Please wait a minute...
浙江大学学报(医学版)  2016, Vol. 45 Issue (2): 105-111    DOI: 10.3785/j.issn.1008-9292.2016.03.01
指南与实践     
人胚胎干细胞向肌腱细胞分化方法的专家共识
陈晓1, 邹晓晖2, 俞光岩3, 傅歆4, 曹彤5, 肖殷6, 欧阳宏伟1
1. 浙江大学医学院干细胞与再生医学系 浙江大学李达三·叶耀珍干细胞与再生医学研究中心 浙江省组织工程与再生医学技术重点实验室, 浙江 杭州 310058;
2. 浙江大学医学院附属第一医院中心实验室, 浙江 杭州 310003;
3. 北京大学口腔医学院口腔颌面外科, 北京 100081;
4. 中国医学科学院整形外科医院研究中心, 北京 100144;
5. 新加坡国立大学口腔医学院口腔科学系干细胞实验室, 新加坡 119083;
6. 澳大利亚昆士兰科技大学健康与生物医学研究所, 澳大利亚 布里斯班QLD 4059
Expert consensus on induction of human embryonic stem cells into tenocytes
CHEN Xiao1, ZOU Xiaohui2, YU Guangyan3, FU Xin4, CAO Tong5, XIAO Yin6, OUYANG Hongwei1
1. Center of Stem Cell and Tissue Engineering, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China;
2. Central Laboratory, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
3. Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology, Beijing 100081, China;
4. Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China;
5. Faculty of Dentistry Research Laboratories, National University of Singapore, Singapore 119083, Singapore;
6. Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove QLD 4059, Australia
全文: PDF(1336 KB)  
摘要: 

胚胎干细胞具有无限增殖能力,可能为组织工程提供肌腱细胞或肌腱祖细胞的来源。为规范人胚胎干细胞来源的肌腱细胞的分化方法,提高人肌腱细胞的纯度,保证分化方法的可重复性,使其更系统、规范和有效地应用于临床和生物安全性评价体系中,科技部国际合作专项有关专家制定了《人胚胎干细胞向肌腱细胞分化方法共识》。共识建议通过两步法将人胚胎干细胞诱导为肌腱细胞:首先利用不同材料表面将人胚胎干细胞诱导为成体间充质干细胞,然后采用高密度种植形成无支架组织工程肌腱,并利用静态或动态力学刺激在体内外环境下将成体间充质干细胞诱导成肌腱细胞。由此建立的体外组织工程肌腱可作为检测评价模型,对小分子化合物、医用材料和药物进行肌腱相关的毒理学系统分析和安全性评价。

关键词 胚胎干细胞腱/细胞学间质干细胞组织工程细胞分化细胞培养技术    
Abstract

Embryonic stem cells have unlimited proliferative capacity, which may provide a source of tendon stem/progenitor cells for tissue engineering. Experts of International Science and Technology Collaborative Program of Ministry of Science and Technology have developed a protocol consensus on differentiation of human embryonic stem cells into the tendon cells. The consensus recommends a protocol of two-step generation of human embryonic stem cells into tendon cells: the human embryonic stem cells are first differentiated into mesenchymal stem cells on different material surfaces; then with the scaffold-free tissue engineering tendon formed by high-density planting, the mesenchymal stem cells are induced into tendon cells under static or dynamic mechanical stimulation in vivo and in vitro. Tissue engineering tendon established in vitro by the protocol can be used as a model in toxicological analysis and safety evaluation of tendon-relevant small molecule compounds, medical materials and drugs.

Key wordsEmbryonic stem cells    Tendons/cytology    Mesenchymal stem cells    Tissue engineering    Cell differentiation    Cell culture techniques
收稿日期: 2016-02-20     
CLC:  R573.3  
基金资助:

科技部国际科技合作专项重点项目(2011DFA32190)

