[1] RUH P Q, KROESE-DEUTMAN H C, WOLKE J G, et al. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits [J]. Biomaterials, 2004,25(11):2123-2132.
[2] BOSE S, TARAFDER S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review [J]. Acta Biomater,2012,8(4):1401-1421.
[3] KEMPEN D H, LU L, HEFFERAN T E, et al. Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering [J]. Biomaterials,2008,29(22):3245-3252.
[4] VLAD M D, SINDILAR E V, MARINOSO M L, et al. Osteogenic biphasic calcium sulphate dihydrate/iron-modified alpha-tricalcium phosphate bone cement for spinal applications: in vivo study [J]. Acta Biomater,2010,6(2):607-616.
[5] DEL REAL R P, OOMS E, WOLKE J G, et al. In vivo bone response to porous calcium phosphate cement [J]. J Biomed Mater Res A,2003,65(1):30-36.
[6] MOONEY D J, BALDWIN D F, SUH N P, et al. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents [J]. Biomaterials,1996,17(14):1417-1422.
[7] THOMSON R C, MIKOS A G, BEAHM E, et al. Guided tissue fabrication from periosteum using preformed biodegradable polymer scaffolds [J]. Biomaterials, 1999,20(21):2007-2018.
[8] NARAYAN D, VENKATRAMAN S S. Effect of pore size and interpore distance on endothelial cell growth on polymers [J]. J Biomed Mater Res A,2008,87(3):710-718.
[9] OH S H, PARK I K, KIM J M, et al. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method [J]. Biomaterials,2007,28(9):1664-1671.
[10] KARAGEORGIOU V, KAPLAN D. Porosity of 3D biomaterial scaffolds and osteogenesis [J]. Biomaterials,2005,26(27):5474-5491.
[11] AKAY G, BIRCH M A, BOKHARI M A. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro [J]. Biomaterials,2004,25(18):3991-4000.
[12] LU J X, FLAUTRE B, ANSELME K, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo [J]. J Mater Sci Mater Med,1999,10(2):111-120.
[13] MASTROGIACOMO M, SCAGLIONE S, MARTINETTI R, et al. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics [J]. Biomaterials,2006,27(17):3230-3237.
[14] MURPHY C M, HAUGH M G, O'BRIEN F J. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering [J]. Biomaterials,2010,31(3):461-466.
[15] GRIFFON D J, SEDIGHI M R, SCHAEFFER D V, et al. Chitosan scaffolds: interconnective pore size and cartilage engineering [J]. Acta Biomater,2006,2(3):313-320.
[16] SOBRAL J M, CARIDADE S G, SOUSA R A, et al. Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency [J]. Acta Biomater,2011,7(3):1009-1018.
[17] HOLLINGER J O, KLEINSCHMIDT J C. The critical size defect as an experimental model to test bone repair materials [J]. J Craniofac Surg,1990,1(1):60-68.
[18] KASUYA A, SOBAJIMA S, KINOSHITA M. In vivo degradation and new bone formation of calcium phosphate cement-gelatin powder composite related to macroporosity after in situ gelatin degradation [J]. J Orthop Res,2012,30(7):1103-1111.
[19] LIN A S, BARROWS T H, CARTMELL S H, et al. Microarchitectural and mechanical characterization of oriented porous polymer scaffolds [J]. Biomaterials,2003,24(3):481-489.
[20] KOKUBO T, KIM H M, KAWASHITA M. Novel bioactive materials with different mechanical properties [J]. Biomaterials,2003,24(13):2161-2175.
[21] LASCHKE M W, STROHE A, SCHEUER C, et al. In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering [J]. Acta Biomater,2009,5(6):1991-2001.
[22] BURG K J, PORTER S, KELLAM J F. Biomaterial developments for bone tissue engineering [J]. Biomaterials,2000,21(23):2347-2359. |