Please wait a minute...
浙江大学学报(医学版)
原著     
急进高原后大鼠组织高原适应性基因含量的差异性观察
谢华1, 郝颖1,2, 尹强1, 李文斌1, 鹿辉1, 贾正平1,2, 王荣1
1. 兰州军区兰州总医院, 全军高原损伤防治重点实验室, 甘肃兰州 730050;
2. 兰州大学生命科学学院, 甘肃兰州 730000
Expression of plateau adaptation gene of rat tissues after plain acute exposure to high altitude
XIE Hua1, HAO Ying1,2, YIN Qiang1, LI Wen-bing1, LU Hui1, JIA Zheng-ping1,2, WANG Rong1
1. Key Laboratory of Plateau Environmental Damage Control of PLA, Lanzhou General Hospital of Lanzhou Command, Lanzhou 730050, China;
2. School of Life Science, Lanzhou University, Lanzhou 730050, China
全文: PDF(1231 KB)  
摘要: 

目的:检测平原大鼠和急进不同海拔高原大鼠血液及组织器官中高原适应性基因(EPAS1、EGLN1和PPARα基因)含量及HIF-2α、PHD2和PPARα蛋白表达量,初步探讨高原适应性基因及相应表达蛋白在急进高原大鼠体内心、肝、脑、肺、肾组织分布的差异。方法:实验大鼠分为平原组、急进高原3400 m组、急进高原4300 m组;急进高原两组到达高原第1、3、5天分别取大鼠血液及组织器官,检测血常规,采用实时定量PCR和ELISA方法检测高原适应性基因及相应蛋白表达量,并对其进行比较分析。结果:急进高原4300 m组大鼠红细胞、血红蛋白、血细胞比容高于平原组(均P<0.05)。与平原组比较,急进高原两组血液和心、肝、肾组织中EPAS1基因含量明显增加(均P<0.05);心、肝、脑、肾组织中EGLN1基因含量增加(均P<0.05),心、肝、肾组织中PPARα基因含量增加(均P<0.05)。与平原组比较,HIF-2α蛋白表达量在急进高原两组各组织器官中均增加,且高海拔处肝、脑、肾组织中增加明显;心、肝、肾组织中PHD2和PPARα蛋白表达量均增加(均P<0.05)。结论:高原适应性基因的含量和相应蛋白表达量在不同海拔和不同组织中存在一定的差异。提示EPAS1、EGLN1和PPARα基因可作为抗高原缺氧药物靶向标志物。

关键词 高原病/血液高海拔基因大鼠聚合酶链反应    
Abstract

Objective:To detect the expression of the plateau adaptablity gene(EPAS1, EGLN1 and PPARα) and proteins(HIF-2, PHD2 and PPARα) in rats blood, heart, liver, lung and kidney tissue after the rats exposed to high altitude. Methods:The Wistar rats were randomly divided into plain group(Shanghai, 55 m), acute exposure to high altitude 3400 m group, acute exposure to high altitude 4300 m group. Blood and organs of rats were collected in 1, 3, 5 days after arrival. Real time PCR and ELISA were used to compare the expression of plateau adaptablity gene and related protein between plain group and high altitude exposure groups. Results:The count of red blood cells, hemoglobin and HCT in high altitude 4300 m were higher than those in plain group. Compared with plain group, the expression of EPAS1 gene in blood, heart, liver and kidney tissue of rats at high altitude increased obviously(all P<0.05); the expression of EGLN1 in the heart, liver, brain and kidney increased, and PPARα gene in the heart, liver and kidney increased(all P<0.05). Compared with plain group, the expression of HIF-2 protein increased significantly at high altitudes in the liver, brain and kidney tissues. PHD2 and PPARα increased in the heart, liver and kidney. Conclusion:Plateau adaptive genes(EPAS1, EGLN1 and PPARα) and protein(HIF-2, PHD2 and PPARα) differed in different altitude and different organizations. They might be used as target markers of plateau hypoxia.

