综述 |
|
|
|
|
纳米药物递送系统在急性髓细胞性白血病治疗中的应用 |
张少琪1,2,孙洁1,2,*( ) |
1.浙江大学医学院附属第一医院骨髓移植中心,浙江 杭州 310003 2.浙江大学血液学研究所,浙江 杭州 310058 |
|
Nano-drug delivery system for the treatment of acute myelogenous leukemia |
ZHANG Shaoqi1,2,SUN Jie1,2,*( ) |
1. Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; 2. Institute of Hematology, Zhejiang University, Hangzhou 310058, China |
1 |
DE KOUCHKOVSKYI, ABDUL-HAYM. Acute myeloid leukemia: a comprehensive review and 2016 update[J/OL]Blood Cancer J, 2016, 6( 7): e441.
doi: 10.1038/bcj.2016.50
|
2 |
VAGOL, GOJOI. Immune escape and immunotherapy of acute myeloid leukemia[J]J Clin Invest, 2020, 130( 4): 1552-1564.
doi: 10.1172/JCI129204
|
3 |
NEWELLL F, COOKR J. Advances in acute myeloidleukemia[J]BMJ, 2021, n2026.
doi: 10.1136/bmj.n2026
|
4 |
WICKIA, WITZIGMANND, BALASUBRAMANIANV, et al.Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications[J]J Control Release, 2015, 138-157.
doi: 10.1016/j.jconrel.2014.12.030
|
5 |
LEEJ J, SAIFUL YAZANL, CHE ABDULLAHC A. A review on current nanomaterials and their drug conjugate for targeted breast cancer treatment[J]Int J Nanomedicine, 2017, 2373-2384.
doi: 10.2147/IJN.S127329
|
6 |
BOZZUTOG, MOLINARIA. Liposomes as nanomedical devices[J]Int J Nanomedicine, 2015, 975-999.
doi: 10.2147/IJN.S68861
|
7 |
PATRAJ K, DASG, FRACETOL F, et al.Nano based drug delivery systems: recent developments and future prospects[J]J Nanobiotechnol, 2018, 16( 1): 71.
doi: 10.1186/s12951-018-0392-8
|
8 |
TATARA S, NAGY-SIMONT, TOMULEASAC, et al.Nanomedicine approaches in acute lymphoblastic leukemia[J]J Control Release, 2016, 123-138.
doi: 10.1016/j.jconrel.2016.07.035
|
9 |
TANGX, LOCW S, DONGC, et al.The use of nanoparticulates to treat breast cancer[J]Nanomedicine, 2017, 12( 19): 2367-2388.
doi: 10.2217/nnm-2017-0202
|
10 |
ADAIRJ H, PARETTEM P, ALTINOĞLUE I, et al.Nanoparticulate alternatives for drug delivery[J]ACS Nano, 2010, 4( 9): 4967-4970.
doi: 10.1021/nn102324e
|
11 |
MOGHIMIS M. Exploiting bone marrow microvascular structure for drug delivery and future therapies[J]Adv Drug Deliver Rev, 1995, 17( 1): 61-73.
doi: 10.1016/0169-409X(95)00041-5
|
12 |
SONIG, YADAVK S. Applications of nanoparticles in treatment and diagnosis of leukemia[J]Mater Sci Eng C Mater Biol Appl, 2015, 156-164.
doi: 10.1016/j.msec.2014.10.043
|
13 |
WUY, IHMES, FEURING-BUSKEM, et al.A core-shell albumin copolymer nanotransporter for high capacity loading and two-step release of doxorubicin with enhanced anti-leukemia activity[J]Adv Healthcare Mater, 2013, 2( 6): 884-894.
doi: 10.1002/adhm.201200296
|
14 |
PRAKASHS, MALHOTRAM, SHAOW, et al.Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy[J]Adv Drug Deliver Rev, 2011, 63( 14-15): 1340-1351.
doi: 10.1016/j.addr.2011.06.013
|
15 |
VILARG, TULLA-PUCHEJ, ALBERICIOF. Polymers and drug delivery systems[J]Curr Drug Deliv, 2012, 9( 4): 367-394.
