与海马成体神经再生[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[6] 陈刚,张鼎,应亚草,王志峰,陶伟,朱皓,张景峰,彭志毅. 国产载药微球经动脉化疗栓塞治疗不可切除原发性肝癌的临床研究[J]. 浙江大学学报(医学版), 2017, 46(1): 44-51.
[7] 李统宇 等. 杜氏肌营养不良疾病模型及基因治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 648-654.
[8] 封盛 等. 糖皮质激素受体信号通路在膀胱癌治疗中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 655-660.
[9] 洪梦琪 等. 腹膜透析液通过上调葡萄糖转运体促进腹膜纤维化[J]. 浙江大学学报(医学版), 2016, 45(6): 598-606.
[10] 吴志华 等. 异基因造血干细胞移植受者T细胞受体β链CDR3谱型表达与巨细胞病毒激活[J]. 浙江大学学报(医学版), 2016, 45(5): 515-521.
[11] 李亭亭 等. 中性粒细胞在哮喘中作用的研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 544-549.
[12] 王雪 等. TANK结合激酶1在抗病毒免疫应答中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 550-557.
[13] 曹鹏 等. 双氢青蒿素抗肿瘤分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 501-507.
[14] 何斌 等. 贝伐珠单克隆抗体在难治性子宫颈癌中的应用进展[J]. 浙江大学学报(医学版), 2016, 45(4): 395-402.
[15] 历雪莹 等. DNA甲基化及其靶向治疗在急性髓系白血病中的研究进展[J]. 浙江大学学报(医学版), 2016, 45(4): 387-394.