Please wait a minute...
浙江大学学报(医学版)  2015, Vol. 44 Issue (5): 539-545    DOI: 10.3785/j.issn.1008-9292.2015.09.11
原著     
低频率电刺激抑制杏仁核电点燃癫痫刺激模式依赖效应的实验研究
刘扬1, 汪仪2, 许正浩2,3, 陈忠2
1. 浙江医院神经内科, 浙江杭州 310013;
2. 浙江大学药学院药理系, 浙江杭州 310058;
3. 浙江中医药大学基础医学院, 浙江杭州 310053
Antiepileptic effect of low frequency stimulation in kindling rats
LIU Yang1, WANG Yi2, XU Zheng-hao2,3, CHEN Zhong2
1. Department of Neurology, Zhejiang Hospital, Hangzhou 310013, China;
2. Department of Pharmacology, College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China;
3. College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
全文: PDF(1376 KB)  
摘要: 

目的:研究不同刺激模式的低频率电刺激对杏仁核电点燃癫痫模型大鼠的抗癫痫作用。方法:采用电点燃刺激法建立大鼠癫痫模型,观察开环模式(电点燃前给予)、闭环模式(电点燃后立即给予)以及不同形式闭环模式(全程给予、癫痫早期给予)的低频率电刺激对大鼠癫痫形成过程的影响。结果:闭环模式中全程给予低频率电刺激能降低大鼠电点燃癫痫形成过程中的癫痫发作等级(P<0.01)及缩短后放电持续时间(P<0.05)。闭环模式中癫痫形成早期给予低频率电刺激能降低大鼠电点燃癫痫形成过程中的癫痫发作等级(P<0.05),主要表现在对癫痫0~3级发展过程的抑制(均P<0.05)。而开环模式给予低频率电刺激不能抑制癫痫的发作(P>0.05)。结论:低频率电刺激的抗癫痫作用存在刺激模式依赖效应,这一结果可为深部脑刺激应用于临床治疗癫痫患者提供理论依据。

关键词 电刺激疗法癫痫/治疗杏仁核疾病模型,动物    
Abstract

Objective:To investigate the antiepileptic effects of various stimulation modes of low-frequency stimulation(LFS) on the kindling rats. Methods:Stimulating electrodes were implanted in the amygdala and current with constant intensity was applied to evoke kindling-induced seizures. The antiepileptic effect of LFS by open loop stimulation(before kindling), closed loop stimulation(immediately after kindling) and different forms of closed loop stimulation(whole stage after kindling and early stage after kindling) were investigated in amygdala kindled rats. Results:The closed loop LFS of whole stage after kindling can significantly inhibited seizure stages(P<0.01) and reduced afterdischarge duration(P<0.05). The closed loop LFS of early stage after kindling can significantly suppress the seizure stages, mainly in stages 0-3(P<0.05 or P<0.01). The open loop low-frequency stimulation did not inhibit the seizure stage during kindling acquisition(P>0.05). Conclusion:The antiepileptic effect of low frequency stimulation may have a mode-dependent effect. It may be helpful for the deep brain stimulation as a promising approach applied to clinical antiepileptic therapy in the future.

Key wordsElectric stimulation therapy    Epilepsy/therapy    Amygdala    Disease models, animal
收稿日期: 2015-04-08
CLC:  R74  
基金资助:

国家自然科学基金(81302749)

通讯作者: 陈忠(1968-),男,博士,教授,博士生导师,主要从事神经药理学研究;E-mail:chenzhong@zju.edu.cn;http://orcid.org/0000-0003-4755-9357     E-mail: chenzhong@zju.edu.cn
作者简介: 刘扬(1985-),女,博士,住院医师,主要从事癫痫的发病与治疗学研究;E-mail:kingofhades@vip.sina.com;http://orcid.org/0000-0003-1946-3972
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘扬
汪仪
许正浩
陈忠

引用本文:

