Please wait a minute...
浙江大学学报(医学版)  2015, Vol. 44 Issue (5): 493-499    DOI: 10.3785/j.issn.1008-9292.2015.09.04
专题报道     
拉帕替尼与绿原酸联合应用抑制巨噬细胞M2型极化及抗乳腺癌转移的作用研究
张洁琼1, 姚张婷1, 梁桂开1, 陈羲1, 吴洪海1, 金露2, 丁玲1
1. 浙江大学药学院浙江省抗肿瘤药物临床前研究重点实验室, 浙江杭州 310058;
2. 温州医科大学附属第二医院神经内科, 浙江温州 325027
Combination of lapatinib with chlorogenic acid inhibits breast cancer metastasis by suppressing macrophage M2 polarization
ZHANG Jie-qiong1, YAO Zhang-ting1, LIANG Gui-kai1, CHEN Xi1, WU Hong-hai1, JIN Lu2, DING Ling1
1. College of Pharmaceutical Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, Hangzhou 310058, China;
2. Department of Neurology, the Second Affiliated Hospital Wenzhou Medical University, Wenzhou 325027, China
全文: PDF(2287 KB)  
摘要: 

目的:研究拉帕替尼与绿原酸联合应用对抑制巨噬细胞M2型极化的影响及其在乳腺癌转移中的作用。方法:采用IL-13建立巨噬细胞M2型极化的体外模型,流式细胞术检测拉帕替尼和绿原酸合用对巨噬细胞M2型表面标志物CD206的影响;实时定量PCR检测拉帕替尼和绿原酸合用对巨噬细胞M2型特异性基因表达的影响;采用自发乳腺癌且发生肺转移的MMTV-PyVT小鼠模型考察两药合用对乳腺癌肺转移的影响,观察肺转移灶组织HE染色结果并统计转移灶点数;免疫荧光法分析乳腺癌组织中巨噬细胞的M2型极化情况。结果:拉帕替尼与绿原酸合用能够有效抑制IL-13诱导的F4/80hi CD206hi细胞(即M2型巨噬细胞)增多[(42.17%±2.59%)与(61.15%±7.58%),P<0.05];两药合用能明显下调由IL-13诱导的Ym1基因的上调[(1.8±0.0)与(1.0±0.0),P<0.05],且其作用比绿原酸单给药组强[(0.9±0.1)与(1.8±0.0),P<0.05];拉帕替尼与绿原酸合用能显著减少小鼠肺转移灶点数[P<0.05];两药合用与对照组比较能降低瘤内CD206阳性细胞所占巨噬细胞的比例[(6.08%±2.60%)与(29.04%±5.86%),P<0.05]。结论:拉帕替尼与绿原酸的联合用药能有效抑制巨噬细胞的M2型极化以及乳腺癌的转移。

关键词 乳腺肿瘤/药物疗法肿瘤转移脱氧胞苷/类似物和衍生物脱氧胞苷/治疗应用抗肿瘤药(中药)/治疗应用绿原酸/治疗应用巨噬细胞白细胞介素13    
Abstract

Objective:To determine the effect of the combination of lapatinib with chlorogenic acid on metastasis of breast cancer in mouse model. Methods:The classical macrophage M2 polarization model induced by interlukin13in vitro was adopted in the study. Flow cytometric analysis was performed to detect the expression of M2 marker CD206. The transcription of M2-associated genes was measured by RT-PCR. HE staining was used to analyze the metastatic nodes of breast cancer in lungs of MMTV-PyVT mice. Immunostaining analysis was used to detect the expression of related proteins in breast cancer. Results:The combination of lapatinib and chlorogenic acid inhibited the expression of CD206 induced by IL-13[(42.17%±2.59%) vs (61.15%±7.58%), P<0.05]. The combination more markedly suppressed expression of M2-associated gene Ym1 than lapatinib alone[(0.9±0.1) vs (1.8±0.0), P<0.05]. The combination of lapatinib and chlorogenic acid significantly reduced metastatic nodes in lung[P<0.05], and also significantly decreased the percentage of CD206+ cells in breast cancer compared to controls[(6.08%±2.60%) vs(29.04%±5.86%), P<0.05]. Conclusion:The combination of lapatinib and chlorogenic acid can effectively inhibit macrophage M2 polarization and metastasis of breast cancer.

