Please wait a minute...
浙江大学学报(医学版)  2022, Vol. 51 Issue (4): 438-453    DOI: 10.3724/zdxbyxb-2022-0283
原著     
二乙基亚硝胺诱导肝细胞癌模型鼠肠道微生态研究
周文斌1,郑越2,3,4,尚佳2,3,4,王海洋2,3,4,王依莎2,3,4,陆欢2,3,4,王小西5,隋梅花2,3,4,*()
1. 青岛大学青岛医学院,山东 青岛 266071
2. 浙江大学医学院基础医学院,浙江 杭州 310058
3. 浙江大学医学院附属妇产科医院,浙江 杭州 310006
4. 浙江大学癌症研究院,浙江 杭州 310058
5. 浙江大学医学院附属第一医院病理科,浙江 杭州 310003
Intestinal microecology in mice bearing diethylnitrosamine-induced primary hepatocellular carcinoma
ZHOU Wenbin1,ZHENG Yue2,3,4,SHANG Jia2,3,4,WANG Haiyang2,3,4,WANG Yisha2,3,4,LU Huan2,3,4,WANG Xiaoxi5,SUI Meihua2,3,4,*()
1. Qingdao Medical College, Qingdao University, Qingdao 266071, Shandong Province, China;
2. School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China;
3. Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China;
4. Zhejiang University Cancer Center, Hangzhou 310058, China;
5. Department of Pathology, the First Affiliated Hospital, Zhejiang University School Medicine, Hangzhou 310003, China
 全文: PDF(4286 KB)   HTML( 14 )
摘要:

目的:探索肝细胞癌模型鼠肠道微生态特征。 方法:将2周龄C57BL/6雄鼠分为正常对照组和肝癌模型组。肝癌模型组在出生后2周给予单次腹腔注射二乙基亚硝胺(DEN),其中存活小鼠自4周龄起腹腔注射1,4-双[2-(3,5-二氯吡啶氧)]苯,每2周一次,共8次。分别于小鼠出生后第10、18和32周随机处死部分实验动物,取肝脏进行组织病理学检查。其中,在小鼠出生后第32周处死动物前无菌条件下收集两组粪便标本,并进行V3~V4高可变区16S rRNA基因组测序,进而对菌群多样性、物种丰度差异、菌群相关性、表型预测以及功能预测进行分析。 结果:α多样性分析结果显示Good’s coverage均已达到最大值1.00,且正常对照组与肝癌模型组肠道菌群Observed features、Chao1指数、Shannon指数和Simpson指数差异均有统计学意义(均 P<0.05)。β多样性分析结果显示基于加权或未加权Unifrac距离的主坐标PCoA均R>0,标本的组内差异小于组间差异;两组标本的分离趋势明显(P<0.05)。拟杆菌门、厚壁菌门、放线菌门及髌骨菌门等菌群为正常对照组与肝癌模型组门水平的优势菌群,但肝癌模型组较正常对照组拟杆菌门丰度显著减少(P<0.01),而髌骨菌门丰度显著增加(P<0.05)。正常对照组属水平的优势菌群主要为鼠杆菌科未分类属、副鼠杆菌属、鼠杆菌属、毛螺旋菌科NK4A136属、欧陆森氏菌属等,而肝癌模型组为艾克曼菌属、杜氏杆菌属、鼠杆菌科未分类属、毛螺旋菌科NK4A136属、红椿杆菌科UCG-002属等。两组属水平菌群相对丰度差异有统计学意义的有30个菌属(均P<0.05)。两组小鼠肠道菌群LEfSe分析共发现14个多级别差异物种(均P<0.05,LDA评分超过4.0),主要富集在拟杆菌门。其中正常对照组为拟杆菌门、拟杆菌纲、拟杆菌目、鼠杆菌科等10个差异菌群富集,肝癌模型组为杜氏杆菌属、消化链球菌属等4个差异菌群富集。正常对照组肠道优势菌属之间既有正相关关系又有负相关关系(|rho|>0.5,P<0.05),肝癌模型组肠道优势菌属的相关性网络复杂程度比正常对照组降低,所有优势菌群的相互作用均呈较强的正相关。与正常对照组比较,肝癌模型组肠道菌群革兰阳性菌及移动元件菌基因相对丰度均显著上调(均P<0.05),而革兰阴性菌(P<0.05)及潜在致病性菌基因(P<0.05)相对丰度均显著下调。两组肠道菌群的基因代谢通路差异显著,其中正常对照组富集在能量代谢、细胞分裂及核苷酸代谢等18个代谢通路,而肝癌模型组富集在能量代谢、氨基酸代谢及碳水化合物代谢等12个代谢通路(均P<0.005)。 结论:DEN诱导原发性肝癌模型小鼠肠道菌群数减少,菌群构成、菌群相关性、表型和功能均发生改变,其中门水平的拟杆菌门以及属水平的鼠杆菌科未分类属、鼠杆菌属、消化链球菌属、杜氏杆菌属等菌群可能与DEN诱导肝细胞癌的发生有关。

