Please wait a minute...
浙江大学学报(医学版)  2022, Vol. 51 Issue (4): 500-506    DOI: 10.3724/zdxbyxb-2022-0077
综述     
间充质干细胞来源的外泌体调节缺血性脑卒中后炎症反应的研究进展
周璐佳1,梁景岩1,2,熊天庆1,2,*
1. 扬州大学医学院 扬州大学转化医学研究院,江苏 扬州 225001
2. 江苏省中西医结合老年病防治重点实验室,江苏 扬州 225001
Research progress of mesenchymal stem cell-derived exosomes on inflammatory response after ischemic stroke
ZHOU Lujia1,LIANG Jingyan1,2,XIONG Tianqing1,2,*
1. Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China;
2. Jiangsu Provincial Key Laboratory of Geriatric Disease Prevention and Control, Yangzhou 225001, Jiangsu Province, China
 全文: PDF(2049 KB)   HTML( 13 )
摘要:

缺血性脑卒中发病急、致死率高,而抑制神经炎症是治疗缺血性脑卒中的关键。间充质干细胞(MSC)来源的外泌体因其来源广、直径小、有效成分多而被广泛关注。近期研究表明,MSC来源的外泌体可抑制小胶质细胞、星形胶质细胞的促炎反应活性,刺激其神经保护活性;也可通过调节免疫细胞和炎症介质抑制神经炎症。本文阐述了MSC来源的外泌体在缺血性脑卒中后神经炎症中的作用及其潜在机制,希望为其在缺血性脑卒中疾病的治疗提供思路和借鉴。

关键词: 间充质干细胞外泌体缺血性脑卒中神经胶质细胞炎症介质综述    
Abstract:

Ischemic stroke is characterized by cute onset and high mortality. The suppression of neuroinflammation is crucial in the treatment of ischemic stroke. Exosomes derived from mesenchymal stem cell (MSC) have attracted extensive research attention due to their wide origin, small size, and containing large number of active components. Recent studies have shown that MSC-derived exosomes can inhibit the proinflammatory activity of microglia and astrocytes and stimulate their neuroprotective activity; also can inhibit neuroinflammation by regulating immune cells and inflammatory mediators. This article reviews the roles and related mechanism of MSC-derived exosomes in neuroinflammation after ischemic stroke, hoping to provide ideas and references for the development of a novel approach for the treatment of ischemic stroke diseases.

Key words: Mesenchymal stem cell    Exosome    Ischemic stroke    Neuroglial cell    Inflammatory mediator    Review
收稿日期: 2022-03-01 出版日期: 2022-11-16
CLC:  R743.3  
基金资助: 国家重点研发计划(2016YFE0126000);江苏省“六大人才高峰”高层次人才项目(2018WSN-082);扬州市“绿扬金凤计划”(137012415/5022);扬州大学创新训练项目(X20220737)
通讯作者: 熊天庆   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周璐佳
梁景岩
熊天庆

引用本文:

周璐佳,梁景岩,熊天庆. 间充质干细胞来源的外泌体调节缺血性脑卒中后炎症反应的研究进展[J]. 浙江大学学报(医学版), 2022, 51(4): 500-506.

ZHOU Lujia,LIANG Jingyan,XIONG Tianqing. Research progress of mesenchymal stem cell-derived exosomes on inflammatory response after ischemic stroke. J Zhejiang Univ (Med Sci), 2022, 51(4): 500-506.

链接本文:

https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2022-0077        https://www.zjujournals.com/med/CN/Y2022/V51/I4/500