Key wordsBreast neoplasms/drug therapy    Neoplasm metastasis    Deoxycytidine/analogs &    derivatives    Deoxycytidine/therapeutic use    Antineoplastic drugs(TCD)/therapeutic use    Chlorogenic acid/therapeutic use    Macrophages    Interleukin-13
收稿日期: 2015-05-15
CLC:  R965  
基金资助:

浙江省自然科学基金(LY14H310008);浙江省教育厅科研项目(Y201226213)

通讯作者: 丁玲(1981-),女,博士,副教授,主要从事肿瘤药理学研究;E-mail:ld362@zju.edu.cn;金露(1978-),女,硕士,主治医师,主要从事神经病理学研究;E-mail:wzjinlu@126.com     E-mail: ld362@zju.edu.cn;wzjinlu@126.com
作者简介: 张洁琼(1991-),女,硕士研究生,主要从事肿瘤药理学研究;E-mail:zhangjq0425@zju.edu.cn;http://orcid.org/0000-0002-2807-5173
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张洁琼等. 拉帕替尼与绿原酸联合应用抑制巨噬细胞M2型极化及抗乳腺癌转移的作用研究[J]. 浙江大学学报(医学版), 2015, 44(5): 493-499.
ZHANG Jie-qiong, YAO Zhang-ting, LIANG Gui-kai, CHEN Xi, WU Hong-hai, JIN Lu, DING Ling. Combination of lapatinib with chlorogenic acid inhibits breast cancer metastasis by suppressing macrophage M2 polarization. Journal of ZheJiang University(Medical Science), 2015, 44(5): 493-499.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2015.09.04      或      http://www.zjujournals.com/xueshu/med/CN/Y2015/V44/I5/493

