Please wait a minute...
浙江大学学报(医学版)  2015, Vol. 44 Issue (5): 589-594    DOI: 10.3785/j.issn.1008-9292.2015.09.19
综述     
自组装单分子膜技术在医用金属材料中的应用研究进展
王健, 朱志文, 徐国华, 安越
浙江大学化学工程与生物工程学院, 浙江杭州 310027
Research progress of self-assembled monolayer in biomedical metallic materials
WANG Jian, ZHU Zhi-wen, XU Guo-hua, AN Yue
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
全文: PDF(815 KB)  
摘要: 

医用金属材料因其优良的机械性能、良好的生物相容性以及合理的价格被广泛应用于血管支架、心脏瓣膜和人工关节等人体植入体的制造。但人体内部生理环境复杂,金属材料长期包埋会发生腐蚀或非特异性作用,降低材料的原有性能,可能对人体造成严重的不良后果。对医用金属材料表面进行自组装单分子膜覆盖处理可以改进材料表面的物理化学性质,也可以以自组装单分子膜为媒介在金属材料表面嫁接其他功能材料,进而提高材料在人体内的稳定性和生物相容性,对构建促细胞黏附表面,提高材料表面的血液相容性,制备药物输送涂层,以及抑制材料表面细菌生长等方面具有很好效果。本文对自组装单分子膜技术在医用金属材料方面的应用及其进展进行了综述。

关键词 金属生物相容性材料药物洗脱支架膜,人工材料试验综述    
Abstract

Because of the excellent mechanical properties, biocompatibility and reasonable prices, biomedical metallic materials are widely used in the manufacture of vascular stents, heart valve membrane, artificial joints and other body implants. However, the physiological environment in the body is very complex, the long-term embedding of the metal implants may result in corrosion or some nonspecific effects. The properties of medical metal surfaces may decay, which can cause serious injury to human body. By means of the self-assembled monolayer(SAM) technology, the physical and chemical properties of the medical metal surfaces can be modified, and through the SAM medium, some functional materials can be grafted on the metal surfaces, which can largely improve the stability and compatibility of implants in the body, and find wide applications in promoting cell adhesion, improving hemocompatibility, inhibiting bacteria growth, and constructing drug delivery coatings. This paper reviews the progress in the application of SAM in biomedical metallic materials.

Key wordsMetals    Biocompatible materials    Drug-eluting stents    Membranes, artificial    Materials testing    Review
收稿日期: 2015-01-22
CLC:  O647  
通讯作者: 徐国华(1965-),男,博士,副教授,从事自组装单分子膜以及有机液体储氢技术的研究;E-mail:xugh@zju.edu.cn;http://orcid.org/0000-0001-7813-1586     E-mail: xugh@zju.edu.cn
作者简介: 王健(1991-),男,硕士研究生,从事自组装单分子膜的制备与应用研究;E-mail:21328091@zju.edu.cn;http://orcid.org/0000-0002-3346-8342
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王健
朱志文
徐国华
安越

引用本文:

王健, 朱志文, 徐国华, 安越. 自组装单分子膜技术在医用金属材料中的应用研究进展[J]. 浙江大学学报(医学版), 2015, 44(5): 589-594.
WANG Jian, ZHU Zhi-wen, XU Guo-hua, AN Yue. Research progress of self-assembled monolayer in biomedical metallic materials. Journal of ZheJiang University(Medical Science), 2015, 44(5): 589-594.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2015.09.19      或      http://www.zjujournals.com/xueshu/med/CN/Y2015/V44/I5/589

