[1] FINCH P. Technology insight: imaging of low back pain[J]. Nat Clin Pract Rheumatol, 2006, 2(10):554-561.
[2] HÄKKINEN A, KIVIRANTA I, NEVA M H, et al. Reoperations after first lumbar disc herniation surgery; a special interest on residives during a 5-year follow-up[J]. BMC Musculoskelet Disord, 2007, 8(1):1-6.
[3] HUGHES S P, FREEMONT A J, HUKINS D W, et al. The pathogenesis of degeneration of the intervertebral disc and emerging therapies in the management of back pain[J]. J Bone Joint Surg Br, 2012, 94(10):1298-1304.
[4] SHARIFI S, BULSTRA S K, GRIJPMA D W, et al. Treatment of the degenerated intervertebral disc; closure, repair and regeneration of the annulus fibrosus[J]. J Tissue Eng Regen Med, 2015, 9(10):1120-1132.
[5] SMITH L J, FAZZALARI N L. Regional variations in the density and arrangement of elastic fibres in the anulus fibrosus of the human lumbar disc[J]. J Anat, 2006, 209(3):359-367.
[6] LEWIS N T, HUSSAIN M A, MAO J J. Investigation of nano-mechanical properties of annulus fibrosus using atomic force microscopy[J]. Micron, 2008, 39(7):1008-1019.
[7] IATRIDIS J C. Tissue engineering: function follows form[J]. Nat Mater, 2009, 8(12):923-924.
[8] 单 治, 范顺武, 赵凤东. 腰椎间盘纤维环的生物力学性能研究进展[J]. 中华骨科杂志, 2014, 34(3):330-335. SHAN Zhi, FAN Shunwu, ZHAO Fengdong. Research progress on the biomechanical properties of the lumbar intervertebral disc annulus fibrosus[J]. Chinese Journal of Orthopaedics, 2014, 34(3):330-335. (in Chinese)
[9] WAN Y, FENG G, SHEN F H, et al. Novel biodegradable poly(1, 8-octanediol malate) for annulus fibrosus regeneration[J]. Macromol Biosci, 2007, 7(11):1217-1224.
[10] NERURKAR N L, MAUCK R L, ELLIOTT D M. ISSLS prize winner: integrating theoretical and experimental methods for functional tissue engineering of the annulus fibrosus[J]. Spine(Phila Pa 1976), 2008, 33(25):2691-2701.
[11] BOWLES R D, GEBHARD H H, HARTL R, et al. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine[J]. Proc Natl Acad Sci U S A, 2011, 108(32):13106-13111.
[12] MIZUNO H, ROY A K, VACANTI C A, et al. Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement[J]. Spine(Phila Pa 1976), 2004, 29(12):1290-1297.
[13] WAN Y, FENG G, SHEN F H, et al. Biphasic scaffold for annulus fibrosus tissue regeneration[J]. Biomaterials, 2008, 29(6):643-652.
[14] BHATTACHARJEE M, MIOT S, GORECKA A, et al. Oriented lamellar silk fibrous scaffolds to drive cartilage matrix orientation: towards annulus fibrosus tissue engineering[J]. Acta Biomater, 2012, 8(9):3313-3325.
[15] DRISCOLL T P, NAKASONE R H, SZCZESNY S E, et al. Biaxial mechanics and inter-lamellar shearing of stem-cell seeded electrospun angle-ply laminates for annulus fibrosus tissue engineering[J]. J Orthop Res, 2013, 31(6):864-870.
[16] NERURKAR N L, BAKER B M, SEN S, et al. Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus[J]. Nat Mater, 2009, 8(12):986-992.
[17] GOU S, OXENTENKO S C, ELDRIGE J S, et al. Stem cell therapy for intervertebral disk regeneration[J]. Am J Phys Med Rehabil, 2014, 93(3):122-131.
[18] LIU C, GUO Q, LI J, et al. Identification of rabbit annulus fibrosus-derived stem cells[J]. PLoS One, 2014, 9(9):e108239.
[19] BRUEHLMANN S B, RATTNER J B, MATYAS J R, et al. Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc[J]. J Anat, 2002, 201(2):159-171.
[20] CHOU A I, REZA A T, NICOL S B. Distinct intervertebral disc cell populations adopt similar phenotypes in three-dimensional culture[J]. Tissue Eng Part A, 2008, 14(12):2079-2087.
[21] CHOU A I, BANSAL A, MILLERR G J, et al. The effect of serial monolayer passaging on the collagen expression profile of outer and inner anulus fibrosus cells[J]. Spine(Phila Pa 1976), 2006, 31(17):1875-1881.