doi: 10.2174/156720112801323053
|
16 |
XIAW, TAOZ, ZHUB, et al.Targeted delivery of drugs and genes using polymer nanocarriers for cancer therapy[J]Int J Mol Sci, 2021, 22( 17): 9118.
doi: 10.3390/ijms22179118
|
17 |
FANJ, HEQ, WANGZ, et al.Self-assembled nanocomplex for co-delivery of arsenic-retinoic acid prodrug into acute promyelocytic leukemia cells[J]J Biomed Nanotechnol, 2018, 14( 6): 1052-1065.
doi: 10.1166/jbn.2018.2556
|
18 |
KANWALU, IRFAN BUKHARIN, OVAISM, et al.Advances in nano-delivery systems for doxorubicin: an updated insight[J]J Drug Target, 2018, 26( 4): 296-310.
doi: 10.1080/1061186X.2017.1380655
|
19 |
SADAT TABATABAEI MIRAKABADF, NEJATI-KOSHKIK, AKBARZADEHA, et al.PLGA-based nanoparticles as cancer drug delivery systems[J]Asian Pac J Cancer Prev, 2014, 15( 2): 517-535.
doi: 10.7314/apjcp.2014.15.2.517
|
20 |
DARWISHN H E, SUDHAT, GODUGUK, et al.Novel targeted nano-parthenolide molecule against NF-κB in acute myeloid leukemia[J]Molecules, 2019, 24( 11): 2103.
doi: 10.3390/molecules24112103
|
21 |
DANHIERF, ANSORENAE, SILVAJ M, et al.PLGA-based nanoparticles: an overview of biomedical applications[J]J Control Release, 2012, 161( 2): 505-522.
doi: 10.1016/j.jconrel.2012.01.043
|
22 |
SUKJ S, XUQ, KIMN, et al.PEGylation as a strategy for improving nanoparticle-based drug and gene delivery[J]Adv Drug Deliver Rev, 2016, 28-51.
doi: 10.1016/j.addr.2015.09.012
|
23 |
HÖBELS, AIGNERA. Polyethylenimines for siRNA and miRNA delivery in vivo[J]Wires Nanomed Nanobi, 2013, 5( 5): 484-501.
doi: 10.1002/wnan.1228
|
24 |
PATNAIKS, GUPTAK C. Novel polyethylenimine-derived nanoparticles for in vivo gene delivery[J]Expert Opin Drug Deliver, 2013, 10( 2): 215-228.
doi: 10.1517/17425247.2013.744964
|
25 |
GUL-ULUDAĞH, VALENCIA-SERNAJ, KUCHARSKIC, et al.Polymeric nanoparticle-mediated silencing of CD44 receptor in CD34+ acute myeloid leukemia cells[J]Leukemia Res, 2014, 38( 11): 1299-1308.
doi: 10.1016/j.leukres.2014.08.008
|
26 |
BABUA, RAMESHR. Multifaceted applications of chitosan in cancer drug delivery and therapy[J]Mar Drugs, 2017, 15( 4): 96.
doi: 10.3390/md15040096
|
27 |
WEIX, LIAOJ, DAVOUDIZ, et al.Folate receptor-targeted and gsh-responsive carboxymethyl chitosan nanoparticles containing covalently entrapped 6-mercaptopurine for enhanced intracellular drug delivery in leukemia[J]Mar Drugs, 2018, 16( 11): 439.
doi: 10.3390/md16110439
|
28 |
YUEX, DAIZ. Liposomal nanotechnology for cancer theranostics[J]Curr Med Chem, 2018, 25( 12): 1397-1408.
doi: 10.2174/0929867324666170306105350
|
29 |
GUIMARÃESD, CAVACO-PAULOA, NOGUEIRAE. Design of liposomes as drug delivery system for therapeutic applications[J]Int J Pharm, 2021, 120571.
doi: 10.1016/j.ijpharm.2021.120571
|
30 |
WANGQ, BANERJEEK, VASILINING, et al.Population pharmacokinetics and exposure‐response analyses for CPX‐351 in patients with hematologic malignancies[J]J Clin Pharmacol, 2019, 59( 5): 748-762.
