Please wait a minute...
浙江大学学报(医学版)  2022, Vol. 51 Issue (2): 233-240    DOI: 10.3724/zdxbyxb-2022-0084
综述     
纳米药物递送系统在急性髓细胞性白血病治疗中的应用
张少琪1,2,孙洁1,2,*()
1.浙江大学医学院附属第一医院骨髓移植中心,浙江 杭州 310003
2.浙江大学血液学研究所,浙江 杭州 310058
Nano-drug delivery system for the treatment of acute myelogenous leukemia
ZHANG Shaoqi1,2,SUN Jie1,2,*()
1. Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
2. Institute of Hematology, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2097 KB)   HTML( 30 )
摘要:

药物治疗是急性髓细胞性白血病(AML)的核心治疗策略,但目前的治疗药物普遍存在生物利用度低、不良反应大、静脉给药不便等缺陷。纳米药物递送系统通过针对性优化药物的递送方式可以显著提高药物的抗AML活性。有机纳米载体包括聚合物载体、脂质体、纳米乳、纳米胶束和蛋白质载体等,具有负载能力强、生物相容性好和易于功能化等特性;无机纳米载体包括金纳米粒、硅纳米粒、铁纳米粒及其他无机盐纳米粒等,表现出多样化的物理和化学性质,在作为药物载体的同时还有多种生物医学应用。有机纳米载体和无机纳米载体均具有改变药物的药动学和药效学的潜力。本文综述了当前有机纳米载体、无机纳米载体作为纳米药物递送系统在AML应用中的最新进展。

关键词: 药物传递系统急性髓细胞性白血病纳米载体治疗综述    
Abstract:

Administration of therapeutic drugs has been the core strategy for acute myelogenous leukemia (AML), but it is generally limited by its low bioavailability, toxic side effects and intravenous administration. The nano-drug delivery system significantly improves the anti-AML activity through targeted optimization of the drug delivery system. Organic nanocarriers include polymers, liposomes, nanoemulsion, nanomicelle and proteins, which have the advantages of high loading capacity, biocompatibility and functionalization. Inorganic nanocarriers include gold nanoparticles, silicon nanoparticles, iron nanoparticles and other inorganic nanoparticles, which exhibit diverse physical and chemical properties, and have a wide range of biomedical applications including drug carriers. Both organic and inorganic nanocarriers exhibit the potential to alter the pharmacokinetics and pharmacodynamics of drugs. This article reviews the recent progress of nanocarriers as drug delivery system in clinical applications of AML treatment.

Key words: Drug delivery system    Acute myelogenous leukemia    Nanocarrier    Therapy    Review
收稿日期: 2022-03-03 出版日期: 2022-08-02
CLC:  R96  
基金资助: 国家自然科学基金(82070200)
通讯作者: 孙洁     E-mail: jsun1492@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张少琪
孙洁

引用本文:

张少琪,孙洁. 纳米药物递送系统在急性髓细胞性白血病治疗中的应用[J]. 浙江大学学报(医学版), 2022, 51(2): 233-240.

ZHANG Shaoqi,SUN Jie. Nano-drug delivery system for the treatment of acute myelogenous leukemia. J Zhejiang Univ (Med Sci), 2022, 51(2): 233-240.

链接本文:

https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2022-0084        https://www.zjujournals.com/med/CN/Y2022/V51/I2/233