1 JOHNSON W , ONUMA O , OWOLABI M , et al.Stroke: a global response is needed[J]Bull World Health Organ, 2016, 94( 9): 634-634A.
doi: 10.2471/BLT.16.181636
2 王陇德, 彭 斌, 张鸿祺, 等. 《中国脑卒中防治报告2020》概要[J]. 中国脑血管病杂志, 2022, 19(2): 136-144
WANG Longde, PENG Bin, ZHANG Hongqi, et al. Summary of Chinese stroke prevention and treatment report 2020 [J]. Chinese Journal of Cerebrovascular Disease, 2022, 19(2): 136-144. (in Chinese)
3 CHAMORRO Á , DIRNAGL U , URRA X , et al.Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation[J]Lancet Neurol, 2016, 15( 8): 869-881.
doi: 10.1016/s1474-4422(16)00114-9
4 REN J X , LI C , YAN X L , et al.Crosstalk between oxidative stress and ferroptosis/oxytosis in ischemic stroke: possible targets and molecular mechanisms[J]Oxid Med Cell Longev, 2021, 1-13.
doi: 10.1155/2021/6643382
5 JAYARAJ R L , AZIMULLAH S , BEIRAM R , et al.Neuroinflammation: friend and foe for ischemic stroke[J]J Neuroinflammation, 2019, 16( 1): 142.
doi: 10.1186/s12974-019-1516-2
6 XU S , LU J , SHAO A , et al.Glial cells: role of the immune response in ischemic stroke[J]Front Immunol, 2020, 294.
doi: 10.3389/fimmu.2020.00294
7 KIM H Y , KIM T J , KANG L , et al.Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke[J]Biomaterials, 2020, 119942.
doi: 10.1016/j.biomaterials.2020.119942
8 TIAN T , ZHANG H X , HE C P , et al.Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy[J]Biomaterials, 2018, 137-149.
doi: 10.1016/j.biomaterials.2017.10.012
9 MEN Y , YELICK J , JIN S , et al.Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS[J]Nat Commun, 2019, 10( 1): 4136.
doi: 10.1038/s41467-019-11534-w
10 GAIRE B P , SONG M R , CHOI J W . Sphingosine 1-phosphate receptor subtype 3 (S1P3) contributes to brain injury after transient focal cerebral ischemia via modulating microglial activation and their M1 polarization[J]J Neuroinflammation, 2018, 15( 1): 284.
doi: 10.1186/s12974-018-1323-1
11 LONG Q , UPADHYA D , HATTIANGADY B , et al.Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus[J/OL]Proc Natl Acad Sci U S A, 2017, 114( 17): E3536.
doi: 10.1073/pnas.1703920114
12 CHANG Y H , WU K C , HARN H J , et al.Exosomes and stem cells in degenerative disease diagnosis and therapy[J]Cell Transplant, 2018, 27( 3): 349-363.
doi: 10.1177/0963689717723636
13 NALAMOLU K R , VENKATESH I , MOHANDASS A , et al.Exosomes treatment mitigates ischemic brain damage but does not improve poststroke neurological outcome[J]Cell Physiol Biochem, 2019, 52( 6): 1280-1291.
doi: 10.33594/000000090
14 DOEPPNER T R , HERZ J , GÖRGENS A , et al.Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression[J]Stem Cells Transl Med, 2015, 4( 10): 1131-1143.
doi: 10.5966/sctm.2015-0078
15 CHEN Y , LI J , MA B , et al.MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat[J]Aging, 2020, 12( 18): 18274-18296.
doi: 10.18632/aging.103692
16 CAI G , CAI G , ZHOU H , et al.Mesenchymal stem cell-derived exosome miR-542-3p suppresses inflammation and prevents cerebral infarction[J]Stem Cell Res Ther, 2021, 12( 1): 2.
doi: 10.1186/s13287-020-02030-w
17 GIUNTI D , MARINI C , PARODI B , et al.Role of miRNAs shuttled by mesenchymal stem cell-derived small extracellular vesicles in modulating neuroinflammation[J]Sci Rep, 2021, 11( 1): 1740.
doi: 10.1038/s41598-021-81039-4
18 郭 壮, 周利君. 星形胶质细胞-小胶质细胞的交互对话在神经炎症中的双重作用[J]. 实用医学杂志, 2021, 37(18): 2432-2436
GUO Zhuang, ZHOU Lijun. The dual role of astrocyte-microglia interaction dialogue in neuroinflammation[J]. Journal of Practical Medicine, 2021, 37(18): 2432-2436. (in Chinese)
19 XIAN P , HEI Y , WANG R , et al.Mesenchymal stem cell-derived exosomes as a nanotherapeutic agent for amelioration of inflammation-induced astrocyte alterations in mice[J]Theranostics, 2019, 9( 20): 5956-5975.