关键词: 肝细胞癌肠道菌群物种多样性菌群构成16S?核糖体RNA测序二乙基亚硝胺C57BL/6小鼠    
Abstract:

Objective: To explore the characteristics of intestinal microecology in hepatocellular carcinoma (HCC) model mice. Methods: C57BL/6 male mice aged 2 weeks were divided into normal control group and HCC model group. Mice in HCC model group were exposed to a single intraperitoneal injection of diethylnitrosamine (DEN) 2 weeks after birth; the surviving mice were intraperitoneally injected with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), once every 2 weeks for 8 times starting from the 4 th week after birth. Mice in each group were randomly selected and sacrificed at 10 th, 18 th and 32 nd weeks after birth, respectively, the liver tissue samples were obtained for histopathological examination. At the 32 nd week, all mice in both groups were sacrificed and the feces samples were collected under sterile conditions right before the sacrifice. The feces samples were sequenced for the V3-V4 hypervariable regions of the 16S rRNA gene, and the species abundance, flora diversity and phenotype, as well as flora correlation and functional prediction were analyzed. Results: Alpha diversity analysis showed that all Good’s coverage reached the maximum value of 1.00, and the differences in the Observed features, Chao1 index, Shannon index and Simpson index of the intestinal flora of mice between normal control group and HCC model group were all statistically significant (all P<0.05). Beta diversity analysis showed that PCoA based on weighted or unweighted Unifrac distances all yieldedR>0, confirming that the intra-group differences of the samples were less than the inter-group differences; the trend of separation between the two groups was significant (P<0.05). Bacteroidetes, Firmicutes, Actinobacteria and Patescibacteria were the dominant taxa at the phylum level in both normal control group and HCC model group. However, compared with normal control group, the abundance of Bacteroidetes in HCC model group was significantly decreased (P<0.01), while the abundance of Patescibacteria was significantly increased (P<0.05). Moreover, the dominant taxa at the genus level in normal control group mainly includedMuribaculaceae_unclassified, Paramuribaculum, Muribaculum, Lachnospiraceae_NK4A 136 group, Olsenella. The dominant taxa at the genus level in HCC model group mainly included Akkermansia, Dubosiella, Muribaculaceae_unclassified, Lachnospiraceae_NK4A 136 group, Coriobacteriaceae_UCG-002. There were 30 genera with statistically significant differences in relative abundance at the genus level between the two groups (all P<0.05). LEfSe analysis of the intestinal flora of mice in the two groups revealed a total of 14 multi-level differential taxa (allP<0.05, LDA score>4.0), which were mainly enriched in Bacteroidetes. The enrichment of 10 differential taxa including Bacteroidetes, Bacteroidia, Bacteroidales, Muribaculaceae, etc. were found in normal control group, and the enrichment of 4 differential taxa includingDubosiella, Peptostreptococus, etc. were found in HCC model group. There were both positive and negative correlations between the dominant intestinal genera in normal control group (|rho|>0.5,P<0.05), while the correlations of the dominant intestinal genera in HCC model group, being less complex than that in normal control group, were all positive. The relative abundance of gram positive and mobile element containing in the intestinal flora of mice in HCC model group was significantly up-regulated compared with normal control group (bothP<0.05), while that of gram negative (P<0.05) and pathogenic potential (P<0.05) was significantly down-regulated. The metabolic pathways of the intestinal flora in the two groups were significantly different. For instance, 18 metabolic pathways were enriched in normal control group (allP<0.005), including those related to energy metabolism, cell division, nucleotide metabolism, etc., while 12 metabolic pathways were enriched in HCC model group (allP<0.005), including those related to energy metabolism, amino acid metabolism, carbohydrate metabolism, etc.Conclusions: The amount of intestinal flora in DEN-induced primary HCC model mice decreased, and the composition, correlation, phenotype and function of the intestinal flora in mice were significantly altered. Bacteroidetes at the phylum level, as well as several microbial taxa at the genus level such as Muribaculaceae_unclassified, Muribaculum, Peptostreptococus and Dubosiella could be closely associated with DEN-induced primary HCC in mice.

