综述 |
|
|
|
|
自组装单分子膜技术在医用金属材料中的应用研究进展 |
王健, 朱志文, 徐国华, 安越 |
浙江大学化学工程与生物工程学院, 浙江杭州 310027 |
|
Research progress of self-assembled monolayer in biomedical metallic materials |
WANG Jian, ZHU Zhi-wen, XU Guo-hua, AN Yue |
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China |
引用本文:
王健, 朱志文, 徐国华, 安越. 自组装单分子膜技术在医用金属材料中的应用研究进展[J]. 浙江大学学报(医学版), 2015, 44(5): 589-594.
WANG Jian, ZHU Zhi-wen, XU Guo-hua, AN Yue. Research progress of self-assembled monolayer in biomedical metallic materials. Journal of ZheJiang University(Medical Science), 2015, 44(5): 589-594.
链接本文:
http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2015.09.19
或
http://www.zjujournals.com/xueshu/med/CN/Y2015/V44/I5/589
|
[1] |
张 辉, 战德松, 孙晓菊,等. 医用不锈钢材料的腐蚀、磨损及其生物相容性[J]. 中国组织工程研究与临床康复, 2010,14(34):6377-6380. ZHANG Hui, ZHAN De-song, SUN Xiao-ju, et al. Corrosion, wear and biocompatibility of medical stainless steel[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010,14(34):6377-6380.(in Chinese)
|
[2] |
刘 江. 医用金属材料的研制与应用[J]. 金属功能材料, 2007,14(6):38-42. LIU Jiang. Development and application of biomedical metal materials[J]. Metallic Functional Materials, 2007,14(6):38-42.(in Chinese)
|
[3] |
王蕴贤, 张小农, 孙 康. NiTi合金的生物医用性能及其在医学领域的应用[J]. 稀有金属, 2006,30(3):385-389. WANG Yun-xian, ZHANG Xiao-nong, SUN Kang. Biomedical performances of NiTi alloy and its biomedical applications[J]. Chinese Journal of Rare Metals, 2006,30(3):385-389.(in Chinese)
|
[4] |
KAUFMANN C R, MANI G, MARTON D, et al. Long-term stability of self-assembled monolayers on 316L stainless steel[J]. Biomed Mater, 2010,5(2):025008.
|
[5] |
SCHREIBER F. Structure and growth of self-assembling monolayers[J]. Prog Surf Sci, 2000,65(5-8):151-256.
|
[6] |
CORNELIUS R M, SHANKAR S P, BRASH J L, et al. Immunoblot analysis of proteins associated with self-assembled monolayer surfaces of defined chemistries[J]. J Biomed Mater Res A, 2011,98(1):7-18.
|
[7] |
MRKSICH M. Using self-assembled monolayers to model the extracellular matrix[J]. Acta Biomater, 2009,5(3):832-841.
|
[8] |
SECCHI A G, GRIGORIOU V, SHAPIRO I M, et al. RGDS peptides immobilized on titanium alloy stimulate bone cell attachment, differentiation and confer resistance to apoptosis[J]. J Biomed Mater Res A, 2007,83(3):577-584.
|
[9] |
陈奕帆,宋光保,万乾炳,等. 纯钛表面接枝RGD肽对成骨细胞早期附着铺展生物学行为的影响[J]. 实用医学杂志, 2010,26(8):952-953. CHEN Yi-fan, SONG Guang-bao,WAN Qian-bing, et al. The biological behavior of osteoblast's attachment and spreading on RGD peptide modified titanium surface[J].The Journal of Practical Medicine, 2010,26(8):952-953.(in Chinese)
|
[10] |
李 娟, 吴英锋, 杨新林. 肝素功能化生物材料的研究进展[J]. 有机化学, 2010,30(3):359-367. LI Juan, WU Ying-feng, YANG Xin-lin. Progress in heparin-functionalized biomaterials[J]. Chinese Journal of Organic Chemistry, 2010,30(3):359-367.(in Chinese)
|
[11] |
翁亚军, 谭红梅, 黄 楠,等. Ti-O薄膜表面固定肝素及抗凝血性能研究[J].生物医学工程学杂志, 2011,28(01):86-89. WENG Ya-jun, TAN Hong-mei, HUANG Nan, et al. Study of the fixed heparin and anticoagulant properties on Ti-O films[J]. Journal of Biomedical Engineering, 2011,28(01):86-89.(in Chinese)
|
[12] |
YANG Z, WANG J, LUO R, et al. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility[J]. Biomaterials, 2010,31(8):2072-2083.
