Please wait a minute...
浙江大学学报(医学版)  2016, Vol. 45 Issue (2): 120-125    DOI: 10.3785/j.issn.1008-9292.2016.03.03
运动系统再生医学专题     
三维平行胶原支架促进肌腱样胞外基质形成的作用
郑泽峰1,2, 沈炜亮1,2, 乐辉辉1,2, 戴雪松1, 欧阳宏伟2, 陈维善1
1. 浙江大学医学院附属第二医院骨科 浙江大学骨科研究所, 浙江 杭州 310009;
2. 浙江大学医学院干细胞与再生医学系 浙江大学李达三·叶耀珍干细胞与再生医学研究中心 浙江省组织工程与再生医学技术重点实验室, 浙江 杭州 310058
Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation
ZHENG Zefeng1,2, SHEN Weiliang1,2, LE Huihui1,2, DAI Xuesong1, OUYANG Hongwei2, CHEN Weishan1
1. Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China;
2. Center of Stem Cell and Tissue Engineering, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
全文: PDF(1206 KB)  
摘要: 

目的: 探讨三维平行胶原支架对肌腱来源干细胞形态、排列及细胞外基质形成的影响。方法: 应用单向冰冻技术制备三维平行胶原支架,应用传统冻干技术制备三维紊乱胶原支架。通过体外种植肌腱来源干细胞及皮下支架种植,观察不同三维结构对细胞形态、排列及细胞外基质形成的影响。结果: 三维平行胶原支架呈现出三维平行的结构。种植在三维平行胶原支架上的细胞显示出纺锤样的肌腱细胞形态,同时细胞沿着胶原支架纤维方向排列,在第七天时形成了致密的细胞层;三维紊乱胶原支架上的细胞显示出多形性,随意分布在各个胶原支架片上。皮下种植实验中,2周后均有来自宿主的成纤维样细胞迁移进入支架,三维平行胶原支架中主要为细长的成纤维样细胞,细胞沿着支架方向排列;而在三维紊乱支架的细胞大多为椭圆形的,且分布没有一定的方向性。结论: 平行的三维结构诱导细胞变得细长,促进细胞平行排列,同时促使形成的细胞外基质沿平行方向分布。该研究结果可以为理想的肌腱组织修复的支架构造提供参考和借鉴。

关键词 跟腱/细胞学干细胞支架胶原细胞外基质组织工程细胞,培养的    
Abstract

Objective: To investigate the effects of three-dimensional parallel collagen scaffold on the cell shape, arrangement and extracellular matrix formation of tendon stem cells. Methods: Parallel collagen scaffold was fabricated by unidirectional freezing technique, while random collagen scaffold was fabricated by freeze-drying technique. The effects of two scaffolds on cell shape and extracellular matrix formation were investigated in vitro by seeding tendon stem/progenitor cells and in vivo by ectopic implantation. Results: Parallel and random collagen scaffolds were produced successfully. Parallel collagen scaffold was more akin to tendon than random collagen scaffold. Tendon stem/progenitor cells were spindle-shaped and unified orientated in parallel collagen scaffold, while cells on random collagen scaffold had disorder orientation. Two weeks after ectopic implantation, cells had nearly the same orientation with the collagen substance. In parallel collagen scaffold, cells had parallel arrangement, and more spindly cells were observed. By contrast, cells in random collagen scaffold were disorder. Conclusion: Parallel collagen scaffold can induce cells to be in spindly and parallel arrangement, and promote parallel extracellular matrix formation; while random collagen scaffold can induce cells in random arrangement. The results indicate that parallel collagen scaffold is an ideal structure to promote tendon repairing.