[22] LIEBSCHER T, HAEFELI M, WUERTZ K, et al. Age-related variation in cell density of human lumbar intervertebral disc[J]. Spine(Phila Pa 1976), 2011, 36(2):153-159.
[23] PAESOLD G, NERLISH A G, BOOS N. Biological treatment strategies for disc degeneration: potentials and shortcomings[J]. Eur Spine J, 2007, 16(4):447-468.
[24] GRUBER H E, INGRAM J A, NORTON H J, et al. Senescence in cells of the aging and degenerating intervertebral disc: immunolocalization of senescence-associated beta-galactosidase in human and sand rat discs[J]. Spine(Phila Pa 1976), 2007, 32(3):321-327.
[25] POIRAUDEAU S, MONTEIRO I, ANRACT P, et al. Phenotypic characteristics of rabbit intervertebral disc cells. Comparison with cartilage cells from the same animals[J]. Spine(Phila Pa 1976), 1999, 24(9):837-844.
[26] WANG Y, ZHANG J, HUANG X, et al. Preparation of stir cake sorptive extraction based on polymeric ionic liquid for the enrichment of benzimidazole anthelmintics in water, honey and milk samples[J]. Anal Chim Acta, 2014, 840: 33-41.
[27] RAJABI H R, SHAMSIPUR M, POURMORTAZAVI S M. Preparation of a novel potassium ion imprinted polymeric nanoparticles based on dicyclohexyl 18C6 for selective determination of K+ion in different water samples[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(6):3374-3381.
[28] BRITTBERG M, LINDAHL A, NILSSON A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation[J]. N Engl J Med, 1994, 331(14):889-895.
[29] BLUM B, BAR-NUR O, GOLAN-LEV T, et al. The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells[J]. Nat Biotechnol, 2009, 27(3):281-287.
[30] LI J, LIU C, GUO Q, et al. Regional variations in the cellular, biochemical, and biomechanical characteristics of rabbit annulus fibrosus[J]. PLoS One, 2014, 9(3):e91799.
[31] RICHARDSON S M, KALAMEGAM G, PUSHPARRAJ P N, et al. Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration[J]. Methods, 2015, pii: S1046-2023(15)30091-8.
[32] LIANG C, LI H, TAO Y, et al. Responses of human adipose-derived mesenchymal stem cells to chemical microenvironment of the intervertebral disc[J]. J Transl Med, 2012, 10(1):1-10.
[33] YIM R L, LEE J T, BOW C H, et al. A systematic review of the safety and efficacy of mesenchymal stem cells for disc degeneration: insights and future directions for regenerative therapeutics[J]. Stem Cells Dev, 2014, 23(21):2553-2567.
[34] ALEXANIAN A R, KWORK W M, PRAVDIC D, et al. Survival of neurally induced mesenchymal cells may determine degree of motor recovery in injured spinal cord rats[J]. Restor Neurol Neurosci, 2010, 28(6):761-767.
[35] HENRIKSSON H, THORNEMO M, KARLSSON C, et al. Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: a study in four species[J]. Spine(Phila Pa 1976), 2009, 34(21):2278-2287.
[36] WISMER N, GRAD S, FORTUNATO G, et al. Biodegradable electrospun scaffolds for annulus fibrosus tissue engineering: effect of scaffold structure and composition on annulus fibrosus cells in vitro[J]. Tissue Eng Part A, 2014, 20(3-4):672-682.
[37] GUILLAUME O, DALY A, LENNON K, et al. Shape-memory porous alginate scaffolds for regeneration of the annulus fibrosus: effect of TGF-beta3 supplementation and oxygen culture conditions[J]. Acta Biomaterialia, 2014, 10(5):1985-1995.
[38] HELEN W, GOUGH J E. Cell viability, proliferation and extracellular matrix production of human annulus fibrosus cells cultured within PDLLA/Bioglass composite foam scaffolds in vitro[J]. Acta Biomater, 2008, 4(2):230-243.
[39] CHAN L K Y, LEUNG V Y L, TAM V, et al. Decellularized bovine intervertebral disc as a natural scaffold for xenogenic cell studies[J]. Acta Biomater, 2013, 9(2):5262-5272.
[40] CHANG G, KIM H J, VUNJAK-NOVAKOVIC G, et al. Enhancing annulus fibrosus tissue formation in porous silk scaffolds[J]. J Biomed Mater Res A, 2010, 92(1):43-51.
[41] BOWLES R D, WILLIAMS R M, ZIPFEL W R, et al. Self-assembly of aligned tissue-engineered annulus fibrosus and intervertebral disc composite via collagen gel contraction[J]. Tissue Eng Part A, 2010, 16(4):1339-1348.
