Please wait a minute...
浙江大学学报(医学版)  2015, Vol. 44 Issue (1): 95-100    DOI: 10.3785/j.issn.1008-9292.2015.01.016
综述     
基质金属蛋白酶影响中枢轴突再生的研究进展
李雨颖1, 丁悦敏2, 张雄1
1. 浙江大学医学院基础医学系, 浙江 杭州 310058;
2. 浙江大学城市学院医学院, 浙江 杭州 310015
Progress on matrix metalloproteinase in axonal regeneration
LI Yu-ying1, DING Yue-min2, ZHANG Xiong1
1. Zhejiang University School of Medcine, Hangzhou 310058, China;
2. School of Medicine, Zhejiang University City College, Hangzhou 310015, China
 全文: PDF(1101 KB)   HTML (
摘要:

基质金属蛋白酶(MMPs)是锌离子依赖的蛋白水解酶,它不仅能降解和重塑细胞外基质而且能调节基质依附的受体和分子活性,从而改变细胞外环境,影响中枢神经损伤后的轴突再生.本文以脊髓损伤为例,分别从炎症反应、神经元的生存、细胞外分子、胶质疤痕与轴突再髓鞘化等方面阐述了MMPs对轴突再生的影响,希望加强对MMPs的认识,从而促进其应用.

关键词: 基质金属蛋白酶细胞外基质脊髓损伤神经再生轴突综述    
Abstract:

Matrix metalloproteinases(MMPs)are zinc-dependent endopeptidases. MMPs can degrade and remodel extracellular matrix, also active or inactive many molecules attaching to matrix including receptors, growth factors and cytokines, so that injury-induced MMPs can change the extracellular environment to affect the axonal regeneration in central nervous system. In this review, with spinal cord injury (SCI) as an example we discuss the effects of MMPs on inflammation, neuronal viability, extracellular molecules, glial scar and axonal remyelination, which are all important to axonal regeneration.

Key words: Matrix metalloproteinases    Extracellular matrix    Spinal cord injuries/pathology    Nerve regeneration    Axons    Review
收稿日期: 2014-09-17 出版日期: 2015-03-25
CLC:  R741  
基金资助:

浙江省自然科学基金(LY14H090002 ); 浙江省医药卫生科技计划(2012KYB065).

通讯作者: 张 雄(1973-),男,博士,副教授,主要从事神经损伤与修复研究;E-mail: xiongzhang@zju.edu.cn     E-mail: xiongzhang@zju.edu.cn
作者简介: 李雨颖(1990-),女,硕士研究生,主要从事脊髓损伤的修复研究;E-mail: 547399774@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李雨颖
丁悦敏
张雄

引用本文:

李雨颖, 丁悦敏, 张雄. 基质金属蛋白酶影响中枢轴突再生的研究进展[J]. 浙江大学学报(医学版), 2015, 44(1): 95-100.

LI Yu-ying, DING Yue-min, ZHANG Xiong. Progress on matrix metalloproteinase in axonal regeneration. Journal of ZheJiang University(Medical Science), 2015, 44(1): 95-100.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2015.01.016        http://www.zjujournals.com/med/CN/Y2015/V44/I1/95