1 DE KOUCHKOVSKYI, ABDUL-HAYM. Acute myeloid leukemia: a comprehensive review and 2016 update[J/OL]Blood Cancer J, 2016, 6( 7): e441.
doi: 10.1038/bcj.2016.50
2 VAGOL, GOJOI. Immune escape and immunotherapy of acute myeloid leukemia[J]J Clin Invest, 2020, 130( 4): 1552-1564.
doi: 10.1172/JCI129204
3 NEWELLL F, COOKR J. Advances in acute myeloidleukemia[J]BMJ, 2021, n2026.
doi: 10.1136/bmj.n2026
4 WICKIA, WITZIGMANND, BALASUBRAMANIANV, et al.Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications[J]J Control Release, 2015, 138-157.
doi: 10.1016/j.jconrel.2014.12.030
5 LEEJ J, SAIFUL YAZANL, CHE ABDULLAHC A. A review on current nanomaterials and their drug conjugate for targeted breast cancer treatment[J]Int J Nanomedicine, 2017, 2373-2384.
doi: 10.2147/IJN.S127329
6 BOZZUTOG, MOLINARIA. Liposomes as nanomedical devices[J]Int J Nanomedicine, 2015, 975-999.
doi: 10.2147/IJN.S68861
7 PATRAJ K, DASG, FRACETOL F, et al.Nano based drug delivery systems: recent developments and future prospects[J]J Nanobiotechnol, 2018, 16( 1): 71.
doi: 10.1186/s12951-018-0392-8
8 TATARA S, NAGY-SIMONT, TOMULEASAC, et al.Nanomedicine approaches in acute lymphoblastic leukemia[J]J Control Release, 2016, 123-138.
doi: 10.1016/j.jconrel.2016.07.035
9 TANGX, LOCW S, DONGC, et al.The use of nanoparticulates to treat breast cancer[J]Nanomedicine, 2017, 12( 19): 2367-2388.
doi: 10.2217/nnm-2017-0202
10 ADAIRJ H, PARETTEM P, ALTINOĞLUE I, et al.Nanoparticulate alternatives for drug delivery[J]ACS Nano, 2010, 4( 9): 4967-4970.
doi: 10.1021/nn102324e
11 MOGHIMIS M. Exploiting bone marrow microvascular structure for drug delivery and future therapies[J]Adv Drug Deliver Rev, 1995, 17( 1): 61-73.
doi: 10.1016/0169-409X(95)00041-5
12 SONIG, YADAVK S. Applications of nanoparticles in treatment and diagnosis of leukemia[J]Mater Sci Eng C Mater Biol Appl, 2015, 156-164.
doi: 10.1016/j.msec.2014.10.043
13 WUY, IHMES, FEURING-BUSKEM, et al.A core-shell albumin copolymer nanotransporter for high capacity loading and two-step release of doxorubicin with enhanced anti-leukemia activity[J]Adv Healthcare Mater, 2013, 2( 6): 884-894.
doi: 10.1002/adhm.201200296
14 PRAKASHS, MALHOTRAM, SHAOW, et al.Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy[J]Adv Drug Deliver Rev, 2011, 63( 14-15): 1340-1351.
doi: 10.1016/j.addr.2011.06.013
15 VILARG, TULLA-PUCHEJ, ALBERICIOF. Polymers and drug delivery systems[J]Curr Drug Deliv, 2012, 9( 4): 367-394.
doi: 10.2174/156720112801323053
16 XIAW, TAOZ, ZHUB, et al.Targeted delivery of drugs and genes using polymer nanocarriers for cancer therapy[J]Int J Mol Sci, 2021, 22( 17): 9118.
doi: 10.3390/ijms22179118
17 FANJ, HEQ, WANGZ, et al.Self-assembled nanocomplex for co-delivery of arsenic-retinoic acid prodrug into acute promyelocytic leukemia cells[J]J Biomed Nanotechnol, 2018, 14( 6): 1052-1065.
doi: 10.1166/jbn.2018.2556
18 KANWALU, IRFAN BUKHARIN, OVAISM, et al.Advances in nano-delivery systems for doxorubicin: an updated insight[J]J Drug Target, 2018, 26( 4): 296-310.
doi: 10.1080/1061186X.2017.1380655
19 SADAT TABATABAEI MIRAKABADF, NEJATI-KOSHKIK, AKBARZADEHA, et al.PLGA-based nanoparticles as cancer drug delivery systems[J]Asian Pac J Cancer Prev, 2014, 15( 2): 517-535.
