Please wait a minute...
浙江大学学报(医学版)  2015, Vol. 44 Issue (6): 672-677    DOI: 10.3785/j.issn.1008-9292.2015.11.12
综述     
脉冲电场肿瘤消融激发免疫反应的研究进展
崔光莹, 刁宏燕
浙江大学医学院附属第一医院传染病诊治国家重点实验室, 浙江 杭州 310003;
感染性疾病诊治协同创新中心, 浙江 杭州 310003
Research advances of anti-tumor immune response induced by pulse electric field ablation
CUI Guang-ying, DIAO Hong-yan
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
全文: PDF(706 KB)  
摘要: 

脉冲电场作为一种新型的肿瘤治疗手段,显示出了良好的临床应用前景。本文综述了微秒脉冲电场和纳秒脉冲电场肿瘤消融的特点,主要阐述了脉冲电场肿瘤消融激发抗肿瘤免疫反应的研究进展,指出了脉冲电场不仅能够导致肿瘤局部彻底消融,还能激发机体保护性免疫反应,进而抑制肿瘤的复发和转移。这些独特优势对于肿瘤治疗有着广阔的临床应用前景。然而,脉冲电场消融所激发的保护性免疫反应的机制及肿瘤疫苗的研发是未来亟待解决的科学问题。

关键词 肿瘤/治疗电穿孔电化学疗法电磁场综述    
Abstract

As a novel tumor therapy, pulse electric field has shown a clinical perspective. This paper reviews the characteristics of tumor ablation by microsecond pulse and nanosecond pulse electric field, and the research advances of anti-tumor immune response induced by pulse electric field ablation. Recent researches indicate that the pulse electric field not only leads to a complete ablation of local tumor, but also stimulates a protective immune response, thereby inhibiting tumor recurrence and metastasis. These unique advantages will show an extensive clinical application in the future. However, the mechanism of anti-tumor immune response and the development of related tumor vaccine need further studies.

Key wordsNeoplasms/therapy    Electroporation    Electrochemotherapy    Electromagnetic fields    Review
收稿日期: 2015-06-30 出版日期: 2015-11-12
CLC:  R730.5  
基金资助:

国家自然科学基金(81271810);浙江省自然科学基金(LY16H190002)

通讯作者: 刁宏燕(1970-),女,博士,教授,主要从事感染免疫和细胞免疫学研究;E-mail:diaohy@zju.edu.cn;http://orcid.org/0000-0002-7197-4051     E-mail: diaohy@zju.edu.cn
作者简介: 崔光莹(1986-),女,博士研究生,主要研究方向为感染免疫和细胞免疫学研究;E-mail:cuiguangying1986@163.com;http://orcid.org/0000-0003-3656-8100
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

崔光莹等. 脉冲电场肿瘤消融激发免疫反应的研究进展[J]. 浙江大学学报(医学版), 2015, 44(6): 672-677.
CUI Guang-ying, DIAO Hong-yan. Research advances of anti-tumor immune response induced by pulse electric field ablation. Journal of ZheJiang University(Medical Science), 2015, 44(6): 672-677.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2015.11.12      或      http://www.zjujournals.com/xueshu/med/CN/Y2015/V44/I6/672