刘扬, 汪仪, 许正浩, 陈忠. 低频率电刺激抑制杏仁核电点燃癫痫刺激模式依赖效应的实验研究[J]. 浙江大学学报(医学版), 2015, 44(5): 539-545.
LIU Yang, WANG Yi, XU Zheng-hao, CHEN Zhong. Antiepileptic effect of low frequency stimulation in kindling rats. Journal of ZheJiang University(Medical Science), 2015, 44(5): 539-545.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2015.09.11      或      http://www.zjujournals.com/xueshu/med/CN/Y2015/V44/I5/539

[1] KWAN P, BRODIE M J. Early identification of refractory epilepsy[J]. N Engl J Med, 2000,342(5):314-319.
[2] GUBELLINI P, SALIN P, KERKERIAN-LE G L, et al. Deep brain stimulation in neurological diseases and experimental models:from molecule to complex behavior[J]. Prog Neurobiol, 2009,89(1):79-123.
[3] KERRIGAN J F, LITT B, FISHER R S, et al. Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable epilepsy[J]. Epilepsia, 2004,45(4):346-354.
[4] VELASCO F, VELASCO M,JIMENEZ F, et al. Stimulation of the central median thalamic nucleus for epilepsy[J]. Stereotact Funct Neurosurg, 2001,77(1-4):228-232.
[5] BENABID A L, MINOTTI L, KOUDSIE A, et al. Antiepileptic effect of high-frequency stimulation of the subthalamic nucleus(corpus luysi) in a case of medically intractable epilepsy caused by focal dysplasia:a 30-month follow-up:technical case report[J]. Neurosurgery, 2002,50(6):1385-1391.
[6] FEDDERSEN B, VERCUEIL L, NOACHTAR S, et al. Controlling seizures is not controlling epilepsy:a parametric study of deep brain stimulation for epilepsy[J]. Neurobiol Dis, 2007,27(3):292-300.
[7] GRILL W M, SNYDER A N, MIOCINOVIC S. Deep brain stimulation creates an informational lesion of the stimulated nucleus[J]. Neuroreport, 2004,15(7):1137-1140.
[8] BURBAUD P, VITAL A, ROUGIER A, et al. Minimal tissue damage after stimulation of the motor thalamus in a case of chorea-acanthocytosis[J]. Neurology, 2002,59(12):1982-1984.
[9] YANG L X, JIN C L, ZHU-GE Z B, et al. Unilateral low-frequency stimulation of central piriform cortex delays seizure development induced by amygdaloid kindling in rats[J]. Neuroscience, 2006,138(4):1089-1096.
[10] WANG S, WU D C, DING M P, et al. Low frequency stimulation of cerebellar fastigial nucleus inhibits amygdaloid kindling acquisition in Sprague-Dawley rats[J]. Neurobiol Dis, 2008,29(1):52-58.
[11] XU Z H, WU D C, FANG Q, et al. Therapeutic time window of low-frequency stimulation at entorhinal cortex for amygdaloid-kindling seizures in rats[J]. Epilepsia, 2010,51(9):1861-1864.
[12] SUN H L, ZHANG S H, ZHONG K, et al. Mode-dependent effect of low-frequency stimulation targeting the hippocampal CA3 subfield on amygdala-kindled seizures in rats[J]. Epilepsy Res, 2010,90(1-2):83-90.
[13] GOODMAN J H,BERGER R E,TCHENG T K. Preemptive low-frequency stimulation decreases the incidence of amygdala-kindled seizures[J]. Epilepsia, 2005,46(1):1-7.
[14] WEISS S R, LI X L, ROSEN J B, et al. Quenching:inhibition of development and expression of amygdala kindled seizures with low frequency stimulation[J]. Neuroreport, 1995,6(16):2171-2176.
