Please wait a minute...
浙江大学学报(医学版)  2016, Vol. 45 Issue (2): 112-119    DOI: 10.3785/j.issn.1008-9292.2016.03.02
运动系统再生医学专题     
肌腱干细胞与骨髓间充质干细胞促进髌腱愈合的对比研究
孔祥朋, 倪明, 张国强, 柴伟, 李想, 李於聪, 王岩
解放军总医院骨科, 北京 100853
Application of tendon-derived stem cells and bone marrow-derived mesenchymal stem cells for tendon injury repair in rat model
KONG Xiangpeng, NI Ming, ZHANG Guoqiang, CHAI Wei, LI Xiang, LI Yucong, WANG Yan
Department of Orthopedics, General Hospital of People's Liberation Army, Beijing 100853, China
全文: PDF(1173 KB)  
摘要: 

目的: 观察肌腱干细胞(TDSC)和骨髓间充质干细胞(BMSC)对大鼠缺损髌腱的修复作用。方法: 从SD大鼠的髌腱及骨髓组织中,分离出TDSC和BMSC并培养,分别联合纤维蛋白胶移植到大鼠髌腱缺损模型中。60只SD大鼠分为以下三组:TDSC组采用TDSC+纤维蛋白胶;BMSC组采用BMSC+纤维蛋白胶;对照组采用纤维蛋白胶。术后1、2、4、6、8周检测移植物的大体外观形态、组织学变化及生物力学指标。结果: 术后8周TDSC组、BMSC组髌腱缺损基本消失,对照组仍可见髌腱缺损边界。术后8周TDSC组、BMSC组均可见类似肌腱样组织;对照组见肉芽组织增生,细胞排列紊乱,组织杂乱无序。随着时间增长各组的最大应力、最大应力百分比和弹性模量、弹性模量百分比均增加(均P<0.05);在各个时间点,TDSC组、BMSC组的最大应力和弹性模量均高于对照组(均P<0.05)。在2周时,TDSC组的最大应力百分比和弹性模量百分比均高于对照组(均P<0.05);TDSC组、BMSC组在4、6、8周时最大应力百分比和弹性模量百分比均高于对照组(均P<0.05),TDSC组与BMSC组差异无统计学意义(P>0.05)。8周时,TDSC组与BMSC组的弹性模量百分比差异有统计学意义(P<0.05)。结论: 同种异体TDSC联合纤维蛋白胶可促进肌腱早期愈合、改善肌腱的生物力学特性,并且其弹性模量优于BMSC联合纤维蛋白胶,提示TDSC能更好地促进肌腱损伤的早期修复。

关键词 干细胞/细胞学间质干细胞/细胞学骨髓腱损伤生物力学对比研究模型,动物    
Abstract

Objective: To evaluate the application of tendon-derived stem cells (TDSC) and bone marrow-derived mesenchymal stem cells (BMSC) for patellar tendon injury repair in rat model. Methods: TDSCs and BMSCs were isolated from patellar tendons or bone marrow of healthy SD rats. The patellar tendon injury model was induced in 60 SD rats, then the animals were divided into 3 groups with 20 in each group: rats in TDSC group received transplantation of TDSC with fibrin glue in defected patellar tendon, rats in BMSC group received BMSC with fibrin glue for transplantation and those in control group received fibrin glue only. The gross morphology, histology and biomechanics of the patellar tendon were examined at 1, 2, 4, 6 and 8 weeks after the treatment. Results: Gross observation showed that the tendon defects in TDSC group and BMSC group almost disappeared in week 8, while the boundary of tendon defects in control group was still visible. Histology examination showed that the neo-tendon formation in TDSC group and BMSC group was observed at week 8, while there was no neo-tendon formation in control group. Biomechanics study showed that the ultimate stress and Young Modulus, relative ultimate stress and relative Young Modulus increased with the time going in all groups(all P<0.05); the ultimate stress and Young Modulus, relative ultimate stress and relative Young Modulus of TDSC and BMSC groups were significantly higher than those in control group at week 4, 6 and 8(all P<0.05). There was no difference in ultimate stress and Young Modulus between TDSC group and BMSC group(P>0.05), however, the relative Young Modulus of TDSC group was significantly higher than that in BMSC group at week 8(P<0.05). Conclusion: Allogeneic TDSC and BMSC transplantation facilitates the repair of tendon injury and improves the biomechanics of tendon. TDSC is more suitable for in vivo tendon regeneration than BMSC.

