Please wait a minute...
浙江大学学报(医学版)  2016, Vol. 45 Issue (2): 126-131    DOI: 10.3785/j.issn.1008-9292.2016.03.04
运动系统再生医学专题     
基于三维打印的钙化层重建生物活性支架制备及其性能研究
余新宁1, 方晶华1, 骆建洋1, 杨贤燕2, 何冬霜2, 苟中入2, 戴雪松1
1. 浙江大学医学院附属第二医院骨科 浙江大学骨科研究所, 浙江 杭州 310009;
2. 浙江加州国际纳米技术研究院, 浙江 杭州 310058
Fabrication of bioactive tissue engineering scaffold for reconstructing calcified cartilage layer based on three-dimension printing technique
YU Xinning1, FANG Jinghua1, LUO Jianyang1, YANG Xianyan2, HE Dongshuang2, GOU Zhongru2, DAI Xuesong1
1. Department of Orthopedic Surgery, Orthopedics Research Institute of Zhejiang University, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
2. Zhejiang-California International Nanosystems Institute, Hangzhou 310058, China
全文: PDF(1235 KB)  
摘要: 

目的: 初步构建基于软骨钙化层损伤重建的有机—无机复合组织工程支架,探究掺镁硅灰石含量与支架抗压性能之间的关系。方法: 利用质量分数分别为1%、3%、5%的高生物活性钙镁硅酸盐超细颗粒复合Ⅰ型胶原—透明质酸钠进行三维打印,经海藻酸钠—氯化钙气雾交联成型,电镜下观察表面孔隙、孔径、无机相分布,万能材料试验机测试抗压性能,并计算支架孔隙率。结果: 支架表面平均孔径(212.3±34.2)μm,平均孔隙率(48.3±5.9)%,不同质量分数的高生物活性钙镁硅酸盐超细颗粒复合Ⅰ型胶原—透明质酸钠支架压缩模量差异无统计学意义(P>0.05),平均压缩模量(7.2±1.2)MPa,介于软骨和软骨下骨之间。结论: 利用三维打印技术成功构建出多孔钙化层仿生重建支架,可为今后研制多层次复合支架治疗骨—软骨损伤奠定基础。

关键词 软骨疾病/治疗钙化合物透明质酸胶原Ⅰ型计算机辅助设计成像,三维海藻酸钠支架    
Abstract

Objective: To fabricate organic-inorganic composite tissue engineering scaffolds for reconstructing calcified cartilage layer based on three-dimensional (3D) printing technique. Methods: The scaffolds were developed by 3D-printing technique with highly bioactive calcium-magnesium silicate ultrafine particles of 1%, 3% and 5% of mass fraction, in which the organic phases were composed of type I collagen and sodium hyaluronate. The 3D-printed scaffolds were then crosslinked and solidified by alginate and CaCl2 aerosol. The pore size and distribution of inorganic phase were observed with scanning electron microscope (SEM); the mechanical properties were tested with universal material testing machine, and the porosity of scaffolds was also measured. Results: Pore size was approximately (212.3±34.2) μm with a porosity of (48.3±5.9)%, the compressive modulus of the scaffolds was (7.2±1.2) MPa, which was irrelevant to the percentage changes of calcium-magnesium silicate, the compressive modulus was between that of cartilage and subchondral bone. Conclusion: The porous scaffolds for calcified cartilage layer have been successfully fabricated, which would be used for multi-layered composite scaffolds in osteochondral injury.

Key wordsCartilage diseases/therapy    Silicon    Calcium compounds    Hyaluronic acid    Collagen type I    Computer-aided design    Imaging, three-dimensional    Sodiwm alginate    Scaffolds
收稿日期: 2015-10-12     
CLC:  R68  
基金资助:

国家自然科学基金(81472063);浙江省自然科学基金(LZ14E020001)

通讯作者: 戴雪松(1970-),男,博士,从事骨科和运动医学研究;E-mail:daixshz@163.com;苟中入(1975-),男,博士,从事生物医用纳米材料、仿生材料及相关细胞生物学和组织学研究;E-mail:zhrgou@zju.edu.cn     E-mail: daixshz@163.com;zhrgou@zju.edu.cn
作者简介: 余新宁(1991-),男,硕士研究生,从事骨科和运动医学研究;E-mail:3100104989@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