Key wordsAchilles tendon/cytology    Stem cells    scaffolds    Collagen    Extracellular matrix    Tissue engineering    Cells, cultured
收稿日期: 2015-10-12     
CLC:  R686  
基金资助:

国家自然科学基金(81572157,81271970);浙江省自然科学基金(LY14H060003)

通讯作者: 陈维善(1962-),男,博士,主任医师,博士生导师,从事骨科临床诊疗及新技术研究;E-mail:chenweishan@zju.edu.cn;欧阳宏伟(1971-),男,博士,教授,博士生导师,从事干细胞与组织工程、运动医学研究;E-mail:hwoy@zju.edu.cn     E-mail: chenweishan@zju.edu.cn;hwoy@zju.edu.cn
作者简介: 郑泽峰(1991-),男,硕士研究生,从事骨科相关疾病新技术研究;E-mail:zhengzftianwang@sina.com;沈炜亮(1982-),男,博士,主治医师,硕士生导师,从事骨科疾病研究;E-mail:shenweiliang365@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

郑泽峰 等. 三维平行胶原支架促进肌腱样胞外基质形成的作用[J]. 浙江大学学报(医学版), 2016, 45(2): 120-125.
ZHENG Zefeng, SHEN Weiliang, LE Huihui, DAI Xuesong, OUYANG Hongwei, CHEN Weishan. Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation. Journal of ZheJiang University(Medical Science), 2016, 45(2): 120-125.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2016.03.03      或      http://www.zjujournals.com/xueshu/med/CN/Y2016/V45/I2/120

[1] ANDARAWIS-PURI N, FLATOW E L, SOSLOWSKY L J. Tendon basic science: development, repair, regeneration, and healing[J]. J Orthop Res, 2015, 33(6):780-784.
[2] VOLETI P B, BUCKLEY M R, SOSLOWSKY L J. Tendon healing: repair and regeneration[J]. Annu Rev Biomed Eng, 2012, 14: 47-71.
[3] YANG G, ROTHRAUFF B B, TUAN R S. Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm[J]. Birth Defects Res C Embryo Today, 2013, 99(3):203-222.
[4] CORREIA S I, PEREIRA H, SILVA-CORREIA J, et al. Current concepts: tissue engineering and regenerative medicine applications in the ankle joint[J]. J R Soc Interface, 2014, 11(92):20130784.
[5] JAIN A, BANSAL R. Applications of regenerative medicine in organ transplantation[J]. J Pharm Bioallied Sci, 2015, 7(3):188-194.
[6] KOLAMBKAR Y M, BAJIN M, WOJTOWICZ A, et al. Nanofiber orientation and surface functionalization modulate human mesenchymal stem cell behavior in vitro[J]. Tissue Eng Part A, 2014, 20(1-2):398-409.
[7] WHITED B M, RYLANDER M N. The influence of electrospun scaffold topography on endothelial cell morphology, alignment, and adhesion in response to fluid flow[J]. Biotechnol Bioeng, 2014, 111(1):184-195.
[8] GILCHRIST C L, RUCH D S, LITTLE D, et al. Micro-scale and meso-scale architectural cues cooperate and compete to direct aligned tissue formation[J]. Biomaterials, 2014, 35(38):10015-10024.
[9] YIN Z, CHEN X, CHEN J L, et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers[J]. Biomaterials, 2010, 31(8):2163-2175.
[10] MOHTARAM N K, KO J, KING C, et al. Electrospun biomaterial scaffolds with varied topographies for neuronal differentiation of human-induced pluripotent stem cells[J]. J Biomed Mater Res A, 2015, 103(8):2591-2601.
[11] WANG Y, SHI H, QIAO J, et al. Electrospun tubular scaffold with circumferentially aligned nanofibers for regulating smooth muscle cell growth[J]. ACS Appl Mater Interfaces, 2014, 6(4):2958-2962.
[12] DALBY M J, GADEGAARD N, TARE R, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder[J]. Nat Mater, 2007, 6(12):997-1003.
[13] YIN Z, CHEN X, SONG H X, et al. Electrospun scaffolds for multiple tissues regeneration in vivo through topography dependent induction of lineage specific differentiation[J]. Biomaterials, 2015, 44: 173-185.
[14] GLOWACKI J, MIZUNO S. Collagen scaffolds for tissue engineering[J]. Biopolymers, 2008, 89(5):338-344.
[15] CHEN X, QI Y Y, WANG L L, et al. Ligament regeneration using a knitted silk scaffold combined with collagen matrix[J]. Biomaterials, 2008, 29(27):3683-3692.
[16] MADAGHIELE M, SANNINO A, YANNAS I V, et al. Collagen-based matrices with axially oriented pores[J]. J Biomed Mater Res A, 2008, 85(3):757-767.
[17] PAWELEC K M, WARDALE R J, BEST S M, et al. The effects of scaffold architecture and fibrin gel addition on tendon cell phenotype[J]. J Mater Sci Mater Med, 2015, 26(1):5349.
[18] BI Y, EHIRCHIOU D, KILTS T M, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche[J]. Nat Med, 2007, 13(10):1219-1227.
[19] IANNONE M, VENTRE M, FORMISANO L, et al. Nanoengineered surfaces for focal adhesion guidance trigger mesenchymal stem cell self-organization and tenogenesis[J]. Nano Lett, 2015, 15(3):1517-1525.
[20] CUKIERMAN E, PANKOV R, YAMADA K M. Cell interactions with three-dimensional matrices[J]. Curr Opin Cell Biol, 2002, 14(5):633-639.