Key wordsAltitude sickness/blood    Altitude    Genes    Rats    Polymerase chain reaction
收稿日期: 2015-02-04
CLC:  R332  
基金资助:

国家科技重大专项(2008ZXJ09014-010);国家自然科学基金(81401552);全军医学科研"十二五"重点项目(BWS12J012)

通讯作者: 王荣(1969-),男,博士,教授,主要从事高原药学研究;E-mail:wangrong-69@163.com;尹强(1963-),男,博士,教授,主任医师,主要从事高原疾病的防治;E-mail:yinqiang66@163.com     E-mail: wangrong-69@163.com;yinqiang66@163.com
作者简介: 谢华(1972-),女,学士,副主任药师,主要从事高原药学研究;E-mail:xiehua-72@163.com;http://orcid.org/0000-0003-4971-5333
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
谢华
郝颖
尹强
李文斌
鹿辉
贾正平
王荣

引用本文:

谢华, 郝颖, 尹强, 李文斌, 鹿辉, 贾正平, 王荣. 急进高原后大鼠组织高原适应性基因含量的差异性观察[J]. 浙江大学学报(医学版), 10.3785/j.issn.1008-9292.2015.09.16.
XIE Hua, HAO Ying, YIN Qiang, LI Wen-bing, LU Hui, JIA Zheng-ping, WANG Rong. Expression of plateau adaptation gene of rat tissues after plain acute exposure to high altitude. Journal of ZheJiang University(Medical Science), 2015, 44(5): 571-577.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2015.09.16      或      http://www.zjujournals.com/xueshu/med/CN/Y2015/V44/I5/571