doi: 10.7314/apjcp.2014.15.2.517
20 DARWISHN H E, SUDHAT, GODUGUK, et al.Novel targeted nano-parthenolide molecule against NF-κB in acute myeloid leukemia[J]Molecules, 2019, 24( 11): 2103.
doi: 10.3390/molecules24112103
21 DANHIERF, ANSORENAE, SILVAJ M, et al.PLGA-based nanoparticles: an overview of biomedical applications[J]J Control Release, 2012, 161( 2): 505-522.
doi: 10.1016/j.jconrel.2012.01.043
22 SUKJ S, XUQ, KIMN, et al.PEGylation as a strategy for improving nanoparticle-based drug and gene delivery[J]Adv Drug Deliver Rev, 2016, 28-51.
doi: 10.1016/j.addr.2015.09.012
23 HÖBELS, AIGNERA. Polyethylenimines for siRNA and miRNA delivery in vivo[J]Wires Nanomed Nanobi, 2013, 5( 5): 484-501.
doi: 10.1002/wnan.1228
24 PATNAIKS, GUPTAK C. Novel polyethylenimine-derived nanoparticles for in vivo gene delivery[J]Expert Opin Drug Deliver, 2013, 10( 2): 215-228.
doi: 10.1517/17425247.2013.744964
25 GUL-ULUDAĞH, VALENCIA-SERNAJ, KUCHARSKIC, et al.Polymeric nanoparticle-mediated silencing of CD44 receptor in CD34+ acute myeloid leukemia cells[J]Leukemia Res, 2014, 38( 11): 1299-1308.
doi: 10.1016/j.leukres.2014.08.008
26 BABUA, RAMESHR. Multifaceted applications of chitosan in cancer drug delivery and therapy[J]Mar Drugs, 2017, 15( 4): 96.
doi: 10.3390/md15040096
27 WEIX, LIAOJ, DAVOUDIZ, et al.Folate receptor-targeted and gsh-responsive carboxymethyl chitosan nanoparticles containing covalently entrapped 6-mercaptopurine for enhanced intracellular drug delivery in leukemia[J]Mar Drugs, 2018, 16( 11): 439.
doi: 10.3390/md16110439
28 YUEX, DAIZ. Liposomal nanotechnology for cancer theranostics[J]Curr Med Chem, 2018, 25( 12): 1397-1408.
doi: 10.2174/0929867324666170306105350
29 GUIMARÃESD, CAVACO-PAULOA, NOGUEIRAE. Design of liposomes as drug delivery system for therapeutic applications[J]Int J Pharm, 2021, 120571.
doi: 10.1016/j.ijpharm.2021.120571
30 WANGQ, BANERJEEK, VASILINING, et al.Population pharmacokinetics and exposure‐response analyses for CPX‐351 in patients with hematologic malignancies[J]J Clin Pharmacol, 2019, 59( 5): 748-762.
doi: 10.1002/jcph.1366
31 SUNS, ZOUH, LIL, et al.CD123/CD33 dual-antibody modified liposomes effectively target acute myeloid leukemia cells and reduce antigen-negative escape[J]Int J Pharm, 2019, 118518.
doi: 10.1016/j.ijpharm.2019.118518
32 BARTHB M, WANGW, TORANP T, et al.Sphingolipid metabolism determines the therapeutic efficacy of nanoliposomal ceramide in acute myeloidleukemia[J]Blood Adv, 2019, 3( 17): 2598-2603.
doi: 10.1182/bloodadvances.2018021295
33 RAJR, RAJP M, RAMA. Nanosized ethanol based malleable liposomes of cytarabine to accentuate transdermal delivery: formulation optimization, in vitro skin permeation and in vivo bioavailability[J]Artif Cells Nanomed Biotechnol, 2018, 46( sup2): 951-963.
doi: 10.1080/21691401.2018.1473414
34 SINGHY, MEHERJ G, RAVALK, et al.Nanoemulsion: concepts, development and applications in drugdelivery[J]J Control Release, 2017, 28-49.
doi: 10.1016/j.jconrel.2017.03.008