Key words: Hepatocellular carcinoma    Intestinal flora    Species diversity    Microbial community structure    16S rRNA sequencing    Diethylnitrosamine    C57BL/6 mouse
收稿日期: 2022-05-31 出版日期: 2022-11-16
CLC:  R735.7  
基金资助: 国家自然科学基金(21722405,22075243); 浙江大学“百人计划”研究员启动基金
通讯作者: 隋梅花     E-mail: suim@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周文斌
郑越
尚佳
王海洋
王依莎
陆欢
王小西
隋梅花

引用本文:

周文斌,郑越,尚佳,王海洋,王依莎,陆欢,王小西,隋梅花. 二乙基亚硝胺诱导肝细胞癌模型鼠肠道微生态研究[J]. 浙江大学学报(医学版), 2022, 51(4): 438-453.

ZHOU Wenbin,ZHENG Yue,SHANG Jia,WANG Haiyang,WANG Yisha,LU Huan,WANG Xiaoxi,SUI Meihua. Intestinal microecology in mice bearing diethylnitrosamine-induced primary hepatocellular carcinoma. J Zhejiang Univ (Med Sci), 2022, 51(4): 438-453.

链接本文:

https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2022-0283        https://www.zjujournals.com/med/CN/Y2022/V51/I4/438

图1  DEN诱导小鼠肝细胞癌的建模流程示意图 TCPOBOP:1,4-双[2-(3,5-二氯吡啶氧)]苯.
图2  正常对照组与肝癌模型组10、18和32周龄时肝脏大体和组织病理学变化 大体形态学观察可见,正常对照组在三个时间点下肝脏均形态正常、表面光滑、边缘锐利,呈正常的红褐色;肝癌模型组10、18周龄时肝脏大体形态与正常对照组相似,但32周龄时肉眼可见肝脏表面出现多个散在、圆形或椭圆形、大小不等的癌结节. 病理学检查可见正常对照组在三个时间点肝脏细胞形态正常,排列整齐有序,无脂肪变性或异型增生;肝癌模型组10周龄时肝脏可见炎症细胞浸润、细胞肿胀、脂肪变性等,18周龄肝脏可见细胞内玻璃样变、脂肪变性以及细胞间的胶原纤维沉积等表现,32周龄时肝脏可见癌变细胞体积增加,胞浆丰富呈嗜酸性,细胞核异型性明显,核仁增大并可见病理性核分裂像以及典型的肝纤维化和肝硬化病变.

组 别

体重(g)

肝重(g)

肝体比

第10周

第18周

第32周

第10周

第18周

第32周

第10周

第18周

第32周

正常对照组

28.83±

1.98

32.25±

4.98

33.88±

2.39

1.17±

0.09

1.73±

0.23

1.29±

0.18

0.041±0.002

0.054±

0.004

0.038±

0.004

肝癌模型组

21.60±

0.90 **

26.97±

1.62 *

30.03±

0.99 **

1.41±

0.12 **

1.60±

0.11

1.44±

0.23

0.065±

0.004 **

0.059±

0.002 *

0.048±

0.007 *

t

8.150

2.470

3.437

–3.992

1.298

–1.229

–13.818

–2.918

–2.841

P

<0.01

<0.05

<0.01

<0.01

>0.05

>0.05

<0.01

<0.05

<0.05

表1  正常对照组与肝癌模型组10、18和32周龄时体重、肝重及肝体比比较
图3  正常对照组与肝癌模型组肠道微生物β多样性分析结果 A:非加权的UniFrac PCoA图;B:加权的UniFrac PCoA图. 图中每个点代表单个标本. 正常对照组 =5,肝癌模型组 =9.
图4  正常对照组与肝癌模型组肠道菌群门水平构成 柱子的长短表示菌群的相对丰度.