[1] GAO H, CHAKRABORTY G, LEE-LIM A P, et al. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites[J]. Cell, 2012,150(4):764-779.
[2] QIAN B Z, POLLARD J W. New tricks for metastasis-associated macrophages[J]. Breast Cancer Res, 2012,14(4):316.
[3] QIAN B Z, POLLARD J W. Macrophage diversity enhances tumor progression and metastasis[J]. Cell, 2010,141(1):39-51.
[4] QIAN B Z, LI J, ZHANG H, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis[J]. Nature, 2011,475(7355):222-225.
[5] BISWAS S K, MANTOVANI A. Macrophage plasticity and interaction with lymphocyte subsets:cancer as a paradigm[J]. Nat Immunol, 2010,11(10):889-896.
[6] LEWIS C E, POLLARD J W. Distinct role of macrophages in different tumor microenvironments[J]. Cancer Res, 2006,66(2):605-612.
[7] SCHMIEDER A, MICHEL J, SCHONHAAR K, et al. Differentiation and gene expression profile of tumor-associated macrophages[J]. Semin Cancer Biol, 2012,22(4):289-297.
[8] LAWRENCE T, NATOLI G. Transcriptional regulation of macrophage polarization:enabling diversity with identity[J]. Nat Rev Immunol, 2011,11(11):750-761.
[9] RUFFELL B, AFFARA N I, COUSSENS L M. Differential macrophage programming in the tumor microenvironment[J]. Trends Immunol, 2012,33(3):119-126.
[10] FALCHOOK G S, MOULDER S L, WHELER J J, et al. Dual HER2 inhibition in combination with anti-VEGF treatment is active in heavily pretreated HER2-positive breast cancer[J]. Ann Oncol, 2013,24(12):3004-3011.
[11] TEVAARWERK A J, KOLESAR J M. Lapatinib:a small-molecule inhibitor of epidermal growth factor receptor and human epidermal growth factor receptor-2 tyrosine kinases used in the treatment of breast cancer[J]. Clin Ther, 2009,31 Pt 2:2332-2348.
[12] BERNSTEIN C, HOLUBEC H, BHATTACHARYYA A K, et al. Carcinogenicity of deoxycholate, a secondary bile acid[J]. Arch Toxicol, 2011,85(8):863-871.
[13] KASAI H, FUKADA S, YAMAIZUMI Z, et al. Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model[J]. Food Chem Toxicol, 2000,38(5):467-471.
[14] KANG N J, LEE K W, KIM B H, et al. Coffee phenolic phytochemicals suppress colon cancer metastasis by targeting MEK and TOPK[J]. Carcinogenesis, 2011,32(6):921-928.
[15] GUY C T, CARDIFF R D, MULLER W J. Induction of mammary tumors by expression of polyomavirus middle T oncogene:a transgenic mouse model for metastatic disease[J]. Mol Cell Biol, 1992,12(3):954-961.
[16] LIN E Y, JONES J G, LI P, et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases[J]. Am J Pathol, 2003, 163(5):2113-2126.
[1] 曹鹏 等. 双氢青蒿素抗肿瘤分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 501-507.
[2] 韩瑞 等. 贝伐珠单克隆抗体联合化疗用于Her2阴性乳腺癌患者新辅助治疗的meta分析[J]. 浙江大学学报(医学版), 2016, 45(4): 379-386.
[3] 陈子博等. 舒尼替尼通过调控转化生长因子β介导的上皮-间质转化抑制卵巢癌细胞转移[J]. 浙江大学学报(医学版), 2015, 44(5): 479-485.
[4] 陶泉玮等. 聚腺苷二磷酸核糖聚合酶抑制剂联合卡铂对人乳腺癌细胞凋亡的影响[J]. 浙江大学学报(医学版), 2015, 44(5): 506-510.
[5] 叶万立,等.
同步放化疗治疗19例不能手术切除的局部晚期肝外胆管癌患者
[J]. 浙江大学学报(医学版), 2014, 43(6): 688-694.
[6] 赵亮,等. 结直肠癌转移机制研究进展[J]. 浙江大学学报(医学版), 2014, 43(4): 486-493.
[7] 杜潇,王以涵,王自强,等. 小分子干扰RNA沉默Notch1后增加胰腺癌细胞凋亡活性而提高吉西他滨化疗敏感性[J]. 浙江大学学报(医学版), 2014, 43(3): 313-318.
[8] 张大勇, 林仪茜, 何非, 方洁, 张翀, 王宝明, 潘建平. TcpC通过促进活性氧的产生诱导巨噬细胞凋亡[J]. 浙江大学学报(医学版), 2013, 42(5): 486-491.
[9] . 晚期非小细胞肺癌肿瘤组织和外周血淋巴细胞中RRM1和ERCC1基因表达的研究[J]. 浙江大学学报(医学版), 2012, 41(5): 540-546.
[10] . 多糖激活巨噬细胞的信号转导通路[J]. 浙江大学学报(医学版), 2011, 40(5): 567-572.
[11] . 组织因子在纤维肉瘤细胞血管外游走中的作用[J]. 浙江大学学报(医学版), 2011, 40(2): 184-188.
[12] 韩睿,林爱华,朱可建,程浩,吴善东. 过敏性疾病患者血清Th1/Th2细胞因子和趋化因子测定及其意义[J]. 浙江大学学报(医学版), 2009, 38(4): 352-356.
[13] 朱林静;来翀;胡虎. TM4SF与整合素共同调节肿瘤转移[J]. 浙江大学学报(医学版), 2009, 38(2): 208-214.
[14] 赵新汉;李丽;王志宇;张灵小;安改丽. G4PAMAM/VEGFASODN抗乳腺癌血管生成的体外实验研究 [J]. 浙江大学学报(医学版), 2008, 37(6): 612-621.
[15] 王临润;张国兵;黄明珠. 吉西他滨固定速率输注的峰浓度与血液学毒性的相关性研究[J]. 浙江大学学报(医学版), 2007, 36(4): 391-395.