余新宁 等. 基于三维打印的钙化层重建生物活性支架制备及其性能研究[J]. 浙江大学学报(医学版), 2016, 45(2): 126-131.
YU Xinning, FANG Jinghua, LUO Jianyang, YANG Xianyan, HE Dongshuang, GOU Zhongru, DAI Xuesong. Fabrication of bioactive tissue engineering scaffold for reconstructing calcified cartilage layer based on three-dimension printing technique. Journal of ZheJiang University(Medical Science), 2016, 45(2): 126-131.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2016.03.04      或      http://www.zjujournals.com/xueshu/med/CN/Y2016/V45/I2/126

[1] FRISBIE D D, TROTTER G W, POWERS B E, et al. Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses[J]. Vet Surg, 1999, 28(4):242-255.
[2] BEDI A, FEELEY B T, WILLIAMS R J 3RD. Management of articular cartilage defects of the knee[J]. J Bone Joint Surg Am, 2010, 92(4):994-1009.
[3] HUNZIKER E B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects[J]. Osteoarthritis Cartilage, 2002, 10(6):432-463.
[4] YE K, DI BELLA C, MYERS D E, et al. The osteochondral dilemma: review of current management and future trends[J]. ANZ J Surg, 2014, 84(4):211-217.
[5] SHOR L, GVÜERI S, CHANG R, et al. Precision extruding deposition(PED) fabrication of polycaprolactone(PCL) scaffolds for bone tissue engineering[J]. Biofabrication, 2009, 1(1):015003.
[6] KHANARIAN N T, HANEY N M, BURGA R A, et al. A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration[J]. Biomaterials, 2012, 33(21):5247-5258.
[7] SUN H, WU C, DAI K, et al. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics[J]. Biomaterials, 2006, 27(33):5651-5657.
[8] HUANG Y, JIN X, ZHANG X, et al. In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration[J]. Biomaterials, 2009, 30(28):5041-5048.
[9] TAN H, CHU C R, PAYNE K A, et al. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering[J]. Biomaterials, 2009, 30(13):2499-2506.
[10] KAWASAKI K, OCHI M, UCHIO Y, et al. Hyaluronic acid enhances proliferation and chondroitin sulfate synthesis in cultured chondrocytes embedded in collagen gels[J]. J Cell Physiol, 1999, 179(2):142-148.
[11] CIANFLOCCO A J. Viscosupplementation in patients with osteoarthritis of the knee[J]. Postgrad Med, 2013, 125(1):97-105.
[12] RESPONTE D J, NATOLI R M, ATHANASIOU K A. Identification of potential biophysical and molecular signalling mechanisms underlying hyaluronic acid enhancement of cartilage formation[J]. J R Soc Interface, 2012, 9(77):3564-3573.
[13] RUDERT M. Histological evaluation of osteochondral defects: consideration of animal models with emphasis on the rabbit, experimental setup, follow-up and applied methods[J]. Cells Tissues Organs, 2002, 171(4):229-240.
[14] HUNZIKER E B, DRIESANG I M, SAAGER C. Structural barrier principle for growth factor-based articular cartilage repair[J]. Clin Orthop Relat Res, 2001(391 Suppl):S182-S189.
[15] ALLAN K. S, PILLIAR R M, WANG J, et al. Formation of biphasic constructs containing cartilage with a calcified zone interface[J]. Tissue Eng, 2007, 13(1):167-177.
[16] DA H, JIA S J, MENG G L, et al. The impact of compact layer in biphasic scaffold on osteochondral tissue engineering[J]. PLoS One, 2013, 8(1):e54838.
[17] SEIDI A, RAMALINGAM M, ELLOUMI-HANNACHI I, et al. Gradient biomaterials for soft-to-hard interface tissue engineering[J]. Acta Biomater, 2011, 7(4):1441-1451.
[18] GETGOOD A, BROOKS R, FORTIER L, et al. Articular cartilage tissue engineering: today's research, tomorrow's practice?[J]. J Bone Joint Surg Br, 2009, 91(5):565-576.
[19] BOYAN B D, HUMMERT T W, DEAN D D, et al. Role of material surfaces in regulating bone and cartilage cell response[J]. Biomaterials, 1996, 17(2):137-146.
[20] LEONG K F, CHEAH C M, CHUA C K. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs[J]. Biomaterials, 2003, 24(13):2363-2378.
[21] ROBINSON B P, HOLLINGER J O, SZACHOWICZ E H, et al. Calvarial bone repair with porous D, L-polylactide[J]. Otolaryngol Head Neck Surg, 1995, 112(6):707-713.
[22] EL-AYOUBI R, DEGRANDPRE C, DIRADDO R, et al. Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering[J]. J Biomater Appl, 2011, 25(5):429-444.
[23] KARAGEORGIOU V, KAPLAN D. Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005, 26(27):5474-5491.
[24] ZHANG Y, ZHANG M. Microstructural and mechanical characterization of chitosan scaffolds reinforced by calcium phosphates[J]. J Non-Cryst Solids, 2001, 282(2-3):159-164.
[25] MISRA S K, NAZHAT S N, VALAPPIL S P, et al. Fabrication and characterization of biodegradable poly(3-hydroxybutyrate) composite containing bioglass[J]. Biomacromolecules, 2007, 8(7):2112-2119.
[26] LEVINGSTONE T J, MATSIKO A, DICKSON G R, et al. A biomimetic multi-layered collagen-based scaffold for osteochondral repair[J]. Acta Biomaterialia, 2014, 10(5):1996-2004.
[27] CUI X, BREITENKAMP K, FINN M G, et al. Direct human cartilage repair using three-dimensional bioprinting technology[J]. Tissue Eng Part A, 2012, 18(11-12):1304-1312.
[28] AMINI A R, LAURENCIN C T, NUKAVARAPU S P. Bone tissue engineering: recent advances and challenges[J]. Crit Rev Biomed Eng, 2012, 40(5):363-408.
[29] SHAO X, GOH J C, HUTMACHER D W, et al. Repair of large articular osteochondral defects using hybrid scaffolds and 0 bone marrow-derived mesenchymal stem cells in a rabbit model[J]. Tissue Eng, 2006, 12(6):1539-1551.