组 别

n

厚壁菌门

拟杆菌门

疣微菌门

变形菌门

放线菌门

髌骨菌门

ε-变形菌门

正常对照组

5

24.591(17.764, 37.500)

64.434(40.656, 69.149)

0.993(0.764, 8.815)

4.762(4.462, 5.874)

5.312(3.754, 8.050)

0.281(0.131, 0.308)

0.207(0.112, 0.303)

肝癌模型组

9

43.738(30.250, 65.403)

17.590(12.915, 31.442)

19.464(0.113, 30.489)

2.544(2.059, 11.832)

4.998(4.403, 7.348)

0.416(0.321, 0.748)

0.131(0.038, 0.287)

Z

–1.533

–2.600

–0.333

–0.600

–0.200

–2.200

–0.867

P

>0.05

<0.01

>0.05

>0.05

>0.05

<0.05

>0.05

组 别

n

蓝藻菌门

软壁菌门

脱铁杆菌门

酸杆菌门

浮霉菌门

螺旋体菌门

未分类菌门

正常对照组

5

0.068(0.046, 0.191)

0.054(0.045, 0.113)

0.000(0.000, 0.007)

0.000(0.000, 0.000)

0.000(0.000, 0.000)

0.000(0.000, 0.000)

0.650(0.502, 0.779)

肝癌模型组

9

0.010(0.005, 0.304)

0.048(0.025, 0.125)

0.006(0.000, 0.023)

0.000(0.000, 0.002)

0.000(0.000, 0.000)

0.000(0.000, 0.000)

0.361(0.065, 0.469)

Z

–1.133

–0.467

–1.068

–1.094

–0.745

–0.745

–2.333

P

>0.05

>0.05

>0.05

>0.05

>0.05

>0.05

<0.05

表2  正常对照组与肝癌模型组门水平肠道细菌优势菌群相对丰度比较
图5  正常对照组与肝癌模型组肠道菌群属水平构成 柱子的长短表示菌群的相对丰度.

组 别

n

异杆菌属

消化链球菌属

红椿杆菌科

UCG-002属

杜氏杆菌属

低嗜盐细菌属

候选单胞

生糖菌属

正常对照组

5

0.000(0.000, 0.006)

0.000(0.000, 0.000)

0.714(0.391, 2.397)

1.989(1.607, 11.636)

0.000(0.000, 0.000)

0.281(0.131, 0.308)

肝癌模型组

9

0.135(0.034, 0.217)

0.011(0.005, 0.018)

2.169(1.748, 4.268)

13.592(8.877, 23.362)

0.010(0.000, 0.032)

0.406(0.321, 0.748)

Z

–2.562

–2.492

–2.200

–2.067

–2.215

–2.200

P

<0.01

<0.05

<0.05

<0.05

<0.05

<0.05

组 别

n

瘤胃梭菌属

颤杆菌属

瘤胃菌科

UCG-010属

瘤胃球菌属

臭气杆菌属

瘤胃菌科

未分类属

正常对照组

5

0.177(0.160, 0.289)

0.270(0.169, 0.444)

0.303(0.140, 0.405)

0.032(0.008, 0.043)

1.345(1.120, 2.414)

0.305(0.165, 0.437)

肝癌模型组

9

0.033(0.012, 0.063)

0.034(0.004, 0.107)

0.052(0.012, 0.058)

0.000(0.000, 0.000)

0.493(0.394, 0.936)

0.072(0.051, 0.238)

Z

–2.333

–2.202

–3.000

–2.719

–2.200

–2.067

P

<0.05

<0.05

<0.01

<0.05

<0.05

<0.05

组 别

n

瘤胃菌科

UCG-005属

普雷沃菌科

NK3B31属

埃格特菌属

邓氏杆菌属

丹毒丝菌科

未分类属

瘤胃菌科

UCG-007属

正常对照组

5

0.017(0.013, 0.020)

0.148(0.050, 0.274)

0.148(0.076, 0.285)

0.163(0.058, 0.191)

0.150(0.061, 0.230)

0.028(0.011, 0.033)

肝癌模型组

9

0.000(0.000, 0.007)