35 FENGZ, WANGZ, YANGY, et al.Development of a safety and efficacy nanoemulsion delivery system encapsulated gambogic acid for acute myeloid leukemia in vitro and in vivo[J]Eur J Pharmaceutical Sci, 2018, 172-180.
doi: 10.1016/j.ejps.2018.10.001
36 LIJ, YANGL, SHENR, et al.Self-nanoemulsifying system improves oral absorption and enhances anti-acute myeloid leukemia activity of berberine[J]J Nanobiotechnol, 2018, 16( 1): 76.
doi: 10.1186/s12951-018-0402-x
37 HUANGX, LINH, HUANGF, et al.Targeting approaches of nanomedicines in acute myeloid leukemia[J]Dose-Response, 2019, 17( 4): 155932581988704.
doi: 10.1177/1559325819887048
38 ZHANGH, LUOJ, LIY, et al.Characterization of high-affinity peptides and their feasibility for use in nanotherapeutics targeting leukemia stem cells[J]Nanomed-Nanotechnol Biol Med, 2012, 8( 7): 1116-1124.
doi: 10.1016/j.nano.2011.12.004
39 LINT Y, ZHUY, LIY, et al.Daunorubicin-containing CLL1-targeting nanomicelles have anti-leukemia stem cell activity in acute myeloid leukemia[J]Nanomed-Nanotechnol Biol Med, 2019, 102004.
doi: 10.1016/j.nano.2019.04.007
40 MENGJ, GEY, XINGH, et al.Synthetic CXCR4 antagonistic peptide assembling with nanoscaled micelles combat acute myeloid leukemia[J]Small, 2020, 16( 31): 2001890.
doi: 10.1002/smll.202001890
41 TARHINIM, GREIGE-GERGESH, ELAISSARIA. Protein-based nanoparticles: from preparation to encapsulation of active molecules[J]Int J Pharm, 2017, 522( 1-2): 172-197.
doi: 10.1016/j.ijpharm.2017.01.067
42 KAUNDALB, SRIVASTAVAA K, DEVA, et al.Nanoformulation of EPZ011989 attenuates EZH2-c-Myb epigenetic interaction by proteasomal degradation in acute myeloid leukemia[J]Mol Pharm, 2020, 17( 2): 604-621.
doi: 10.1021/acs.molpharmaceut.9b01071
43 OJEA-JIMÉNEZI, COMENGEJ, GARCÍA-FERNÁNDEZL, et al.Engineered inorganic nanoparticles for drug delivery applications[J]Curr Drug Metab, 2013, 14( 5): 518-530.
doi: 10.2174/13892002113149990008
44 LADJR, BITARA, EISSAM, et al.Individual inorganic nanoparticles: preparation, functionalization and in vitro biomedical diagnostic applications[J]J Mater Chem B, 2013, 1( 10): 1381-1396.
doi: 10.1039/C2TB00301E
45 SANTOSH A, MÄKILÄE, AIRAKSINENA J, et al.Porous silicon nanoparticles for nanomedicine: preparation and biomedical applications[J]Nanomedicine (Lond), 2014, 9( 4): 535-554.
doi: 10.2217/nnm.13.223
46 MIOCA, MIOCM, GHIULAIR, et al.Gold nanoparticles as targeted delivery systems and theranostic agents in cancer therapy[J]Curr Med Chem, 2019, 26( 35): 6493-6513.
doi: 10.2174/0929867326666190506123721
47 DUY, HANM, CAOK, et al.Gold nanorods exhibit intrinsic therapeutic activity via controlling N6-methyladenosine-based epitranscriptomics in acute myeloid leukemia[J]ACS Nano, 2021, 15( 11): 17689-17704.
doi: 10.1021/acsnano.1c05547
48 CAOK, DUY, BAOX, et al.Glutathione‐bioimprinted nanoparticles targeting of N6‐methyladenosine FTO demethylase as a strategy against leukemic stem cells[J/OL]Small, 2022, 18( 13): e2106558.
doi: 10.1002/smll.202106558
49 SIMONT, TOMULEASAC, BOJANA, et al.Design of FLT3 inhibitor - gold nanoparticle conjugates as potential therapeutic agents for the treatment of acute myeloid leukemia[J]Nanoscale Res Lett, 2015, 10( 1): 466.
doi: 10.1186/s11671-015-1154-2