[1] 陈刚,张鼎,应亚草,王志峰,陶伟,朱皓,张景峰,彭志毅. 国产载药微球经动脉化疗栓塞治疗不可切除原发性肝癌的临床研究[J]. 浙江大学学报(医学版), 2017, 46(1): 44-51.
[2] 张展 等. 鼠尾Ⅰ型胶原的酸解、纤维重构和仿骨生物矿化研究[J]. 浙江大学学报(医学版), 2016, 45(6): 592-597.
[3] 杨泽川 等. 三维打印技术在骨缺损修复和椎间盘组织工程中的研究进展[J]. 浙江大学学报(医学版), 2016, 45(2): 141-146.
[4] 姚梦竹 等. 碳纳米管在骨组织工程支架中的研究进展[J]. 浙江大学学报(医学版), 2016, 45(2): 161-169.
[5] 郑泽峰 等. 三维平行胶原支架促进肌腱样胞外基质形成的作用[J]. 浙江大学学报(医学版), 2016, 45(2): 120-125.
[6] 周平辉 等. 椎间盘纤维环组织工程研究进展[J]. 浙江大学学报(医学版), 2016, 45(2): 132-140.
[7] 胡叶君 等. 蚕丝相关组织工程支架在肌腱和韧带再生修复中的应用[J]. 浙江大学学报(医学版), 2016, 45(2): 152-160.
[8] 王健, 朱志文, 徐国华, 安越. 自组装单分子膜技术在医用金属材料中的应用研究进展[J]. 浙江大学学报(医学版), 2015, 44(5): 589-594.
[9] 李九可, 金晓红, 方伟, 冯立国, 翟晶, 李毓敏. 重度增殖性糖尿病视网膜病变患者玻璃体切除硅油填充术后出血及其转归分析[J]. 浙江大学学报(医学版), 2015, 44(2): 167-173.
[10] 王冰, 陈琰, 宋阳, 王恩圣, 郑丹, 曲凡, 周坚红. 围绝经期妇女促卵泡激素水平与总Ⅰ型前胶原氨基端延长肽的相关性分析[J]. 浙江大学学报(医学版), 2015, 44(1): 85-89.
[11] . 质子泵抑制剂和氯吡格雷联用与支架内再狭窄关系的回顾性研究[J]. 浙江大学学报(医学版), 2012, 40(6): 667-672.
[12] . 计算机辅助设计与制造技术在颧骨复合体缺损个性化三维重建中的应用研究[J]. 浙江大学学报(医学版), 2012, 41(3): 245-249.
[13] . 破裂椎动脉夹层动脉瘤早期介入栓塞治疗[J]. 浙江大学学报(医学版), 2012, 41(1): 93-98.
[14] . 质子泵抑制剂和氯吡格雷联用与支架内再狭窄关系的回顾性研究[J]. 浙江大学学报(医学版), 2011, 40(6): 667-672.
[15] . 骨髓间充质干细胞-海藻酸钠凝胶治疗脊髓损伤的实验研究[J]. 浙江大学学报(医学版), 2011, 40(4): 354-359.