[1] JEMAL A, BRAY F, CENTER M M, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2):69-90.
[2] FERLAY J, SHIN H R, BRAY F, et al. Estimates of worldwide burden of cancer in 2008: globocan 2008[J]. Int J Cancer, 2010, 127(12):2893-2917.
[3] FERLAY J, SOERJOMATARAM I, DIKSHIT R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5): E359-E386.
[4] SHARMA P, ALLISON J P. The future of immune checkpoint therapy[J]. Science, 2015, 348(6230):56-61.
[5] SATKAUSKAS S, BATIUSKAITE D, SALOMSKAITE-DAVALGIENE S, et al. Effectiveness of tumor electrochemotherapy as a function of electric pulse strength and duration[J]. Bioelectrochemistry, 2005, 65(2):105-111.
[6] HENSHAW J, MOSSOP B, YUAN F. Relaxin treatment of solid tumors: effects on electric field-mediated gene delivery[J]. Mol Cancer Ther, 2008, 7(8):2566-2573.
[7] REY J I, JAROSZESKI M J, GILBERT R A. Feasibility study for focusing electric fields to mediate in vitro drug and gene delivery[J]. Conf Proc IEEE Eng Med Biol Soc, 2006, 1:5617-5620.
[8] CANNON R, ELLIS S, HAYES D, et al. Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures[J]. J Surg Oncol, 2013, 107(5):544-549.
[9] KINGHAM T P, KARKAR A M, D'ANGELICA M I, et al. Ablation of perivascular hepatic malignant tumors with irreversible electroporation[J]. J Am Coll Surg, 2012, 215(3):379-387.
[10] NARAYANAN G, FROUD T, LO K, et al. Pain analysis in patients with hepatocellular carcinoma: irreversible electroporation versus radiofrequency ablation-initial observations[J]. Cardiovasc Intervent Radiol, 2013, 36(1):176-182.
[11] MARTIN R C 2ND, MCFARLAND K, ELLIS S, et al. Irreversible electroporation therapy in the management of locally advanced pancreatic adenocarcinoma[J]. J Am Coll Surg, 2012, 215(3):361-369.
[12] MARTIN R C 2ND, MCFARLAND K, ELLIS S, et al. Irreversible electroporation in locally advanced pancreatic cancer: potential improved overall survival[J]. Ann Surg Oncol, 2013, 20 Suppl 3:S443-S449.
[13] THOMSON K R, CHEUNG W, ELLIS S J, et al. Investigation of the safety of irreversible electroporation in humans[J]. J Vasc Interv Radiol, 2011, 22(5):611-621.
[14] PECH M, JANITZKY A, WENDLER J J, et al. Irreversible electroporation of renal cell carcinoma: a first-in-man phase i clinical study[J]. Cardiovasc Intervent Radiol, 2011, 34(1):132-138.
[15] USMAN M, MOORE W, TALATI R, et al. Irreversible electroporation of lung neoplasm: a case series[J]. Med Sci Monit, 2012, 18(6):CS43-CS47.
[16] BEEBE S J, FOX P M, REC L J, et al. Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells[J]. FASEB J, 2003, 17(11):1493-1495.
[17] REN Z, CHEN X, CUI G, et al. Nanosecond pulsed electric field inhibits cancer growth followed by alteration in expressions of NF-κB and wnt/beta-catenin signaling molecules[J]. PLoS One, 2013, 8(9):e74322.
[18] CHEN X, KOLB J F, SWANSON R J, et al. Apoptosis initiation and angiogenesis inhibition: melanoma targets for nanosecond pulsed electric fields[J]. Pigment Cell Melanoma Res, 2010, 23(4):554-563.
[19] NUCCITELLI R, PLIQUETT U, CHEN X, et al. Nanosecond pulsed electric fields cause melanomas to self-destruct[J]. Biochem Biophys Res Commun, 2006, 343(2):351-360.
[20] NUCCITELLI R, TRAN K, SHEIKH S, et al. Optimized nanosecond pulsed electric field therapy can cause murine malignant melanomas to self-destruct with a single treatment[J]. Int J Cancer, 2010, 127(7):1727-1736.
[21] NUCCITELLI R, TRAN K, ATHOS B, et al. Nanoelectroablation therapy for murine basal cell carcinoma[J]. Biochem Biophys Res Commun, 2012, 424(3):446-450.
[22] YANG W, WU Y H, YIN D, et al. Differential sensitivities of malignant and normal skin cells to nanosecond pulsed electric fields[J]. Technol Cancer Res Treat, 2011, 10(3):281-286.
[23] YIN D, YANG W G, WEISSBERG J, et al. Cutaneous papilloma and squamous cell carcinoma therapy utilizing nanosecond pulsed electric fields (nsPEF)[J]. PLoS One, 2012, 7(8):e43891.