0.000(0.000, 0.000)

0.053(0.032, 0.086)

0.000(0.000, 0.000)

0.025(0.000, 0.046)

0.000(0.000, 0.000)

Z

–2.386

–3.006

–2.200

–3.496

–2.494

–3.496

P

<0.05

<0.05

<0.05

<0.01

<0.05

<0.01

组 别

n

DTU014_

unclassified属

拟杆菌目

未分类属

贪噬菌属

另枝菌属

Candidatus_

Stoquefichus属

气单胞菌属

正常对照组

5

0.042(0.014, 0.058)

0.247(0.079, 0.303)

0.007(0.003, 0.012)

2.804(1.861, 5.118)

0.048(0.017, 0.094)

0.028(0.021, 0.043)

肝癌模型组

9

0.000(0.000, 0.000)

0.011(0.005, 0.057)

0.000(0.000, 0.000)

0.574(0.162, 1.183)

0.000(0.000, 0.000)

0.000(0.000, 0.019)

Z

–2.719

–2.603

–3.006

–2.867

–2.719

–2.567

P

<0.05

<0.01

<0.05

<0.01

<0.05

<0.05

组 别

n

Millionella属

乳头杆菌属

鼠杆菌属

普雷沃菌科

UCG-001属

鼠杆菌科

未分类属

未分类属

正常对照组

5

0.042(0.032, 0.091)

0.020(0.010, 0.069)

5.836(4.598, 7.920)

0.368(0.178, 0.502)

29.474(23.071, 38.218)

0.650(0.502, 0.779)

肝癌模型组

9

0.000(0.000, 0.000)

0.000(0.000, 0.012)

1.806(1.262, 4.266)

0.024(0.000, 0.123)

9.864(8.893, 22.861)

0.361(0.065, 0.470)

Z

–3.006

–2.349

–2.067

–2.612

–2.333

–2.333

P

<0.05

<0.05

<0.05

<0.01

<0.05

<0.05

表3  正常对照组与肝癌模型组相对丰度差异有统计学意义属水平肠道菌群
图6  正常对照组与肝癌模型组肠道菌群LEfSe分析结果 A:肠道菌群进化分支图,显示与正常对照组或肝癌模型组相关微生物群的系统发育分布,其中由内至外辐射的圆圈代表了由界(单个圆圈)至属(或种)的分类级别,小圆圈直径大小与相对丰度大小呈正比;黄色点为正常对照组与肝癌模型组之间无显著差异的微生物类群,绿色点为在正常对照组中起重要作用的微生物类群,红色点为在肝癌模型组中起重要作用的微生物类群. B:线性判别分析分数直方图. 正常对照组 =5,肝癌模型组 =9.

菌群类别

诊断标准(%)