[1] 张 辉, 战德松, 孙晓菊,等. 医用不锈钢材料的腐蚀、磨损及其生物相容性[J]. 中国组织工程研究与临床康复, 2010,14(34):6377-6380. ZHANG Hui, ZHAN De-song, SUN Xiao-ju, et al. Corrosion, wear and biocompatibility of medical stainless steel[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010,14(34):6377-6380.(in Chinese)
[2] 刘 江. 医用金属材料的研制与应用[J]. 金属功能材料, 2007,14(6):38-42. LIU Jiang. Development and application of biomedical metal materials[J]. Metallic Functional Materials, 2007,14(6):38-42.(in Chinese)
[3] 王蕴贤, 张小农, 孙 康. NiTi合金的生物医用性能及其在医学领域的应用[J]. 稀有金属, 2006,30(3):385-389. WANG Yun-xian, ZHANG Xiao-nong, SUN Kang. Biomedical performances of NiTi alloy and its biomedical applications[J]. Chinese Journal of Rare Metals, 2006,30(3):385-389.(in Chinese)
[4] KAUFMANN C R, MANI G, MARTON D, et al. Long-term stability of self-assembled monolayers on 316L stainless steel[J]. Biomed Mater, 2010,5(2):025008.
[5] SCHREIBER F. Structure and growth of self-assembling monolayers[J]. Prog Surf Sci, 2000,65(5-8):151-256.
[6] CORNELIUS R M, SHANKAR S P, BRASH J L, et al. Immunoblot analysis of proteins associated with self-assembled monolayer surfaces of defined chemistries[J]. J Biomed Mater Res A, 2011,98(1):7-18.
[7] MRKSICH M. Using self-assembled monolayers to model the extracellular matrix[J]. Acta Biomater, 2009,5(3):832-841.
[8] SECCHI A G, GRIGORIOU V, SHAPIRO I M, et al. RGDS peptides immobilized on titanium alloy stimulate bone cell attachment, differentiation and confer resistance to apoptosis[J]. J Biomed Mater Res A, 2007,83(3):577-584.
[9] 陈奕帆,宋光保,万乾炳,等. 纯钛表面接枝RGD肽对成骨细胞早期附着铺展生物学行为的影响[J]. 实用医学杂志, 2010,26(8):952-953. CHEN Yi-fan, SONG Guang-bao,WAN Qian-bing, et al. The biological behavior of osteoblast's attachment and spreading on RGD peptide modified titanium surface[J].The Journal of Practical Medicine, 2010,26(8):952-953.(in Chinese)
[10] 李 娟, 吴英锋, 杨新林. 肝素功能化生物材料的研究进展[J]. 有机化学, 2010,30(3):359-367. LI Juan, WU Ying-feng, YANG Xin-lin. Progress in heparin-functionalized biomaterials[J]. Chinese Journal of Organic Chemistry, 2010,30(3):359-367.(in Chinese)
[11] 翁亚军, 谭红梅, 黄 楠,等. Ti-O薄膜表面固定肝素及抗凝血性能研究[J].生物医学工程学杂志, 2011,28(01):86-89. WENG Ya-jun, TAN Hong-mei, HUANG Nan, et al. Study of the fixed heparin and anticoagulant properties on Ti-O films[J]. Journal of Biomedical Engineering, 2011,28(01):86-89.(in Chinese)
[12] YANG Z, WANG J, LUO R, et al. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility[J]. Biomaterials, 2010,31(8):2072-2083.
[13] WU B, GERLITZ B, GRINNELL B W, et al. Polymeric coatings that mimic the endothelium:Combining nitric oxide release with surface-bound active thrombomodulin and heparin[J]. Biomaterials, 2007,28(28):4047-4055.
[14] YEH H Y, LIN J C. Bioactivity and platelet adhesion study of a human thrombomodulin-Immobilized nitinol surface[J]. J Biomater Sci Polym Ed, 2009,20(5-6):807-819.
[15] ISHIHARA K, NOMURA H, MIHARA T, et al. Why do phospholipid polymers reduce protein adsorption?[J]. J Biomed Mater Res, 1998,39(2):323-330.
[16] YE S H, JOHNSON C A JR, WOOLLEY JR, et al. Covalent surface modification of a titanium alloy with a phosphorylcholine-containing copolymer for reduced thrombogenicity in cardiovascular devices[J]. J Biomed Mater Res A, 2009,91(1):18-28.
[17] YE S H, JOHNSON C A JR, WOOLLEY JR, et al. Surface modi cation of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance[J]. Colloids Surf B Biointerfaces, 2009,74(1):96-102.
[18] SOUSA J E, SERRUYS P W, COSTA M A. New frontiers in cardiology drug eluting stents:Part I[J]. Circulation, 2003,107(17):2274-2279.