[1] WU T, WANG X, WEI C, et al. Hemoglobin levels in Qinghai-Tibet:different effects of gender for Tibetans vs. Han[J]. J Appl Physiol, 2005,98(2):598-604.
[2] BEALL C M. Two routes to functional adaptation:Tibetan and Andean high altitude natives[J]. Proc Natl Acad Sci USA, 2007,104 Suppl 1:8655-8660.
[3] MOORE L G. Human genetic adaptation to high altitude[J]. High Alt Med Biol, 2001,2(2):257-279.
[4] SIMONSON T S,YANG Y Z,HUFF C D, et al. Genetic evidence for high-altitude adaptation in Tibet[J]. Science, 2010,329(5987):72-75.
[5] YI X, LIANG Y, HUERTA-SANCHEZ E, et al. Sequencing of 50 human exomes reveals adaptation to high altitude[J]. Science, 2010,329(5987):75-78.
[6] CHEN Y, GAO Y Q. Practice and application of genomics research in genetic mechanism of high-altitude adaptation in Tibetan[J]. Int J Genet, 2012,35(4):213-216.
[7] WANG B, ZHANG Y B, ZHANG F, et al. On the origin of Tibetans and their genetic basis in adaptating high-altitude environments[J]. PLoS One, 2011,6(2):e17002.
[8] PENG Y, YANG Z, ZHANG H, et al. Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas[J]. Mol Biol Evol, 2011,28(2):1075-1081.
[9] BIGHAM A, BAUCHET M, PINTO D, et al. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data[J]. PLoS Genet, 2010,6(9):e1001116.
[10] XU S H,LI S L,YANG Y J, et al. Agenome-wide search for signals of high-altitude adaptation in Tibetans[J]. Mol Biol Evol, 2011,28(2):1003-1011.
[11] WANG B, ZHANG Y B,ZHANG F, et al. On the origin of Tibetans and their genetic basis in adapting high-altitude environments[J]. PLoS One, 2011,6(2):e17002.
[12] YANG Y Z, WANG Y P, QI Y J, et al. Endothelial PAS domain protein 1 Chr2:46441523(hg18) polymorphism is associated with susceptibility to high altitude pulmonary edema in Han Chinese[J]. Wilderness Environ Med, 2013,24(4):315-320.
[13] WEBER R E. High-altitude adaptations in vertebrate hemoglobins[J]. Respir Physiol Neurobiol, 2007,158(2-3):132-142.
[14] 李雪冰. 高原低氧适应与EPAS1/HIF-2H及EGLN1/PHD2的相关性[J]. 医学综述, 2014,20(3):401-404. LI Xue-bing. The correlation between plateau hypoxic adaptation and EPAS1/HIF-2α, EGLN1/PHD2[J]. Medical Recaoitulate, 2014,20(3):401-404.(in Chinese)
[15] TAKEDA K, AGUILA H L, PARIKH N S, et al. Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins[J]. Blood, 2008,111(6):3229-3235.
[16] FONG G H, TAKEDA K. Role and regulation of prolyl hydroxylase domain proteins[J]. Cell Death Differ, 2008,15(4):635-641.
[17] KAELIN W G JR, RATCLIFFE P J. Oxygen sensing by metazoans:the central role of the HIF hydroxylase pathway[J]. Mol Cell, 2008,30(4):393-402.
[18] HUANG J, ZHAO Q, MOONEY S M, et al. Sequence determinants in hypoxia-inducible factor-1α for hydroxylation by the prolyl hydroxylases PHD1, PHD2, and PHD3[J]. J Bio Chem, 2002,277(42):39792-39800.
[19] SPEER R E, KARUPPAGOUNDER S S, BASSO M, et al. Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by "antioxidant" metal chelators:from ferroptosis to stroke[J]. Free Radic Bio Med, 2013,62:26-36.
[20] SONG D, LI L S, ARSENAULT P R, et al. Defective Tibetan PHD2 binding to p23 links high altitude adaptation to altered oxygen sensing[J]. J Bio Chem, 2014:289(21):14656-14665.
[1] 李统宇 等. 杜氏肌营养不良疾病模型及基因治疗研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 648-654.
[2] 周延峰 等. 1.8 mT不同频率正弦电磁场对青年大鼠骨生物力学性能的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 561-567.
[3] 方清清 等. 低频脉冲电磁场促进成骨细胞分化的基因调节和非基因调节探究[J]. 浙江大学学报(医学版), 2016, 45(6): 568-574.
[4] 张展 等. 鼠尾Ⅰ型胶原的酸解、纤维重构和仿骨生物矿化研究[J]. 浙江大学学报(医学版), 2016, 45(6): 592-597.
[5] 候仕芳 等. 下调lmna基因对斑马鱼胚胎髓系和红系造血干细胞发育的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 620-625.
[6] 孟楠楠 等. 甲基丁香酚对变应性鼻炎大鼠鼻黏膜组织中黏蛋白5AC的影响[J]. 浙江大学学报(医学版), 2016, 45(5): 477-485.
[7] 吴志华 等. 异基因造血干细胞移植受者T细胞受体β链CDR3谱型表达与巨细胞病毒激活[J]. 浙江大学学报(医学版), 2016, 45(5): 515-521.
[8] 陈晓静 等. 微RNA-let-7e-3p在宫颈上皮内瘤变和宫颈癌组织中的表达及临床意义[J]. 浙江大学学报(医学版), 2016, 45(4): 342-348.
[9] 沈志森 等. RNA干扰沉默DJ-1基因对Hep-2细胞裸鼠移植瘤生长的影响[J]. 浙江大学学报(医学版), 2016, 45(4): 349-355.
[10] 方敏波 等. 瞬时受体电位通道M2外显子单核苷酸多态性rs1556314与脓毒症的相关性分析[J]. 浙江大学学报(医学版), 2016, 45(4): 410-415.
[11] 娄鹏荣 等. 靶向RAD18的小干扰RNA对人食管鳞癌ECA-109细胞增殖和化疗敏感性的影响[J]. 浙江大学学报(医学版), 2016, 45(4): 364-370.
[12] 林伟仁 等. zeste基因增强子同源物2抑制剂GSK126对前列腺癌细胞的作用及机制[J]. 浙江大学学报(医学版), 2016, 45(4): 356-363.
[13] 周琦惠 等. 人类免疫缺陷病毒储存库评估测定技术研究进展[J]. 浙江大学学报(医学版), 2016, 45(3): 256-260.
[14] 王程 等. 微RNA:一类新的椎间盘退变调控因子[J]. 浙江大学学报(医学版), 2016, 45(2): 170-178.
[15] 苏敏 等. 基于可变数目串联重复序列的痰液结核分枝杆菌检测方法建立及初步应用[J]. 浙江大学学报(医学版), 2016, 45(1): 61-67.