AUC

敏感度

特异度

P

拟杆菌门

≤28.297

0.933

1.000

0.778

0.009

拟杆菌纲

≤28.292

0.933

1.000

0.778

0.009

拟杆菌目

≤28.292

0.933

1.000

0.778

0.009

理研菌科

≤1.657

0.911

1.000

0.778

0.014

鼠杆菌科

≤37.235

0.889

0.800

0.889

0.020

另枝菌属

≤1.524

0.978

1.000

0.889

0.004

消化链球菌属

≥0.005

0.889

0.778

1.000

0.020

鼠杆菌科未分类属

≤27.696

0.889

0.800

0.889

0.020

杜氏杆菌属

≥4.704

0.844

1.000

0.600

0.039

鼠杆菌属

≤3.825

0.844

1.000

0.778

0.039

未培养的消化链球菌属sp.种

≥0.005

0.889

0.778

1.000

0.020

鼠杆菌科未分类种

≤27.696

0.889

0.800

0.889

0.020

鼠杆菌属sp.种

≤3.074

0.889

1.000

0.889

0.020

杜氏杆菌属未分类种

≥4.704

0.844

1.000

0.600

0.039

表4  差异肠道菌群诊断肝癌的ROC曲线分析结果
图7  正常对照组和肝癌模型组丰度前三十位细菌属的相关性网络 绿色节点为正常对照组,红色节点为肝癌模型组;节点大小代表中心度,中心度越大,相关对象个数越多;节点 之间的连接表明两个属之间存在相关性,相关性系数 |rho|>0.5, < 0.05;线条粗细代表相关性强弱,线条越粗表明相关性越强,而线条越细表明相关性越弱;实线表明正相关,虚线表明负相关.
图8  正常对照组和肝癌模型组各类表型肠道菌群的表达丰度比较 组间比较, <0.05.
图9  菌群基因功能预测与代谢通路差异分析 根据同源基因簇数据库功能注释结果筛选出差异有统计学意义的功能, 横柱状图代表富集在该代谢通路的丰度分别在正常对照组与肝癌模型组标本中所有代谢通路的百分比.
1 SUNG H , FERLAY J , SIEGEL R L , et al.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]CA Cancer J Clin, 2021, 71( 3): 209-249.
doi: 10.3322/caac.21660
2 SCHWABE R F , GRETEN T F . Gut microbiome in HCC——mechanisms, diagnosis and therapy[J]J Hepatol, 2020, 72( 2): 230-238.
doi: 10.1016/j.jhep.2019.08.016
3 YOSHIMOTO S , LOO T M , ATARASHI K , et al.Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome[J]Nature, 2013, 499( 7456): 97-101.
doi: 10.1038/nature12347
4 QIN N , YANG F , LI A , et al.Alterations of the human gut microbiome in liver cirrhosis[J]Nature, 2014, 513( 7516): 59-64.
doi: 10.1038/nature13568
5 MA C , HAN M , HEINRICH B , et al.Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells[J/OL]Science, 2018, 360( 6391): eaan5931.
doi: 10.1126/science.aan5931
6 BEHARY J , AMORIM N , JIANG X T , et al.Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma[J]Nat Commun, 2021, 12( 1): 187.
doi: 10.1038/s41467-020-20422-7
7 SEPICH-POORE G D , ZITVOGEL L , STRAUSSMAN R , et al.The microbiome and human cancer[J/OL]Science, 2021, 371( 6536): eabc4552.
doi: 10.1126/science.abc4552
8 YU L X , SCHWABE R F . The gut microbiome and liver cancer: mechanisms and clinical translation[J]Nat Rev Gastroenterol Hepatol, 2017, 14( 9): 527-539.
doi: 10.1038/nrgastro.2017.72
9 ZHOU A , TANG L , ZENG S , et al.Gut microbiota: a new piece in understanding hepatocarcinogenesis[J]Cancer Lett, 2020, 15-22.
doi: 10.1016/j.canlet.2020.01.002
10 NAKANISHI T , FUKUI H , WANG X , et al.Effect of a high-fat diet on the small-intestinal environment and mucosal integrity in the gut-liver axis[J]Cells, 2021, 10( 11): 3168.
doi: 10.3390/cells10113168
11 黄佳文, 朱 娟, 黄慧瑶, 等. 中国肝癌及相关疾病状态健康效用值及失能权重研究的系统评价[J]. 中国循证医学杂志, 2018, 18(5): 410-417
HUANG Jiawen, ZHU Juan, HUANG Huiyao, et al. Health utility scores and disability weights of liver cancer and related diseases in China: a systematic review[J]. Chinese Journal of Evidence-based Medicine, 2018, 18(5): 410-417. (in Chinese)
12 刘 嘉, 申恒巧, 顾红梅, 等. 肝癌动物模型的构建及其应用现状[J]. 肿瘤药学, 2013, 3(1): 13-16
LIU Jia, SHEN Hengqiao, GU Hongmei, et al. Establishment of the animal models of hepatic carcinoma and their applications[J]. Anti-tumor Pharmacy, 2013, 3(1): 13-16. (in Chinese)