[42] SCHEK R M, MICHALEK A J, IATRIDIS J C. Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair[J]. Eur Cell Mater, 2011, 21(1):373-383.
[43] KOEPSELL L, REMUND T, BAO J, et al. Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers[J]. J Biomed Mater Res A, 2011, 99(4):564-575.
[44] MARTIN J T, MILBY A H, CHIARO J A, et al. Translation of an engineered nanofibrous disc-like angle-ply structure for intervertebral disc replacement in a small animal model[J]. Acta Biomater, 2014, 10(6):2473-2481.
[45] TURNER K G, AHMED N, SANTERRE J P, et al. Modulation of annulus fibrosus cell alignment and function on oriented nanofibrous polyurethane scaffolds under tension[J]. Spine J, 2014, 14(3):424-434.
[46] SHARIFI S, VAN KOOTEN T G, KRANENBURG H J, et al. An annulus fibrosus closure device based on a biodegradable shape-memory polymer network[J]. Biomaterials, 2013, 34(33):8105-8113.
[47] PIRVU T, BLANQUER S B, BENNEKER L M, et al. A combined biomaterial and cellular approach for annulus fibrosus rupture repair[J]. Biomaterials, 2015, 42: 11-19.
[48] SHAO X, HUNTER C J. Developing an alginate/chitosan hybrid fiber scaffold for annulus fibrosus cells[J]. J Biomed Mater Res A, 2007, 82(3):701-710.
[49] GRUBER H E, HOELSCHER G, INGRAM J A, et al. Culture of human anulus fibrosus cells on polyamide nanofibers: extracellular matrix production[J]. Spine(Phila Pa 1976), 2009(1), 34(1):4-9.
[50] YU J, SCHOLLUM M L, WADE K R, et al. ISSLS Prize Winner: a detailed examination of the elastic network leads to a new understanding of annulus fibrosus organization[J]. Spine(Phila Pa 1976), 2015, 40(15):1149-1157.
[51] PARK S H, GIL E S, CHO H, et al. Intervertebral disk tissue engineering using biphasic silk composite scaffolds[J]. Tissue Eng Part A, 2012, 18(5-6):447-458.
[52] NERURKAR N L, ELLIOTT D M, MAUCK R L. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering[J]. J Orthop Res, 2007, 25(8):1018-1028.
[53] LIU C, ZHU C, LI J, et al. The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells[J]. Bone Res, 2015, 3(2):15012.
[54] BAKER B M, HANDORF A M, IONESCU L C, et al. New directions in nanofibrous scaffolds for soft tissue engineering and regeneration[J]. Expert Rev Med Devices, 2009, 6(5):515-532.
[55] NERURKAR N L, MAUCK R L, ELLIOTT D M. Modeling interlamellar interactions in angle-ply biologic laminates for annulus fibrosus tissue engineering[J]. Biomech Model Mechanobiol, 2011, 10(6):973-984.
[56] NERURKAR N L, SEN S, HUANG A H, et al. Engineered disc-like angle-ply structures for intervertebral disc replacement[J]. Spine(Phila Pa 1976), 2010, 35(8):867-873.
[57] ENGLER A J, SEN S, SWEENEY H L, et al. Matrix elasticity directs stem cell lineage specification[J]. Cell, 2006, 126(4):677-689.
[58] PARK J S, CHU J S, TSOU A D, et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta[J]. Biomaterials, 2011, 32(16):3921-3930.
[59] GUO Q, LIU C, LI J, et al. Gene expression modulation in TGF-beta3-mediated rabbit bone marrow stem cells using electrospun scaffolds of various stiffness[J]. J Cell Mol Med, 2015, 19(7):1582-1592.
[60] HAYES A J, RALPHS J R. The response of foetal annulus fibrosus cells to growth factors: modulation of matrix synthesis by TGF-beta1 and IGF-1[J]. Histochem Cell Biol, 2011, 136(2):163-175.
[61] VADALÀ G, MOZETIC P, RAINER A, et al. Bioactive electrospun scaffold for annulus fibrosus repair and regeneration[J]. Eur Spine J, 2012, 21(Suppl 1):S20-S26.
[62] CHO H, LEE S, PARK S H, et al. Synergistic effect of combined growth factors in porcine intervertebral disc degeneration[J]. Connect Tissue Res, 2013, 54(3):181-186.
[63] MOON S H, NISHIDA K, GILBERTSON L G, et al. Biologic response of human intervertebral disc cells to gene therapy cocktail[J]. Spine(Phila Pa 1976), 2008, 33(17):1850-1855.