doi: 10.7150/thno.33872
20 BIAN P , YE C , ZHENG X , et al.Mesenchymal stem cells alleviate Japanese encephalitis virus-induced neuroinflammation and mortality[J]Stem Cell Res Ther, 2017, 8( 1): 38.
doi: 10.1186/s13287-017-0486-5
21 ZHAO Y , GAN Y , XU G , et al.Exosomes from MSCs overexpressing microRNA-223-3p attenuate cerebral ischemia through inhibiting microglial M1 polarization mediated inflammation[J]Life Sci, 2020, 118403.
doi: 10.1016/j.lfs.2020.118403
22 LIU W , RONG Y , WANG J , et al.Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization[J]J Neuroinflammation, 2020, 17( 1): 47.
doi: 10.1186/s12974-020-1726-7
23 GENG W, TANG H, LUO S, et al. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation[J]. Am J Transl Res. 2019, 11(2): 780-792
24 JIANG M , WANG H , JIN M , et al.Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization[J]Cell Physiol Biochem, 2018, 47( 2): 864-878.
doi: 10.1159/000490078
25 CHANG C Y , WU C C , WANG J D , et al.DHA attenuated Japanese encephalitis virus infection-induced neuroinflammation and neuronal cell death in cultured rat neuron/ glia[J]Brain Behav Immun, 2021, 194-205.
doi: 10.1016/j.bbi.2021.01.012
26 KANDEL E R . The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB[J]Mol Brain, 2012, 5( 1): 14.
doi: 10.1186/1756-6606-5-14
27 DIAZ M F , VAIDYA A B , EVANS S M , et al.Biomechanical forces promote immune regulatory function of bone marrow mesenchymal stromal cells[J]Stem Cells, 2017, 35( 5): 1259-1272.
doi: 10.1002/stem.2587
28 LIU W , YU M , XIE D , et al.Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway[J]Stem Cell Res Ther, 2020, 11( 1): 259.
doi: 10.1371/journal.pone.0186937
29 LV B , LI F , FANG J , et al.Activated microglia induce bone marrow mesenchymal stem cells to produce glial cell-derived neurotrophic factor and protect neurons against oxygen-glucose deprivation injury[J]Front Cell Neurosci, 2016, 283.
doi: 10.3389/fncel.2016.00283
30 HARRELL C R , VOLAREVIC A , DJONOV V , et al.Mesenchymal stem cell-derived exosomes as new remedy for the treatment of neurocognitive disorders[J]Int J Mol Sci, 2021, 22( 3): 1433.
doi: 10.3390/ijms22031433
31 XIN W Q , WEI W , PAN Y L , et al.Modulating poststroke inflammatory mechanisms: novel aspects of mesenchymal stem cells, extracellular vesicles and microglia[J]World J Stem Cells, 2021, 13( 8): 1030-1048.
doi: 10.4252/wjsc.v13.i8.1030
32 VERKHRATSKY A , STEARDO L , PARPURA V , et al.Translational potential of astrocytes in brain disorders[J]Prog Neurobiol, 2016, 188-205.
doi: 10.1016/j.pneurobio.2015.09.003
33 NAKANO M , NAGAISHI K , KONARI N , et al.Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes[J]Sci Rep, 2016, 6( 1): 24805.
doi: 10.1038/srep24805
34 LIU W , WANG Y , GONG F , et al.Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of A1 neurotoxic reactive astrocytes[J]J Neurotrauma, 2019, 36( 3): 469-484.
doi: 10.1089/neu.2018.5835
35 HUAT T J , KHAN A A , ABDULLAH J M , et al.MicroRNA expression profile of bone marrow mesenchymal stem cell-derived neural progenitor by microarray under the influence of EGF, bFGF and IGF-1[J]Genomics Data, 2015, 201-205.
doi: 10.1016/j.gdata.2015.06.015
36 ZHU J , LIU Q , JIANG Y , et al.Enhanced angiogenesis promoted by human umbilical mesenchymal stem cell transplantation in stroked mouse is Notch1 signaling associated[J]Neuroscience, 2015, 288-299.
doi: 10.1016/j.neuroscience.2015.01.038
37 WANG S , VAN DE PAVERT S A . Innate lymphoid cells in the central nervous system[J]Front Immunol, 2022, 837250.
doi: 10.3389/fimmu.2022.837250