[15] PAXINOS G, WATSON C. The rat brain in stereotaxic coordinates[M]. 3rd ed. New York:Academic Press,2004:73.
[16] RACINE R J. Modification of seizure activity by electrical stimulation. II. Motor seizure[J]. Electroencephalogr Clin Neurophysiol, 1972,32(3):281-294.
[17] VELASCO M, JIMENEZ F, VELASCO A L, et al. Centromedian nucleus stimulation for epilepsy clinical, electroencephalographic, and behavioral observations[J]. Thalamus & Related Systems, 2002,1(4):387-398.
[18] MALENKA R C. Synaptic plasticity in the hippocampus:LTP and LTD[J]. Cell, 1994,78(4):535-538.
[19] BEAR M F, ABRAHAM W C. Long-term depression in hippocampus[J]. Annu Rev Neurosci, 1996,19:437-462.
[20] LINDEN D J, CONNOR J A. Long-term synaptic depression[J]. Annu Rev Neurosci, 1995,18:319-357.
[21] ARTOLA A, BROCHER S, SINGER W. Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex[J]. Nature, 1990,347(6288):69-72.
[22] CALABRESI P, PISANI A, CENTONZE D, et al. Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum[J]. Neurosci Biobehav Rev, 1997,21(4):519-523.
[23] LI H,WEISS S R,CHUANG D M, et al. Bidirectional synaptic plasticity in the rat basolateral amygdala:characterization of an activity-dependent switch sensitive to the presynaptic metabotropic glutamate receptor antagonist 2S-alpha-ethylglutamic acid[J]. J Neurosci, 1998,18(5):1662-1670.
[24] FEDDERSEN B, VERCUEIL L, NOACHTAR S, et al. Controlling seizures is not controlling epilepsy:a parametric study of deep brain stimulation for epilepsy[J]. Neurobiol Dis, 2007,27(3):292-300.
[25] CHEN Y L, HUANG C C, HSU K S, et al. Time-dependent reversal of long-term potentiation by low-frequency stimulation at the hippocampal mossy fiber-CA3 synapses[J]. J Neurosci, 2001,21(11):3705-3714.
[26] KOBAYASHI K, MANABE T, TAKAHASHI T, et al. Presynaptic long-term depression at the hippocampal mossy fiber-CA3 synapse[J]. Science, 1996,273(5275):648-650.
[27] GHORBANI P, MOHAMMAD-ZADEH M, MIRNAJAFI-ZADEH J, et al. Effect of different patterns of low-frequency stimulation on piriform cortex kindled seizures[J]. Neurosci Lett, 2007,425(3):162-166.
[28] SADEGH M, MIRNAJAFI-ZADEH J, JAVAN M, et al. The role of galanin receptors in anticonvulsant effects of low-frequency stimulation in perforant path-kindled rats[J]. Neuroscience, 2007,150(2):396-403.
[1] 陶安风, 许正浩, 吴承昊, 汪仪, 侯伟伟, 张世红, 陈忠. 不同波形低频率电刺激对小鼠海马电点燃癫痫的作用比较[J]. 浙江大学学报(医学版), 2015, 44(3): 315-322.
[2] . 大鼠电点燃癫痫和低频率电刺激癫痫灶点对自发性神经病理性疼痛的作用[J]. 浙江大学学报(医学版), 2012, 41(1): 47-53.
[3] 陈忠;张世红. 深部脑刺激在神经精神疾病治疗中的应用研究进展[J]. 浙江大学学报(医学版), 2009, 38(6): 549-558.
[4] 吴海琴;姚丽;杜赟;张桂莲;张茹;刘璟洁;卜宁. Ref-1在阿尔茨海默病大鼠海马CA1区表达的研究[J]. 浙江大学学报(医学版), 2008, 37(6): 629-633.
[5] 诸葛正兵;方琦;金春雷;陈忠. 杏仁核电点燃癫痫对大鼠穿梭箱被动回避反应的记忆保持能力的作用[J]. 浙江大学学报(医学版), 2008, 37(5): 463-467.
[6] 沈毅弘,蔡勇,蓝倩倩,高萱,夏强,虞燕琴. 中枢一氧化氮在躯体传入冲动抑制中枢性升压反应中的作用及机制[J]. 浙江大学学报(医学版), 2007, 36(5): 477-482.
[7] 朱媛媛,诸葛正兵,王爽,杨丽霞,陈忠. 单侧梨状脑中间区内微量注射生理盐水对大鼠杏仁核电点燃癫痫大发作的影响[J]. 浙江大学学报(医学版), 2007, 36(2): 141-145.
[8] 虞燕琴,夏强,张荣宝. 杏仁中央核在下丘脑室旁核心血管反应中的作用[J]. 浙江大学学报(医学版), 2006, 35(2): 172-177.