通讯作者: 欧阳宏伟(1971-),男,博士,教授,博士生导师,从事干细胞与组织工程、运动医学研究;E-mail:hwoy@zju.edu.cn     E-mail: hwoy@zju.edu.cn
作者简介: 陈晓(1982-),男,博士,副教授,博士生导师,从事干细胞与再生医学、肌腱组织工程研究;E-mail:chenxiao-610@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈晓 等. 人胚胎干细胞向肌腱细胞分化方法的专家共识[J]. 浙江大学学报(医学版), 2016, 45(2): 105-111.
CHEN Xiao, ZOU Xiaohui, YU Guangyan, FU Xin, CAO Tong, XIAO Yin, OUYANG Hongwei. Expert consensus on induction of human embryonic stem cells into tenocytes. Journal of ZheJiang University(Medical Science), 2016, 45(2): 105-111.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2016.03.01      或      http://www.zjujournals.com/xueshu/med/CN/Y2016/V45/I2/105

[1] LJUNGQVIST A, SCHWELLNUS M P, BACHL N, et al. International Olympic Committee consensus statement: molecular basis of connective tissue and muscle injuries in sport[J]. Clin Sports Med, 2008, 27(1):231-239.
[2] CHEN X, SONG X H, YIN Z, et al. Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors[J]. Stem Cells, 2009, 27(6): 1276-1287.
[3] CHEN X, ZOU X H, YIN G L, et al. Tendon tissue engineering with mesenchymal stem cells and biografts: an option for large tendon defects?[J]. Front Biosci(Schol Ed), 2009, S1: 23-32.
[4] MURRAY M M. Current status and potential of primary ACL repair[J]. Clin Sports Med, 2009, 28(1):51-61.
[5] GASPAR D, SPANOUDES K, HOLLADAY C, et al. Progress in cell-based therapies for tendon repair[J]. Adv Drug Deliv Rev, 2015, 84: 240-256.
[6] LU P, ZHANG G R, SONG X H, et al. Col V siRNA engineered tenocytes for tendon tissue engineering[J]. PLoS One, 2011, 6(6):e21154.
[7] ROLFE K J, IRVINE L M, GROBBELAAR A O, et al. Differential gene expression in response to transforming growth factor-beta1 by fetal and postnatal dermal fibroblasts[J]. Wound Repair Regen, 2007, 15(6):897-906.
[8] HANTASH B M, ZHAO L, KNOWLES J A, et al. Adult and fetal wound healing[J]. Front Biosci, 2008, 13: 51-61.
[9] FANG Z, ZHU T, SHEN W L, et al. Transplantation of fetal instead of adult fibroblasts reduces the probability of ectopic ossification during tendon repair[J]. Tissue Eng Part A, 2014, 20(13-14):1815-1826.
[10] TANG Q M, CHEN J L, SHEN W L, et al. Fetal and adult fibroblasts display intrinsic differences in tendon tissue engineering and regeneration[J]. Sci Rep, 2014, 4: 5515. doi:10.1038/spep05515.
[11] FAVATA M, BEREDJIKLIAN P K, ZGONIS M H, et al. Regenerative properties of fetal sheep tendon are not adversely affected by transplantation into an adult environment[J]. J Orthop Res, 2006, 24(11):2124-2132.
[12] CARR A J, SMART M J, RAMSDEN C M, et al. Development of human embryonic stem cell therapies for age-related macular degeneration[J]. Trends Neurosci, 2013, 36(7):385-395.
[13] YANG G, SI-TAYEB K, CORBINEAU S, et al. Integration-deficient lentivectors: an effective strategy to purify and differentiate human embryonic stem cell-derived hepatic progenitors[J]. BMC Biol, 2013, 11: 86. doi:10.1186/1741-7007-11-86.
[14] MAROOF A M, KEROS S, TYSON J A, et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells[J]. Cell Stem Cell, 2013, 12(5): 559-572.
[15] CHEN X, YIN Z, CHEN J L, et al. Force and scleraxis synergistically promote the commitment of human ES cells derived MSCs to tenocytes[J]. Sci Rep, 2012, 2(12):1411-1411.
[16] CHEN X, SONG X H, YIN Z, et al. Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors[J]. Stem Cells, 2009, 27(6):1276-1287.
[17] CHEN X, YIN Z, CHEN J L, et al. Scleraxis-overexpressed human embryonic stem cell-derived mesenchymal stem cells for tendon tissue engineering with knitted silk-collagen scaffold[J]. Tissue Eng Part A, 2014, 20(11-12):1583-1592.
[18] 傅 歆, 邓旭亮, 李盛林, 等. 人胚胎干细胞向成纤维细胞分化方法的专家共识[J]. 中华医学杂志, 2014, 94(40):3130-3134. FU Xin, DENG Xuliang, LI Shenglin, et al. Expert consensus on differentiation of human embryonic stem cells into fibroblasts[J]. Nat Med J China, 2014, 94(40):3130-3134. (in Chinese)
[19] BARBERI T, WILLIS L M, SOCCI N D, et al. Derivation of multipotent mesenchymal precursors from human embryonic stem cells[J]. PLoS Med, 2005, 2(6):554-560.
[20] BI Y, EHIRCHIOU D, KILTS T M, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche[J]. Nat Med, 2007, 13(10):1219-1227.
[21] HOFFMANN A, PELLED G, TURGEMAN G, et al. Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells[J]. J Clin Invest, 2006, 116(4):940-952.