Key wordsStem cells/cytology    Tendons    Mesenchymal stem cells/cytology    Bone marrow    Tendon injuries    Biomechanics    Comp study    Models, animal
收稿日期: 2015-10-12     
CLC:  R686  
基金资助:

全军医学科技青年培育项目(13QNP175)

通讯作者: 王岩(1962-),男,博士,主任医师,教授,博士生导师,从事人工髋、膝关节置换;脊柱侧弯、强直性脊柱炎、颈椎病、腰椎间盘突出手术治疗及相关基础研究;E-mail:yanwang301@163.com     E-mail: yanwang301@163.com
作者简介: 孔祥朋(1991-),男,硕士研究生,从事人工髋、膝关节置换和运动损伤相关基础研究;E-mail:18810999609@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

孔祥朋 等. 肌腱干细胞与骨髓间充质干细胞促进髌腱愈合的对比研究[J]. 浙江大学学报(医学版), 2016, 45(2): 112-119.
KONG Xiangpeng, NI Ming, ZHANG Guoqiang, CHAI Wei, LI Xiang, LI Yucong, WANG Yan. Application of tendon-derived stem cells and bone marrow-derived mesenchymal stem cells for tendon injury repair in rat model. Journal of ZheJiang University(Medical Science), 2016, 45(2): 112-119.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2016.03.02      或      http://www.zjujournals.com/xueshu/med/CN/Y2016/V45/I2/112

[1] REINHARDT K R, HETSRONI I, MARX R G, et al. Graft selection for anterior cruciate ligament reconstruction: a level I systematic review comparing failure rates and functional outcomes[J]. Orthop Clin North Am, 2010, 41(2): 249-262.
[2] PENNISI E. Tending tender tentons[J]. Science, 2002, 295(5557): 1011.
[3] LEPPILAHTI J, PURANEN J, ORAVA S, et al. Incidence of achilles tendon rupture[J]. Acta Orthop Scand, 1996, 67(3): 277-279.
[4] MISYASHITA H, OCHI M, IKUTA Y, et al. Histological and biomechanimal observations of the rabbit patellar tendon after removal of its central one-third[J]. Arch Orthop Trauma Surg, 1997, 116(8): 454-462.
[5] LUI P P, RUI Y F, NI M, et al. Tenogenic differentiation of stem cells for tendon repair—what is the current evidence?[J]. J Tissue Eng Regen Med, 2011, 5(8): e144-e163.
[6] BI Y, EHIRCHIOU D, KILTS T M, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche[J]. Nat Med, 2007, 13(10): 1219-1227.
[7] RUI Y F, LUI P P Y, LI G, et al. Isolation and characterization of multipotent rat tendon-derived stem cells[J]. Tissue Eng Part A, 2010, 16(5): 1549-1558.
[8] AWAD H A, BOIVIN G P, DRESSLER M R, et al. Repair of patellar tendon injures using a cell-collagen composite[J]. J Orthop Res, 2003, 21(3): 420-431.
[9] HARRIS M T, BUTLER D L, BOIVIN G P, et al. Mesenchymal stem cells used for rabbit tendon repair can form ectopic bone and express alkaline phosphatase activity in constructs[J]. J Orthop Res, 2004, 22(5): 998-1003.
[10] NI M, LUI P P Y, RUI Y F, et al. Tendon-derived stem cells(TDSCs) promote tendon repair in a rat patellar tendon window defect model[J]. J Orthop Res, 2012, 30(4): 613-619.
[11] LUI P P Y, RUI Y F, NI M, et al. Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cell[J]. J Orthop Res, 2011, 29(5): 390-396.
[12] TAN Q, LUI P P Y, RUI Y F, et al. Comparison of potentials of stem cells isolated from tendon and bone marrow for musculoskeletal tissue engineering[J]. Tissue Eng Part A, 2012, 18(7-8): 840-851.
[13] LUI P P, CHEUK Y C, HUNG L K, et al. Increacing apoptosis at the late stage of tendon healing[J]. Wound Repair Regen, 2007, 15(5): 702-707.
[14] PROCKOP D J.Marrow stromal cells as stem cells for nonhematopoietic tissues[J]. Science, 1997, 276(5309): 71-74.
[15] ZHANG J, WANG J H. Characterization of differential properties of rabbit tendon stem cells and tenocytes[J]. BMC Musculoskelet Disord, 2010, 11: 10.
[16] ZHOU Z, AKINBIYI T, XU L, et al. Tendon-derived stem/pregenitor cell aging: defective self-renewal and altered fate[J]. Aging Cell, 2010, 9(5): 911-915.
[17] CHAN B P, FU S C, QIN L, et al. Pyridinoline in relation to ultimate stress of the patellar tendon during healing: an animal study[J]. J Orthop Res, 1998, 16(5): 597-603.
[18] ZHANG J, PAN T, LIU Y, et al. Mouse treadmill running enhances tendons by expanding the pool of tendon stem cells(TSCs) and TSC-related cellular production of collagen[J]. J Orthop Res, 2010, 28 (9): 1178-1183.
[19] ZHANG J, WANG J H. Mechanobiological response of tendon stem cells: implications of tendon homeostasis and pathogenesis of tendinopathy[J]. J Orthop Res, 2010, 28(5): 639-643.
[20] LACITIGNOLA L, CROVACE A, ROSSI G, et al. Cell therapy for tendinitis,experimental and clinical report[J]. Vet Res Commun, 2008, 32(Suppl 1): S33-S38.
[21] CHONG A K, ANG A D, GOH J C, et al. Bone marrow-derived mesenchymal stem cells influence early tendo-healing in a rabbit achilles tendon model[J]. J Bone Joint Surg Am, 2007, 89(1): 74-81.