[1] SCHWAB J M, BRECHTEL K, MUELLER C A, et al. Experimental strategies to promote spinal cord regeneration—an integrative perspective [J]. Prog Neurobiol, 2006, 78(2):91-116.
[2] YONG V W. Metalloproteinases: mediators of pathology and regeneration in the CNS [J]. Nat Rev Neurosci, 2005,6(12):931-944.
[3] HARAGUCHI M, OKUBO T, MIYASHITA Y, et al. Snail regulates cell-matrix adhesion by regulation of the expression of integrins and basement membrane proteins [J]. J Biol Chem, 2008, 283 (35):23514-23523.
[4] GAUDET A D, POPOVICH P G. Extracellular matrix regulation of inflammation in the healthy and injured spinal cord [J]. Exp Neurol, 2014, 258: 24-34.
[5] JIANG D, LIANG J, FAN J, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan [J]. Nat Med, 2005, 11(11):1173-1179.
[6] COLLINS S L, BLACK K E, CHAN-LI Y, et al, Hyaluronan fragments promote inflammation by down-regulating the anti-inflammatory A2a receptor [J]. Am J Respir Cell Mol Biol, 2011, 45 (4):675-683.
[7] REIJERKERK A, KOOIJ G, VAN DER POL S M, et al. Diapedesis of monocytes is associated with MMP-mediated occludin disappearance in brain endothelial cells [J]. FASEB J, 2006, 20 (14):2550-2552.
[8] LU D Y, YU W H, YEH W L, et al. Hypoxia-induced matrix metalloproteinase-13 expression in astrocytes enhances permeability of brain endothelial cells [J]. J Cell Physiol, 2009, 220(1):163-173.
[9] YANG Y, ESTRADA E Y, THOMPSON J F, et al. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat [J]. J Cereb Blood Flow Metab, 2007, 27(4):697-709.
[10] VANDENBROUCKE R E, DEJONCKHEERE E, VAN HAUWERMEIREN F, et al. Matrix metalloproteinase 13 modulates intestinal epithelial barrier integrity in inflammatory diseases by activating TNF [J]. EMBO Mol Med, 2013, 5(7):932-948.
[11] NOBLE L J, DONOVAN F, IGARASHI T, et al. Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events [J]. J Neurosci, 2002, 22(17):7526-7535.
[12] VARGAS M E, BARRES B A. Why is Wallerian degeneration in the CNS so slow? [J]. Annu Rev Neurosci, 2007, 30: 153-179.
[13] CUI Q, YIN Y, BENOWITZ L I. The role of macrophages in optic nerve regeneration [J]. Neuroscience, 2009, 158(3):1039-1048.
[14] NISSINEN L, KHRI V M. Matrix metalloproteinases in inflammation [J]. Biochim Biophys Acta, 2014, 1840(8):2571-2580.
[15] VACHON P H. Integrin signaling, cell survival, and anoikis: distinctions, differences, and differentiation [J]. J Signal Transduct, 2011, 2011: 738137.
[16] YANG Y, CANDELARIO-JALIL E, THOMPSON J F, et al. Increased intranuclear matrix metalloproteinase activity in neurons interferes with oxidative DNA repair in focal cerebral ischemia [J]. J Neurochem, 2010, 112(1):134-149.
[17] GU Z, KAUL M, YAN B, et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death [J]. Science, 2002, 297(5584):1186-1190.
[18] WALKER E J, ROSENBERG G A. TIMP-3 and MMP-3 contribute to delayed inflammation and hippocampal neuronal death following global ischemia [J]. Exp Neurol, 2009, 216(1):122-131.
[19] HUR E M, SAIJILAFU, ZHOU F Q. Growing the growth cone: remodeling the cytoskeleton to promote axon regeneration [J]. Trends Neurosci, 2012, 35(3):164-174.
[20] OGIER C, BERNARD A, CHOLLET A M, et al. Matrix metalloproteinase-2 (MMP-2) regulates astrocyte motility in connection with the actin cytoskeleton and integrins [J]. Glia, 2006, 54(4):272-284.
[21] FURUTANI Y, MATSUNO H, KAWASAKI M, et al. Interaction between telencephalin and ERM family proteins mediates dendritic filopodia formation [J]. J Neurosci, 2007, 27(33):8866-8876.
[22] LIN K T, SLONIOWSKI S, ETHELL D W, et al. Ephrin-B2-induced cleavage of EphB2 receptor is mediated by matrix metalloproteinases to trigger cell repulsion [J]. J Biol Chem, 2008, 283(43):28969-28979.
[23] FILBIN M T. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS [J]. Nat Rev Neurosci, 2003, 4(9):703-713.
[24] PIZZI M A, CROWE M J. Matrix metalloproteinases and proteoglycans in axonal regeneration [J]. Exp Neurol, 2007, 204(2):496-511.
[25] MILWARD E, KIM K J, SZKLARCZYK A, et al. Cleavage of myelin associated glycoprotein by matrix metalloproteinases [J]. J Neuroimmunol, 2008, 193(1-2):140-148.
[26] WALMSLEY A R, MCCOMBIE G, NEUMANN U, et al. Zinc metalloproteinase-mediated cleavage of the human Nogo-66 receptor [J]. J Cell Sci, 2004, 117(Pt 19): 4591-4602.
[27] JAIN A, MCKEON R J, BRADY-KALNAY S M, et al. Sustained delivery of activated Rho GTPases and BDNF promotes axon growth in CSPG-rich regions following spinal cord injury [J]. PloS One, 2011, 6(1):e16135.
[28] DUCHOSSOY Y, HORVAT J C, STETTLER O. MMP-related gelatinase activity is strongly induced in scar tissue of injured adult spinal cord and forms pathways for ingrowing neurites [J]. Mol Cell Neurosci, 2001, 17(6):945-956.
[29] HSU J Y, MCKEON R, GOUSSEV S, et al. Matrix metalloproteinase-2 facilitates wound healing events that promote functional recovery after spinal cord injury [J]. J Neurosci, 2006, 26 (39):9841-9850.
[30] ROLLS A, AVIDAN H, CAHALON L, et al. A disaccharide derived from chondroitin sulphate proteoglycan promotes central nervous system repair in rats and mice [J]. Eur J Neurosci, 2004, 20(8):1973-1983.
[31] SAYGILI E, SCHAUERTE P, PEKASSA M, et al. Sympathetic neurons express and secrete MMP-2 and MT1 -MMP to control nerve sprouting via pro-NGF conversion [J]. Cell Mol Neurobiol, 2011, 31 (1):17-25.
[32] HWANG J J, PARK M H, CHOI S Y, et al. Activation of the Trk signaling pathway by extracellular zinc. Role of metalloproteinases [J]. J Biol Chem, 2005, 280(12):11995-12001.
[33] MONGIAT M, OTTO J, OLDERSHAW R, et al. Fibroblast growth factor-binding protein is a novel partner for perlecan protein core [J]. J Biol Chem, 2001, 276(13):10263-10271.
[34] FOWLKES J L, SERRA D M, BUNN R C, et al. Regulation of insulin-like growth factor (IGF)-I action by matrix metalloproteinase-3 involves selective disruption of IGF-I/IGF-binding protein-3 complexes [ J]. Endocrinology, 2004,145(2):620-626.
[35] SILVER J, MILLER J H. Regeneration beyond the glial scar [J]. Nat Rev Neurosci, 2004, 5(2):146-156.
[36] GOUSSEV S, HSU J Y, LIN Y, et al. Differential temporal expression of matrix metalloproteinases after spinal cord injury: relationship to revascularization and wound healing [J]. J Neurosurg,2003, 99(2 Suppl):188-197.
[37] HSU J Y, BOURGUIGNON L Y, ADAMS C M, et al. Matrix metalloproteinase-9 facilitates glial scar formation in the injured spinal cord [J]. J Neurosci, 2008, 28(50):13467-13477.
[38] PASTRANA E, MORENO-FLORES M T, GURZOV E N, et al. Genes associated with adult axon regeneration promoted by olfactory ensheathing cells: a new role for matrix metalloproteinase 2 [J]. J Neurosci, 2006, 26(20):5347-5359.
[39] VEERAVALLI K K, DASARI V R, TSUNG A J, et al. Human umbilical cord blood stem cells upregulate matrix metalloproteinase-2 in rats after spinal cord injury [J]. Neurobiol Dis, 2009, 36 (1):200-212.
[40] YANG L J, SCHNAAR R L. Axon regeneration inhibitors [J]. Neurol Res, 2008, 30 (10):1047-1052.
[41] GUEYE Y, FERHAT L, SBAI O, et al. Trafficking and secretion of matrix metalloproteinase-2 in olfactory ensheathing glial cells: A role in cell migration [J]. Glia, 2011, 59(5):750-770.
[42] PLEMEL J R, KEOUGH M B, DUNCAN G J, et al. Remyelination after spinal cord injury: is it a target for repair? [J]. Prog Neurobiol, 2014, 117: 54-72.
[43] OH L Y, LARSEN P H, KREKOSKI C A, et al. Matrix metalloproteinase-9/gelatinase B is required for process outgrowth by oligodendrocytes [J]. J Neurosci, 1999, 19(19):8464-8475.
[44] LARSEN P H, WELLS J E, STALLCUP W B, et al. Matrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan [J]. J Neurosci,2003, 23(35):11127-11135.
[45] LARSEN P H, DASILVA A G, CONANT K, et al. Myelin formation during development of the CNS is delayed in matrix metalloproteinase-9 and-12 null mice [J]. J Neurosci, 2006, 26(8):2207 -2214.