[24] BEEBE S J, CHEN X, LIU J A, et al. Nanosecond pulsed electric field ablation of hepatocellular carcinoma[J]. Conf Proc IEEE Eng Med Biol Soc, 2011, 2011:6861-6865.
[25] CHEN X, ZHUANG J, KOLB J F, et al. Long term survival of mice with hepatocellular carcinoma after pulse power ablation with nanosecond pulsed electric fields[J]. Technol Cancer Res Treat, 2012, 11(1):83-93.
[26] HALL E H, SCHOENBACH K H, BEEBE S J. Nanosecond pulsed electric fields (nsPEF) induce direct electric field effects and biological effects on human colon carcinoma cells[J]. DNA Cell Biol, 2005, 24(5):283-291.
[27] HALL E H, SCHOENBACH K H, BEEBE S J. Nanosecond pulsed electric fields induce apoptosis in p53-wildtype and p53-null HCT116 colon carcinoma cells[J]. Apoptosis, 2007, 12(9):1721-1731.
[28] HALL E H, SCHOENBACH K H, BEEBE S J. Nanosecond pulsed electric fields have differential effects on cells in the S-phase[J]. DNA Cell Biol, 2007, 26(3):160-171.
[29] YAO C, MI Y, HU X, et al. Experiment and mechanism research of SKOV3 cancer cell apoptosis induced by nanosecond pulsed electric field[J]. Conf Proc IEEE Eng Med Biol Soc, 2008,2008:1044-1047.
[30] WANG J, GUO J, WU S, et al. Synergistic effects of nanosecond pulsed electric fields combined with low concentration of gemcitabine on human oral squamous cell carcinoma in vitro[J]. PLoS One, 2012, 7(8):e43213.
[31] STACEY M, OSGOOD C, KALLURI B S, et al. nanosecond pulse electrical fields used in conjunction with multi-wall carbon nanotubes as a potential tumor treatment[J]. Biomed Mater, 2011, 6(1):011002.
[32] ENTIN I, PLOTNIKOV A, KORENSTEIN R, et al. Tumor growth retardation, cure, and induction of antitumor immunity in B16 melanoma-bearing mice by low electric field-enhanced chemotherapy[J]. Clin Cancer Res, 2003, 9(8):3190-3197.
[33] AL-SAKERE B, BERNAT C, ANDRE F, et al. A study of the immunological response to tumor ablation with irreversible electroporation[J]. Technol Cancer Res Treat, 2007, 6(4):301-306.
[34] LI X, XU K, LI W, et al. Immunologic response to tumor ablation with irreversible electroporation[J]. PLoS One, 2012, 7(11):e48749.
[35] NUCCITELLI R, TRAN K, LUI K, et al. Non-thermal nanoelectroablation of UV-induced murine melanomas stimulates an immune response[J]. Pigment Cell Melanoma Res, 2012, 25(5):618-629.
[36] CHEN R, SAIN N M, HARLOW K T, et al. A protective effect after clearance of orthotopic rat hepatocellular carcinoma by nanosecond pulsed electric fields[J]. Eur J Cancer, 2014, 50(15):2705-2713.
[1] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[2] 李文龙,瞿海斌. 近红外光谱应用于中药质量控制及生产过程监控的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 80-88.
[3] 高思倩,沈咏梅,耿福能,李艳华,高建青. 糖尿病溃疡动物模型的建立及相关治疗研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[4] 王颖,汪仪,陈忠. 中枢胆碱能系统与癫痫关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 15-21.
[5] 高思倩,沈咏梅,耿福能,李艳华,高建青. 颞叶癫痫与海马成体神经再生[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[6] 封盛 等. 糖皮质激素受体信号通路在膀胱癌治疗中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 655-660.
[7] 李统宇 等. 杜氏肌营养不良疾病模型及基因治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 648-654.
[8] 周延峰 等. 1.8 mT不同频率正弦电磁场对青年大鼠骨生物力学性能的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 561-567.
[9] 方清清 等. 低频脉冲电磁场促进成骨细胞分化的基因调节和非基因调节探究[J]. 浙江大学学报(医学版), 2016, 45(6): 568-574.
[10] 夏光发 等. 新辅助化疗前后激素受体变化的乳腺癌患者辅助内分泌治疗的疗效[J]. 浙江大学学报(医学版), 2016, 45(6): 614-619.
[11] 曹鹏 等. 双氢青蒿素抗肿瘤分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 501-507.
[12] 李亭亭 等. 中性粒细胞在哮喘中作用的研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 544-549.
[13] 王雪 等. TANK结合激酶1在抗病毒免疫应答中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 550-557.
[14] 杜苗苗 等. 钙化性主动脉瓣疾病药物治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(4): 432-438.
[15] 何斌 等. 贝伐珠单克隆抗体在难治性子宫颈癌中的应用进展[J]. 浙江大学学报(医学版), 2016, 45(4): 395-402.