[64] PATTISON S T, MELROSE J, GHOSH P, et al. Regulation of gelatinase-A(MMP-2) production by ovine intervertebral disc nucleus pulposus cells grown in alginate bead culture by Transforming Growth Factor-beta(1)and insulin like growth factor-I[J]. Cell Biol Int, 2001, 25(7):679-689.
[65] WANG Z, HUTTON W C, YOON S T. Bone morphogenetic protein-7 antagonizes tumor necrosis factor-alpha-induced activation of nuclear factor kappaB and up-regulation of the ADAMTS, leading to decreased degradation of disc matrix macromolecules aggrecan and collagenⅡ[J]. Spine J, 2014, 14(3):505-512.
[66] WANG S Z, RUI Y F, TAN Q, et al. Enhancing intervertebral disc repair and regeneration through biology: platelet-rich plasma as an alternative strategy[J]. Arthritis Res Ther, 2013, 15(5):220.
[67] KARAMICHOS D, SKINNER J, BROWN R, et al. Matrix stiffness and serum concentration effects matrix remodelling and ECM regulatory genes of human bone marrow stem cells[J]. J Tissue Eng Regen Med, 2008, 2(2-3):97-105.
[68] LI B, LIN M, TANG Y, et al. A novel functional assessment of the differentiation of micropatterned muscle cells[J]. J Biomech, 2008, 41(16):3349-3353.
[69] WINTER A, BREIT S, PARSCH D, et al. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells[J]. Arthritis Rheum, 2003, 48(2):418-429.
[70] SIEMINSKI A L, HEBBEL R P, GOOCH K J. The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro[J]. Exp Cell Res, 2004, 297(2):574-584.
[71] NESTI L J, Li W J, SHANTI R M, et al. Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold(HANFS) amalgam[J]. Tissue Eng Part A, 2008, 14(9):1527-1537.
[72] KLUBA T, NIEMEYER T, GAISSMAIER C, et al. Human anulus fibrosis and nucleus pulposus cells of the intervertebral disc: effect of degeneration and culture system on cell phenotype[J]. Spine(Phila Pa 1976), 2005, 30(24):2743-2748.
[73] YOSHIMURA H, MUNETA T, NIMURA A, et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle[J]. Cell Tissue Res, 2007, 327(3):449-462.
[74] MATSUDA C, TAKAGI M, HATTORI T, et al. Differentiation of human bone marrow mesenchymal stem cells to chondrocytes for construction of three-dimensional cartilage tissue[J]. Cytotechnology, 2005, 47(1-3):11-17.
[75] DEZAWA M. Systematic neuronal and muscle induction systems in bone marrow stromal cells: the potential for tissue reconstruction in neurodegenerative and muscle degenerative diseases[J]. Med Mol Morphol, 2008, 41(1):14-19.
[76] PARK K, JU Y M, SON J S, et al. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts[J]. J Biomater Sci Polym Ed, 2007, 18(4):369-382.
[77] GEIGER B, BERSHADSKY A. Exploring the neighborhood: adhesion-coupled cell mechanosensors[J]. Cell, 2002, 110(2):139-142.
[78] VO N V, HARTMAN R A, YURUBE T, et al. Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration[J]. Spine J, 2013, 13(3):331-341.
[79] KUNSMANN L, RUTER C, BAUWENS A, et al. Virulence from vesicles: novel mechanisms of host cell injury by Escherichia coli O104: H4 outbreak strain[J]. Sci Rep, 2015, 5: 13252.
[80] SEE E Y, TOH S L, GOH J C. Effects of radial compression on a novel simulated intervertebral disc-like assembly using bone marrow-derived mesenchymal stem cell cell-sheets for annulus fibrosus regeneration[J]. Spine(Phila Pa 1976), 2011, 36(21):1744-1751.
[81] GILBERT H T, HOYLAND J A, FREEMONT A J, et al. The involvement of interleukin-1 and interleukin-4 in the response of human annulus fibrosus cells to cyclic tensile strain: an altered mechanotransduction pathway with degeneration[J]. Arthritis Res Ther, 2011, 13(1):R8.
[82] GILBERT H T, HOYLAND J A, MILLWARD-SADLER S J. The response of human anulus fibrosus cells to cyclic tensile strain is frequency-dependent and altered with disc degeneration[J]. Arthritis Rheum, 2010, 62(11):3385-3394.
[83] CHIK T K, CHOOI W H, LI Y Y, et al. Bioengineering a multicomponent spinal motion segment construct a 3D model for complex tissue engineering[J]. Adv Healthc Mater, 2015, 4(1):99-112. |