|
[13] |
WU B, GERLITZ B, GRINNELL B W, et al. Polymeric coatings that mimic the endothelium:Combining nitric oxide release with surface-bound active thrombomodulin and heparin[J]. Biomaterials, 2007,28(28):4047-4055.
|
[14] |
YEH H Y, LIN J C. Bioactivity and platelet adhesion study of a human thrombomodulin-Immobilized nitinol surface[J]. J Biomater Sci Polym Ed, 2009,20(5-6):807-819.
|
[15] |
ISHIHARA K, NOMURA H, MIHARA T, et al. Why do phospholipid polymers reduce protein adsorption?[J]. J Biomed Mater Res, 1998,39(2):323-330.
|
[16] |
YE S H, JOHNSON C A JR, WOOLLEY JR, et al. Covalent surface modification of a titanium alloy with a phosphorylcholine-containing copolymer for reduced thrombogenicity in cardiovascular devices[J]. J Biomed Mater Res A, 2009,91(1):18-28.
|
[17] |
YE S H, JOHNSON C A JR, WOOLLEY JR, et al. Surface modi cation of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance[J]. Colloids Surf B Biointerfaces, 2009,74(1):96-102.
|
[18] |
SOUSA J E, SERRUYS P W, COSTA M A. New frontiers in cardiology drug eluting stents:Part I[J]. Circulation, 2003,107(17):2274-2279.
|
[19] |
CHEN J, CAO J, MAITZ M F, et al. Biofunctionalization of titanium with PEG and anti-CD34 for hemocompatibility and stimulated endothelialization[J]. J Colloid Interface Sci, 2012,368(1):636-647.
|
[20] |
ONG A T, MCFADDEN E P, REGAR E, et al. Late angiographic stent thrombosis(LAST) events with drug-eluting stents[J]. J Am Coll Cardiol, 2005,45(12):2088-2092.
|
[21] |
MANI G, TORRES N, OH S. Paclitaxel delivery from cobalt-chromium alloy surfaces using self-assembled monolayers[J]. Biointerphases, 2011,6(2):33-42.
|
[22] |
LANCASTER S, KAKADE S, MANI G. Microrough cobalt-chromium alloy surfaces for paclitaxel delivery:preparation, characterization, and in vitro drug release studies[J]. Langmuir, 2012,28(31):11511-11526.
|
[23] |
LAMICHHANE S, GALLO A, MANI G. A polymer-free paclitaxel eluting coronary stent:effects of solvents, drug concentrations and coating methods[J]. Ann Biomed Eng, 2014,42(6):1170-1184.
|
[24] |
MANI G, CHANDRASEKAR B, FELDMAN M D, et al. Interaction of endothelial cells with self-assembled monolayers for potential use in drug-eluting coronary stents[J]. J Biomed Mater Res B Appl Biomater, 2009,90(2):789-801.
|
[25] |
MAHAPATRO A, JOHNSO D M, PATEL D N, et al. Surface modification of functional self-assembled monolayers on 316L stainless steel via lipase catalysis[J]. Langmuir, 2006,22(3):901-905.
|
[26] |
MAHAPATRO A, JOHNSON D M, PATEL D N, et al. Drug delivery from therapeutic self-assembled monolayers(t-sams) on 316l stainless steel[J]. Curr Top Med Chem, 2008,8(4):281-289.
|
[27] |
SHUSTAK G, SHAULOV Y, DOMB A J,et al. Electrostatic attachment of gold and poly(lactic acid) nanoparticles onto ω-aminoalkanoic acid self-assembled monolayers on 316L stainless steel[J]. Chemistry, 2007,13(22):6402-6407.
|
[28] |
KRUSZEWSKI K M, NISTICO L, LONGWELL M J, et al. Reducing staphylococcus aureus bio-film formation on stainless steel 316L using functionalized self-assembled monolayers[J].Mater Sci Eng C Mater Biol Appl, 2013,33(4):2059-2069.
|
[29] |
WEBER T, GIES Y, TERFORT A. Bacteria-repulsive polyglycerol surfaces by grafting polymerization onto aminopropylated surfaces[J]. Langmuir, 2012,28(45):15916-15921.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|