doi: 10.1002/jcph.1366
|
31 |
SUNS, ZOUH, LIL, et al.CD123/CD33 dual-antibody modified liposomes effectively target acute myeloid leukemia cells and reduce antigen-negative escape[J]Int J Pharm, 2019, 118518.
doi: 10.1016/j.ijpharm.2019.118518
|
32 |
BARTHB M, WANGW, TORANP T, et al.Sphingolipid metabolism determines the therapeutic efficacy of nanoliposomal ceramide in acute myeloidleukemia[J]Blood Adv, 2019, 3( 17): 2598-2603.
doi: 10.1182/bloodadvances.2018021295
|
33 |
RAJR, RAJP M, RAMA. Nanosized ethanol based malleable liposomes of cytarabine to accentuate transdermal delivery: formulation optimization, in vitro skin permeation and in vivo bioavailability[J]Artif Cells Nanomed Biotechnol, 2018, 46( sup2): 951-963.
doi: 10.1080/21691401.2018.1473414
|
34 |
SINGHY, MEHERJ G, RAVALK, et al.Nanoemulsion: concepts, development and applications in drugdelivery[J]J Control Release, 2017, 28-49.
doi: 10.1016/j.jconrel.2017.03.008
|
35 |
FENGZ, WANGZ, YANGY, et al.Development of a safety and efficacy nanoemulsion delivery system encapsulated gambogic acid for acute myeloid leukemia in vitro and in vivo[J]Eur J Pharmaceutical Sci, 2018, 172-180.
doi: 10.1016/j.ejps.2018.10.001
|
36 |
LIJ, YANGL, SHENR, et al.Self-nanoemulsifying system improves oral absorption and enhances anti-acute myeloid leukemia activity of berberine[J]J Nanobiotechnol, 2018, 16( 1): 76.
doi: 10.1186/s12951-018-0402-x
|
37 |
HUANGX, LINH, HUANGF, et al.Targeting approaches of nanomedicines in acute myeloid leukemia[J]Dose-Response, 2019, 17( 4): 155932581988704.
doi: 10.1177/1559325819887048
|
38 |
ZHANGH, LUOJ, LIY, et al.Characterization of high-affinity peptides and their feasibility for use in nanotherapeutics targeting leukemia stem cells[J]Nanomed-Nanotechnol Biol Med, 2012, 8( 7): 1116-1124.
doi: 10.1016/j.nano.2011.12.004
|
39 |
LINT Y, ZHUY, LIY, et al.Daunorubicin-containing CLL1-targeting nanomicelles have anti-leukemia stem cell activity in acute myeloid leukemia[J]Nanomed-Nanotechnol Biol Med, 2019, 102004.
doi: 10.1016/j.nano.2019.04.007
|
40 |
MENGJ, GEY, XINGH, et al.Synthetic CXCR4 antagonistic peptide assembling with nanoscaled micelles combat acute myeloid leukemia[J]Small, 2020, 16( 31): 2001890.
doi: 10.1002/smll.202001890
|
41 |
TARHINIM, GREIGE-GERGESH, ELAISSARIA. Protein-based nanoparticles: from preparation to encapsulation of active molecules[J]Int J Pharm, 2017, 522( 1-2): 172-197.
doi: 10.1016/j.ijpharm.2017.01.067
|
42 |
KAUNDALB, SRIVASTAVAA K, DEVA, et al.Nanoformulation of EPZ011989 attenuates EZH2-c-Myb epigenetic interaction by proteasomal degradation in acute myeloid leukemia[J]Mol Pharm, 2020, 17( 2): 604-621.
doi: 10.1021/acs.molpharmaceut.9b01071
|
43 |
OJEA-JIMÉNEZI, COMENGEJ, GARCÍA-FERNÁNDEZL, et al.Engineered inorganic nanoparticles for drug delivery applications[J]Curr Drug Metab, 2013, 14( 5): 518-530.