[1] 陈刚,张鼎,应亚草,王志峰,陶伟,朱皓,张景峰,彭志毅. 国产载药微球经动脉化疗栓塞治疗不可切除原发性肝癌的临床研究[J]. 浙江大学学报(医学版), 2017, 46(1): 44-51.
[2] 张展 等. 鼠尾Ⅰ型胶原的酸解、纤维重构和仿骨生物矿化研究[J]. 浙江大学学报(医学版), 2016, 45(6): 592-597.
[3] 候仕芳 等. 下调lmna基因对斑马鱼胚胎髓系和红系造血干细胞发育的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 620-625.
[4] 李统宇 等. 杜氏肌营养不良疾病模型及基因治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 648-654.
[5] 吴志华 等. 异基因造血干细胞移植受者T细胞受体β链CDR3谱型表达与巨细胞病毒激活[J]. 浙江大学学报(医学版), 2016, 45(5): 515-521.
[6] 杨泽川 等. 三维打印技术在骨缺损修复和椎间盘组织工程中的研究进展[J]. 浙江大学学报(医学版), 2016, 45(2): 141-146.
[7] 姚梦竹 等. 碳纳米管在骨组织工程支架中的研究进展[J]. 浙江大学学报(医学版), 2016, 45(2): 161-169.
[8] 陈晓 等. 人胚胎干细胞向肌腱细胞分化方法的专家共识[J]. 浙江大学学报(医学版), 2016, 45(2): 105-111.
[9] 孔祥朋 等. 肌腱干细胞与骨髓间充质干细胞促进髌腱愈合的对比研究[J]. 浙江大学学报(医学版), 2016, 45(2): 112-119.
[10] 余新宁 等. 基于三维打印的钙化层重建生物活性支架制备及其性能研究[J]. 浙江大学学报(医学版), 2016, 45(2): 126-131.
[11] 姚中凯 等. 诱导多能干细胞治疗失神经性肌肉萎缩的研究进展[J]. 浙江大学学报(医学版), 2016, 45(2): 147-151.
[12] 周平辉 等. 椎间盘纤维环组织工程研究进展[J]. 浙江大学学报(医学版), 2016, 45(2): 132-140.
[13] 王程 等. 微RNA:一类新的椎间盘退变调控因子[J]. 浙江大学学报(医学版), 2016, 45(2): 170-178.
[14] 黄恺 等. LR-90对骨关节炎模型兔关节软骨的保护效应[J]. 浙江大学学报(医学版), 2016, 45(2): 187-194.
[15] 胡叶君 等. 蚕丝相关组织工程支架在肌腱和韧带再生修复中的应用[J]. 浙江大学学报(医学版), 2016, 45(2): 152-160.