[1] 朱紫菱, 谈静, 邓红. 肿瘤细胞膜/质蛋白转位入核研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 318-325.
[2] 张建民. 缺血性脑血管疾病手术治疗新进展[J]. 浙江大学学报(医学版), 2019, 48(3): 233-240.
[3] 吴雨星, 张世红, 陈忠. 缰核及其神经环路在神经精神疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 310-317.
[4] 张韵竹, 朱春鹏, 陆新良. 胃癌早期诊断的血清生物学标志物研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 326-333.
[5] BabooKalianee Devi,陈正云,张信美. 子宫腺肌病患者药物治疗进展[J]. 浙江大学学报(医学版), 2019, 48(2): 142-147.
[6] 吴彬彬,杨毅. 心脏手术相关急性肾损伤早期生物学标志物研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 224-229.
[7] 王雅琪,金静华. 巨噬细胞在颅内动脉瘤发生发展中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 204-213.
[8] 杨坤,胡晓晟. 微小RNA-21在心脏疾病中的研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 214-218.
[9] 徐力,许鸣,童向民. 有氧糖酵解在非霍奇金淋巴瘤发病及耐药机制中的作用[J]. 浙江大学学报(医学版), 2019, 48(2): 219-223.
[10] 赵世浩,张雪,柯越海. 细胞衰老与特发性肺纤维化的相关性研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 111-115.
[11] 宋方俊,郭江涛. 电压门控离子通道结构生物学研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 25-33.
[12] 洪非凡,李月舟. 超声遗传学技术中的机械敏感性离子通道[J]. 浙江大学学报(医学版), 2019, 48(1): 34-38.
[13] 肖梨,佟晓永. 肺动脉高压形成中的血管重构分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 102-110.
[14] 史婧,冯钰. 细菌RNA聚合酶抑制剂的分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 44-49.
[15] 孙博强,王琼艳,潘冬立. 单纯疱疹病毒潜伏和激活机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 89-101.