[19] CHEN J, CAO J, MAITZ M F, et al. Biofunctionalization of titanium with PEG and anti-CD34 for hemocompatibility and stimulated endothelialization[J]. J Colloid Interface Sci, 2012,368(1):636-647.
[20] ONG A T, MCFADDEN E P, REGAR E, et al. Late angiographic stent thrombosis(LAST) events with drug-eluting stents[J]. J Am Coll Cardiol, 2005,45(12):2088-2092.
[21] MANI G, TORRES N, OH S. Paclitaxel delivery from cobalt-chromium alloy surfaces using self-assembled monolayers[J]. Biointerphases, 2011,6(2):33-42.
[22] LANCASTER S, KAKADE S, MANI G. Microrough cobalt-chromium alloy surfaces for paclitaxel delivery:preparation, characterization, and in vitro drug release studies[J]. Langmuir, 2012,28(31):11511-11526.
[23] LAMICHHANE S, GALLO A, MANI G. A polymer-free paclitaxel eluting coronary stent:effects of solvents, drug concentrations and coating methods[J]. Ann Biomed Eng, 2014,42(6):1170-1184.
[24] MANI G, CHANDRASEKAR B, FELDMAN M D, et al. Interaction of endothelial cells with self-assembled monolayers for potential use in drug-eluting coronary stents[J]. J Biomed Mater Res B Appl Biomater, 2009,90(2):789-801.
[25] MAHAPATRO A, JOHNSO D M, PATEL D N, et al. Surface modification of functional self-assembled monolayers on 316L stainless steel via lipase catalysis[J]. Langmuir, 2006,22(3):901-905.
[26] MAHAPATRO A, JOHNSON D M, PATEL D N, et al. Drug delivery from therapeutic self-assembled monolayers(t-sams) on 316l stainless steel[J]. Curr Top Med Chem, 2008,8(4):281-289.
[27] SHUSTAK G, SHAULOV Y, DOMB A J,et al. Electrostatic attachment of gold and poly(lactic acid) nanoparticles onto ω-aminoalkanoic acid self-assembled monolayers on 316L stainless steel[J]. Chemistry, 2007,13(22):6402-6407.
[28] KRUSZEWSKI K M, NISTICO L, LONGWELL M J, et al. Reducing staphylococcus aureus bio-film formation on stainless steel 316L using functionalized self-assembled monolayers[J].Mater Sci Eng C Mater Biol Appl, 2013,33(4):2059-2069.
[29] WEBER T, GIES Y, TERFORT A. Bacteria-repulsive polyglycerol surfaces by grafting polymerization onto aminopropylated surfaces[J]. Langmuir, 2012,28(45):15916-15921.
[1] 高思倩,沈咏梅,耿福能,李艳华,高建青. 颞叶癫痫与海马成体神经再生[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[2] 王颖,汪仪,陈忠. 中枢胆碱能系统与癫痫关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 15-21.
[3] 高思倩,沈咏梅,耿福能,李艳华,高建青. 糖尿病溃疡动物模型的建立及相关治疗研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 97-105.
[4] 李文龙,瞿海斌. 近红外光谱应用于中药质量控制及生产过程监控的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 80-88.
[5] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[6] 陈刚,张鼎,应亚草,王志峰,陶伟,朱皓,张景峰,彭志毅. 国产载药微球经动脉化疗栓塞治疗不可切除原发性肝癌的临床研究[J]. 浙江大学学报(医学版), 2017, 46(1): 44-51.
[7] 封盛 等. 糖皮质激素受体信号通路在膀胱癌治疗中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 655-660.
[8] 李统宇 等. 杜氏肌营养不良疾病模型及基因治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 648-654.
[9] 张展 等. 鼠尾Ⅰ型胶原的酸解、纤维重构和仿骨生物矿化研究[J]. 浙江大学学报(医学版), 2016, 45(6): 592-597.
[10] 曹鹏 等. 双氢青蒿素抗肿瘤分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 501-507.
[11] 刘军 等. 机体炎症因子和氧化应激标志物介导姜黄素抑制骨性关节炎的作用机制[J]. 浙江大学学报(医学版), 2016, 45(5): 461-468.
[12] 李亭亭 等. 中性粒细胞在哮喘中作用的研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 544-549.
[13] 王雪 等. TANK结合激酶1在抗病毒免疫应答中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 550-557.
[14] 杜苗苗 等. 钙化性主动脉瓣疾病药物治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(4): 432-438.
[15] 何斌 等. 贝伐珠单克隆抗体在难治性子宫颈癌中的应用进展[J]. 浙江大学学报(医学版), 2016, 45(4): 395-402.