[1] 方清清 等. 低频脉冲电磁场促进成骨细胞分化的基因调节和非基因调节探究[J]. 浙江大学学报(医学版), 2016, 45(6): 568-574.
[2] 郑江江 等. 肿瘤相关成纤维细胞CD10表达在结直肠腺瘤癌变和复发中的意义[J]. 浙江大学学报(医学版), 2016, 45(4): 335-341.
[3] 陈滟珊 等. 转瓶变速培养对微胶囊肝细胞聚集体形成及活性的影响[J]. 浙江大学学报(医学版), 2016, 45(4): 403-409.
[4] 胡叶君 等. 蚕丝相关组织工程支架在肌腱和韧带再生修复中的应用[J]. 浙江大学学报(医学版), 2016, 45(2): 152-160.
[5] 杨泽川 等. 三维打印技术在骨缺损修复和椎间盘组织工程中的研究进展[J]. 浙江大学学报(医学版), 2016, 45(2): 141-146.
[6] 姚梦竹 等. 碳纳米管在骨组织工程支架中的研究进展[J]. 浙江大学学报(医学版), 2016, 45(2): 161-169.
[7] 孔祥朋 等. 肌腱干细胞与骨髓间充质干细胞促进髌腱愈合的对比研究[J]. 浙江大学学报(医学版), 2016, 45(2): 112-119.
[8] 郑泽峰 等. 三维平行胶原支架促进肌腱样胞外基质形成的作用[J]. 浙江大学学报(医学版), 2016, 45(2): 120-125.
[9] 周平辉 等. 椎间盘纤维环组织工程研究进展[J]. 浙江大学学报(医学版), 2016, 45(2): 132-140.
[10] 廖伟超, 何莹, 王斌生, 黄河. 依维莫司联合全反式维甲酸逆转急性早幼粒细胞白血病细胞耐药的研究[J]. 浙江大学学报(医学版), 2015, 44(5): 525-531.
[11] 张春阳, 祝艳, 冯华松, 陈旭昕. 放射线照射的肺成纤维细胞对人脐带间充质干细胞中经典Wnt/β-catenin通路的影响[J]. 浙江大学学报(医学版), 2015, 44(2): 162-166.
[12] 张健,赵正言. 间充质干细胞的免疫调节功能及抗炎作用在肾脏疾病中的应用进展[J]. 浙江大学学报(医学版), 2014, 43(3): 372-378.
[13] 蒋端凤,贺艳娟,李林,等. 全反式维甲酸联合粒细胞集落刺激因子对骨髓瘤细胞生长、分化及RARα2表达的影响[J]. 浙江大学学报(医学版), 2014, 43(3): 305-312.
[14] 颜冰希,余姗姗,冯晓,吴冬玲,蔡昕筱,周倩沁,何晓敏,陈爱嫩,张大勇. D-半乳糖对大鼠骨髓间充质干细胞衰老的影响[J]. 浙江大学学报(医学版), 2013, 42(6): 625-631.
[15] 李彤, 郭美媛, 马葵芬, 杜悦, 何良艳, 朱丹雁, 楼宜嘉. 小鼠胚胎干细胞衍生的肝组织微粒体Ⅱ相代谢酶表征[J]. 浙江大学学报(医学版), 2013, 42(5): 530-537.