doi: 10.2174/13892002113149990008
|
44 |
LADJR, BITARA, EISSAM, et al.Individual inorganic nanoparticles: preparation, functionalization and in vitro biomedical diagnostic applications[J]J Mater Chem B, 2013, 1( 10): 1381-1396.
doi: 10.1039/C2TB00301E
|
45 |
SANTOSH A, MÄKILÄE, AIRAKSINENA J, et al.Porous silicon nanoparticles for nanomedicine: preparation and biomedical applications[J]Nanomedicine (Lond), 2014, 9( 4): 535-554.
doi: 10.2217/nnm.13.223
|
46 |
MIOCA, MIOCM, GHIULAIR, et al.Gold nanoparticles as targeted delivery systems and theranostic agents in cancer therapy[J]Curr Med Chem, 2019, 26( 35): 6493-6513.
doi: 10.2174/0929867326666190506123721
|
47 |
DUY, HANM, CAOK, et al.Gold nanorods exhibit intrinsic therapeutic activity via controlling N6-methyladenosine-based epitranscriptomics in acute myeloid leukemia[J]ACS Nano, 2021, 15( 11): 17689-17704.
doi: 10.1021/acsnano.1c05547
|
48 |
CAOK, DUY, BAOX, et al.Glutathione‐bioimprinted nanoparticles targeting of N6‐methyladenosine FTO demethylase as a strategy against leukemic stem cells[J/OL]Small, 2022, 18( 13): e2106558.
doi: 10.1002/smll.202106558
|
49 |
SIMONT, TOMULEASAC, BOJANA, et al.Design of FLT3 inhibitor - gold nanoparticle conjugates as potential therapeutic agents for the treatment of acute myeloid leukemia[J]Nanoscale Res Lett, 2015, 10( 1): 466.
doi: 10.1186/s11671-015-1154-2
|
50 |
DENGR, SHENN, YANGY, et al.Targeting epigenetic pathway with gold nanoparticles for acute myeloid leukemia therapy[J]Biomaterials, 2018, 80-90.
doi: 10.1016/j.biomaterials.2018.03.013
|
51 |
CHANK P, CHAOS H, KAHJ C Y. Exploiting protein corona around gold nanoparticles conjugated to p53 activating peptides to increase the level of stable p53 proteins in cells[J]Bioconjugate Chem, 2019, 30( 3): 920-930.
doi: 10.1021/acs.bioconjchem.9b00032
|
52 |
MANDALT, BECKM, KIRSTENN, et al.Targeting murine leukemic stem cells by antibody functionalized mesoporous silica nanoparticles[J]Sci Rep, 2018, 8( 1): 989.
doi: 10.1038/s41598-017-18932-4
|
53 |
ZONGH, SENS, ZHANGG, et al.In vivo targeting of leukemia stem cells by directing parthenolide-loaded nanoparticles to the bone marrow niche[J]Leukemia, 2016, 30( 7): 1582-1586.
doi: 10.1038/leu.2015.343
|
54 |
ALPHANDÉRYE. Biodistribution and targeting properties of iron oxide nanoparticles for treatments of cancer and iron anemia disease[J]Nanotoxicology, 2019, 13( 5): 573-596.
doi: 10.1080/17435390.2019.1572809
|
55 |
CHENS, CHENM, XIONGF, et al.Inhibitory effect of magnetic Fe3O4 nanoparticles coloaded with homoharringtonine on human leukemia cells in vivo and in vitro[J]Int J Nanomedicine, 2016, 4413-4422.
doi: 10.2147/IJN.S105543
|
56 |
SHAHABADIN, FALSAFIM, MANSOURIK. Improving antiproliferative effect of the anticancer drug cytarabine on human promyelocytic leukemia cells by coating on Fe3O4@SiO2 nanoparticles[J]Colloids Surfs B-Biointerfaces, 2016, 213-222.
doi: 10.1016/j.colsurfb.2016.01.054
|
57 |
NIUF, YANJ, MAB, et al.Lanthanide-doped nanoparticles conjugated with an anti-CD33 antibody and a p53-activating peptide for acute myeloid leukemia therapy[J]Biomaterials, 2018, 132-142.
doi: 10.1016/j.biomaterials.2018.03.025
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|