13 GU C Y , LEE T K W . Preclinical mouse models of hepatocellular carcinoma: an overview and update[J]Exp Cell Res, 2022, 412( 2): 113042.
doi: 10.1016/j.yexcr.2022.113042
14 LI Z , TUTEJA G , SCHUG J , et al.Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer[J]Cell, 2012, 148( 1-2): 72-83.
doi: 10.1016/j.cell.2011.11.026
15 BOLYEN E , RIDEOUT J R , DILLON M R , et al.Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]Nat Biotechnol, 2019, 37( 8): 852-857.
doi: 10.1038/s41587-019-0209-9
16 CALLAHAN B J , MCMURDIE P J , ROSEN M J , et al.DADA2: high-resolution sample inference from Illumina amplicon data[J]Nat Methods, 2016, 13( 7): 581-583.
doi: 10.1038/nmeth.3869
17 GOWER J C . Some distance properties of latent root and vector methods used in multivariate analysis[J]Biometrika, 1966, 53( 3-4): 325-338.
doi: 10.1093/biomet/53.3-4.325
18 SEGATA N , IZARD J , WALDRON L , et al.Metagenomic biomarker discovery and explanation[J]Genome Biol, 2011, 12( 6): R60.
doi: 10.1186/gb-2011-12-6-r60
19 WARD T, LARSON J, MEULEMANS J, et al. BugBase predicts organism-level microbiome phenotypes[J]. bioRxiv, 2017. DOI: 10.1101/133462
20 DOUGLAS G M, MAFFEI V J, ZANEVELD J, et al. PICRUSt2: an improved and extensible approach for metagenome inference[J]. bioRxiv, 2019. DOI: 10.1101/672295
21 PARKS D H , TYSON G W , HUGENHOLTZ P , et al.STAMP: statistical analysis of taxonomic and functional profiles[J]Bioinformatics, 2014, 30( 21): 3123-3124.
doi: 10.1093/bioinformatics/btu494
22 DIETERT R , DIETERT J . The microbiome and sustainable healthcare[J]Healthcare, 2015, 3( 1): 100-129.
doi: 10.3390/healthcare3010100
23 CHEN Y , ZHOU J , WANG L . Role and mechanism of gut microbiota in human disease[J]Front Cell Infect Microbiol, 2021, 625913.
doi: 10.3389/fcimb.2021.625913
24 NI J , HUANG R , ZHOU H , et al.Analysis of the relationship between the degree of dysbiosis in gut microbiota and prognosis at different stages of primary hepatocellular carcinoma[J]Front Microbiol, 2019, 1458.
doi: 10.3389/fmicb.2019.01458
25 汤 莉, 吴伶莉. 原发性肝癌患者肠道菌群变化与内毒素和炎性因子水平的关系[J]. 中国微生态学杂志, 2021, 33(10): 1162-1165
TANG Li, WU Lingli. Correlation between intestinal flora changes and levels of endotoxin and inflammatory factors in patients with primary liver cance[J]. Chinese Journal of Microecology, 2021, 33(10): 1162-1165. (in Chinese)
26 郑 微, 赵 鹏, 张永宏, 等. 宏基因组测序技术分析原发性肝癌患者肠道菌群特征[J/CD]. 中华实验和临床感染病杂志(电子版), 2021, 15(3): 149-157
ZHENG Wei, ZHAO Peng, ZHANG Yonghong, et al. Metagenomic analysis on characteristics of intestinal flora of patients with primary liver cancer[J/CD]. Chinese Journal of Liver Diseases (Electronic), 2021, 15(3): 149-157. (in Chinese)
27 孙 亮, 周 旋, 刘桂治, 等. 肝癌患者肠道微生态结构变化的特点分析[J]. 肝脏, 2020, 25(3): 267-269
SUN Liang, ZHOU Xuan, LIU Guizhi, et al. Characteristics of intestinal microecological structure changes in patients with hepatocellular carcinoma[J]. Chinese Hepatology, 2020, 25(3): 267-269. (in Chinese)
28 甄宏德, 王爱国, 钱 祥, 等. 原发性肝癌H-ras12V小鼠肠道微生态的初步研究[J]. 中国微生态学杂志, 2018, 30(2): 132-136
ZHEN Hongde, WANG Aiguo, QIAN Xiang, et al. A preliminary study on intestinal microflora of mice with primary liver cancer[J]. Chinese Journal of Microecology, 2018, 30(2): 132-136. (in Chinese)
29 DU Y , BROERING R , LI X , et al. In vivo mouse models for hepatitis B virus infection and their application[J]Front Immunol, 2021, 766534.