38 ZHANG B , YEO R W Y , LAI R C , et al.Mesenchymal stromal cell exosome-enhanced regulatory T-cell production through an antigen-presenting cell-mediated pathway[J]Cytotherapy, 2018, 20( 5): 687-696.
doi: 10.1016/j.jcyt.2018.02.372
39 PHINNEY D G , DI GIUSEPPE M , NJAH J , et al.Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs[J]Nat Commun, 2015, 6( 1): 8472.
doi: 10.1038/ncomms9472
40 张 弛, 张 圳, 向秋玲. 间充质干细胞在炎症免疫调节中的作用[J]. 生理科学进展, 2021, 52(6): 456-460
ZHANG Chi, ZHANG Zhen, XIANG Qiuling. Role of mesenchymal stem cells in inflammatory and immune regulation [J]. Progress in Physiology, 2021, 52(6): 456-460. (in Chinese)
41 CHEN P M , LIU K J , HSU P J , et al.Induction of immunomodulatory monocytes by human mesenchymal stem cell-derived hepatocyte growth factor through ERK1/2[J]J Leukocyte Biol, 2014, 96( 2): 295-303.
doi: 10.1189/jlb.3A0513-242R
42 YE L , ZHANG Q , CHENG Y , et al.Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1 + regulatory B cell expansion[J]J Immunother Cancer, 2018, 6( 1): 145.
doi: 10.1186/s40425-018-0451-6
43 HAUPTMANN J , JOHANN L , MARINI F , et al.Interleukin-1 promotes autoimmune neuroinflammation by suppressing endothelial heme oxygenase-1 at the blood-brain barrier[J]Acta Neuropathol, 2020, 140( 4): 549-567.
doi: 10.1007/s00401-020-02187-x
44 EBRAHIM N A , LEACH L . Transendothelial migration of human umbilical mesenchymal stem cells across uterine endothelial monolayers: junctional dynamics and putative mechanisms[J]Placenta, 2016, 87-98.
doi: 10.1016/j.placenta.2016.10.014
45 HEGYI B , KÖRNYEI Z , FERENCZI S , et al.Regulation of mouse microglia activation and effector functions by bone marrow-derived mesenchymal stem cells[J]Stem Cells Dev, 2014, 23( 21): 2600-2612.
doi: 10.1089/scd.2014.0088
46 KARLUPIA N , MANLEY N C , PRASAD K , et al.Intraarterial transplantation of human umbilical cord blood mononuclear cells is more efficacious and safer compared with umbilical cord mesenchymal stromal cells in a rodent stroke model[J]Stem Cell Res Ther, 2014, 5( 2): 45.
doi: 10.1186/scrt434
47 DABROWSKA S , ANDRZEJEWSKA A , STRZEMECKI D , et al.Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats[J]J Neuroinflammation, 2019, 16( 1): 216.
doi: 10.1186/s12974-019-1602-5
48 YAMASHITA T , TAKAHASHI Y , TAKAKURA Y . Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application[J]Biol Pharmaceutical Bull, 2018, 41( 6): 835-842.
doi: 10.1248/bpb.b18-00133
[1] 李芸,陈新. T淋巴细胞体外发育方法的研究进展[J]. 浙江大学学报(医学版), 2022, 51(4): 491-499.
[2] 邹杰林,毛靖,石鑫. 牙髓-牙本质复合体再生的影响因素及其生物学策略[J]. 浙江大学学报(医学版), 2022, 51(3): 350-361.
[3] 孙萍萍,邹炜. 活细胞RNA成像技术及其在生物医学中应用研究进展[J]. 浙江大学学报(医学版), 2022, 51(3): 362-372.
[4] 邵玥明,荀静娜,陈军,卢洪洲. 人类免疫缺陷病毒感染早期启动抗逆转录病毒治疗的意义[J]. 浙江大学学报(医学版), 2022, 51(3): 373-379.
[5] 杨朝森,张晓明. 囊泡转运在肌萎缩侧索硬化中的作用研究进展[J]. 浙江大学学报(医学版), 2022, 51(3): 380-387.
[6] 刘志超,钱周旸,王英男,王慧明. 程序性坏死在骨关节炎病理机制和治疗中的作用[J]. 浙江大学学报(医学版), 2022, 51(2): 261-265.
[7] 李健宜,佟丹丹,林俊生. 恶性肿瘤饥饿疗法研究现状[J]. 浙江大学学报(医学版), 2022, 51(2): 241-250.
[8] 叶柏新,胡永仙,张明明,黄河. 脂质纳米粒-mRNA递送系统及其在嵌合抗原受体T细胞治疗中的应用[J]. 浙江大学学报(医学版), 2022, 51(2): 185-191.
[9] 刘娇,涂晓璇,刘璐璐,方维佳. 嵌合抗原受体T细胞治疗恶性实体瘤新进展[J]. 浙江大学学报(医学版), 2022, 51(2): 175-184.
[10] 胡珂嘉,黄玥,胡永仙,黄河. 嵌合抗原受体T细胞治疗血液系统恶性肿瘤研究进展[J]. 浙江大学学报(医学版), 2022, 51(2): 192-203.
[11] 张少琪,孙洁. 纳米药物递送系统在急性髓细胞性白血病治疗中的应用[J]. 浙江大学学报(医学版), 2022, 51(2): 233-240.
[12] 邢敬慈,揭伟. 甲基转移酶SET结构域家族及其在心血管发育和疾病中的作用[J]. 浙江大学学报(医学版), 2022, 51(2): 251-260.
[13] 汪文妮,陈超群,顾新华. 磁性纳米粒子复合支架及外加磁场影响成骨作用的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 102-107.
[14] 边梦瑶,陈莉丽,雷利红. 慢性牙周炎与帕金森病相关性的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 108-114.
[15] 金群,黄丽华. 神经认知障碍患者多成分运动干预的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 38-46.