[1] 高秋明 等. Ⅰ期植骨联合非接触钢板技术治疗股骨创伤后感染性骨缺损八例[J]. 浙江大学学报(医学版), 2016, 45(6): 631-635.
[2] 周延峰 等. 1.8 mT不同频率正弦电磁场对青年大鼠骨生物力学性能的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 561-567.
[3] 屈涛 等. 丹参素对去势大鼠骨质量的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 587-591.
[4] 杨肃文 等. 意义未明单克隆免疫球蛋白病及多发性骨髓瘤患者微RNA-221和微RNA-222的表达[J]. 浙江大学学报(医学版), 2016, 45(4): 371-378.
[5] 陈晓 等. 人胚胎干细胞向肌腱细胞分化方法的专家共识[J]. 浙江大学学报(医学版), 2016, 45(2): 105-111.
[6] 郑泽峰 等. 三维平行胶原支架促进肌腱样胞外基质形成的作用[J]. 浙江大学学报(医学版), 2016, 45(2): 120-125.
[7] 陈思腾 等. 肾移植受者与普通患者泌尿系统感染的比较[J]. 浙江大学学报(医学版), 2016, 45(2): 201-207.
[8] 胡叶君 等. 蚕丝相关组织工程支架在肌腱和韧带再生修复中的应用[J]. 浙江大学学报(医学版), 2016, 45(2): 152-160.
[9] 郑泽峰 等. 血小板富集血浆治疗肌腱病的研究进展[J]. 浙江大学学报(医学版), 2016, 45(2): 179-186.
[10] 徐晓武,潘宇,陈钶,等.
完全腹腔镜与腹腔镜辅助远端胃癌根治术对比研究的meta分析
[J]. 浙江大学学报(医学版), 2014, 43(5): 591-.
[11] 张健,赵正言. 间充质干细胞的免疫调节功能及抗炎作用在肾脏疾病中的应用进展[J]. 浙江大学学报(医学版), 2014, 43(3): 372-378.
[12] 蒋端凤,贺艳娟,李林,等. 全反式维甲酸联合粒细胞集落刺激因子对骨髓瘤细胞生长、分化及RARα2表达的影响[J]. 浙江大学学报(医学版), 2014, 43(3): 305-312.
[13] 颜冰希,余姗姗,冯晓,吴冬玲,蔡昕筱,周倩沁,何晓敏,陈爱嫩,张大勇. D-半乳糖对大鼠骨髓间充质干细胞衰老的影响[J]. 浙江大学学报(医学版), 2013, 42(6): 625-631.
[14] . PKH26标记的骨髓间质干细胞在阿尔茨海默病大鼠中的迁移[J]. 浙江大学学报(医学版), 2012, 41(6): 659-664.
[15] . Wnt/β-catenin信号通路对间充质干细胞衰老的影响及其作用机制[J]. 浙江大学学报(医学版), 2012, 40(6): 630-640.