doi: 10.3389/fimmu.2021.766534
30 FERENCI P , FRIED M , LABRECQUE D , et al.Hepatocellular carcinoma (HCC)[J]J Clin Gastroenterol, 2010, 44( 4): 239-245.
doi: 10.1097/MCG.0b013e3181d46ef2
31 张 鹏. 肝炎肝硬化和酒精性肝硬化的B超影像差异研究[J]. 系统医学, 2017, 2(17): 86-90
ZHANG Peng. Research on difference in ultrasound B images of hepatitis liver cirrhosis and alcoholic liver cirrhosis[J]. Systems Medicine, 2017, 2(17): 86-90. (in Chinese)
32 黄树武, 闵凡贵, 王 静, 等. 常用小鼠、大鼠肠道菌群比较研究[J]. 中国实验动物学报, 2021, 29(6): 777-784
HUANG Shuwu, MIN Fangui, WANG Jing, et al. Comparative study of intestinal flora in common mice and rats[J]. Acta Laboratorium Animalis Scientia Sinica, 2021, 29(6): 777-784. (in Chinese)
33 BENSON A K , KELLY S A , LEGGE R , et al.Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors[J]Proc Natl Acad Sci U S A, 2010, 107( 44): 18933-18938.
doi: 10.1073/pnas.1007028107
34 谭 振, 翟丽维, 陈少康, 等. 肠道微生物与宿主遗传背景互作关系的研究进展[J]. 中国畜牧杂志, 2016, 52(5): 84-88
TAN Zhen, ZHAI Liwei, CHEN Shaokang, et al. Research progress of intestinal microbes interactions with the host genetic background[J]. Chinese Journal of Animal Science, 2016, 52(5): 84-88. (in Chinese)
35 LIU Q , LI F , ZHUANG Y , et al.Alteration in gut microbiota associated with hepatitis B and non-hepatitis virus related hepatocellular carcinoma[J]Gut Pathog, 2019, 11( 1): 1-3.
doi: 10.1186/s13099-018-0281-6
36 VALE F F , LEHOURS P , YAMAOKA Y . Editorial: the role of mobile genetic elements in bacterial evolution and their adaptability[J]Front Microbiol, 2022, 849667.
doi: 10.3389/fmicb.2022.849667
37 ROBINSON K M , DUNNING HOTOPP J C . Mobile elements and viral integrations prompt considerations for bacterial DNA integration as a novel carcinogen[J]Cancer Lett, 2014, 352( 2): 137-144.
doi: 10.1016/j.canlet.2014.05.021
38 BROADERS E , GAHAN C G M , MARCHESI J R . Mobile genetic elements of the human gastrointestinal tract[J]Gut Microbes, 2013, 4( 4): 271-280.
doi: 10.4161/gmic.24627
39 DAPITO D H , MENCIN A , GWAK G Y , et al.Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4[J]Cancer Cell, 2012, 21( 4): 504-516.
doi: 10.1016/j.ccr.2012.02.007
40 李洪波, 匡 黎. 肠道共生菌及代谢产物与肝癌进展的相关性分析[J]. 中西医结合肝病杂志, 2021, 31(10): 897-900
LI Hongbo, KUANG Li. A correlation analysis of intestinal commensal bacteria and metabolites with liver cancer progression[J]. Chinese Journal of Integrated Traditional and Western Medicine on Liver Diseases, 2021, 31(10): 897-900. (in Chinese)
41 SHANG-GUAN K , WANG M , HTWE N M P S , et al.Lipopolysaccharides trigger two successive bursts of reactive oxygen species at distinct cellular locations[J]Plant Physiol, 2018, 176( 3): 2543-2556.
doi: 10.1104/pp.17.01637
42 HARTMANN P , HAIMERL M , MAZAGOVA M , et al.Toll-like receptor 2-mediated intestinal injury and enteric tumor necrosis factor receptor I contribute to liver fibrosis in mice[J]Gastroenterology, 2012, 143( 5): 1330-1340.e1.
doi: 10.1053/j.gastro.2012.07.099
[1] 胡靖依,王青青,刘杨. 蛋白酶体亚基对肝细胞癌发生发展的调控作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 396-402.
[2] 邵一鸣,苏力德,郝睿,王茜茜,那仁满都拉. 乙型肝炎病毒诱发肝细胞癌分子机制研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 113-122.
[3] 蔡秀军;徐关根;沈波. RhoC蛋白在原发性肝细胞癌中的表达[J]. 浙江大学学报(医学版), 2006, 35(4): 394-396.