50 DENGR, SHENN, YANGY, et al.Targeting epigenetic pathway with gold nanoparticles for acute myeloid leukemia therapy[J]Biomaterials, 2018, 80-90.
doi: 10.1016/j.biomaterials.2018.03.013
51 CHANK P, CHAOS H, KAHJ C Y. Exploiting protein corona around gold nanoparticles conjugated to p53 activating peptides to increase the level of stable p53 proteins in cells[J]Bioconjugate Chem, 2019, 30( 3): 920-930.
doi: 10.1021/acs.bioconjchem.9b00032
52 MANDALT, BECKM, KIRSTENN, et al.Targeting murine leukemic stem cells by antibody functionalized mesoporous silica nanoparticles[J]Sci Rep, 2018, 8( 1): 989.
doi: 10.1038/s41598-017-18932-4
53 ZONGH, SENS, ZHANGG, et al.In vivo targeting of leukemia stem cells by directing parthenolide-loaded nanoparticles to the bone marrow niche[J]Leukemia, 2016, 30( 7): 1582-1586.
doi: 10.1038/leu.2015.343
54 ALPHANDÉRYE. Biodistribution and targeting properties of iron oxide nanoparticles for treatments of cancer and iron anemia disease[J]Nanotoxicology, 2019, 13( 5): 573-596.
doi: 10.1080/17435390.2019.1572809
55 CHENS, CHENM, XIONGF, et al.Inhibitory effect of magnetic Fe3O4 nanoparticles coloaded with homoharringtonine on human leukemia cells in vivo and in vitro[J]Int J Nanomedicine, 2016, 4413-4422.
doi: 10.2147/IJN.S105543
56 SHAHABADIN, FALSAFIM, MANSOURIK. Improving antiproliferative effect of the anticancer drug cytarabine on human promyelocytic leukemia cells by coating on Fe3O4@SiO2 nanoparticles[J]Colloids Surfs B-Biointerfaces, 2016, 213-222.
doi: 10.1016/j.colsurfb.2016.01.054
57 NIUF, YANJ, MAB, et al.Lanthanide-doped nanoparticles conjugated with an anti-CD33 antibody and a p53-activating peptide for acute myeloid leukemia therapy[J]Biomaterials, 2018, 132-142.
doi: 10.1016/j.biomaterials.2018.03.025
[1] 叶柏新,胡永仙,张明明,黄河. 脂质纳米粒-mRNA递送系统及其在嵌合抗原受体T细胞治疗中的应用[J]. 浙江大学学报(医学版), 2022, 51(2): 185-191.
[2] 刘娇,涂晓璇,刘璐璐,方维佳. 嵌合抗原受体T细胞治疗恶性实体瘤新进展[J]. 浙江大学学报(医学版), 2022, 51(2): 175-184.
[3] 胡珂嘉,黄玥,胡永仙,黄河. 嵌合抗原受体T细胞治疗血液系统恶性肿瘤研究进展[J]. 浙江大学学报(医学版), 2022, 51(2): 192-203.
[4] 刘德坤,刘佳丽,张丹,杨雯晴. 细胞衰老与动脉粥样硬化的相关研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 95-101.
[5] 汪文妮,陈超群,顾新华. 磁性纳米粒子复合支架及外加磁场影响成骨作用的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 102-107.
[6] 边梦瑶,陈莉丽,雷利红. 慢性牙周炎与帕金森病相关性的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 108-114.
[7] 金群,黄丽华. 神经认知障碍患者多成分运动干预的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 38-46.
[8] 王健行,姚瑶,钱亦淳,姚卫萍,程帅,袁欣越,张园. 持续/复发性分化型甲状腺癌综合治疗相关预后因素分析[J]. 浙江大学学报(医学版), 2021, 50(6): 707-715.
[9] 卢茜璇,包黎莎,潘宗富,葛明华. 甲状腺未分化癌免疫治疗的现状及未来[J]. 浙江大学学报(医学版), 2021, 50(6): 675-684.
[10] 钱晨宏,蒋烈浩,许世莹,王佳峰,谭卓,忻莹,葛明华. 甲状腺未分化癌靶向治疗研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 685-693.
[11] 周靖,王艳,徐恩萍. 微单倍型在法医遗传学中的研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 777-782.
[12] 任渊,崔戈丹,高永翔. 原发性干燥综合征患者颌下腺炎症反应机制研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 783-794.
[13] 马丽娟,吴爽,张凯,田梅,张宏. 大麻素1型受体正电子发射断层显像在神经精神疾病中的应用进展[J]. 浙江大学学报(医学版), 2021, 50(5): 666-673.
[14] 宣自学,张轶雯,潘宗富,郑小卫,黄萍. 天然药物成分干预铁死亡抑制肿瘤的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(5): 601-606.
[15] 曲文政,庄英粮,李学坤. 表观遗传修饰在神经退行性变性疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(5): 642-650.