Please wait a minute...
浙江大学学报(医学版)  2022, Vol. 51 Issue (2): 192-203    DOI: 10.3724/zdxbyxb-2022-0055
专题报道     
嵌合抗原受体T细胞治疗血液系统恶性肿瘤研究进展
胡珂嘉1,2,3,4,黄玥1,2,3,4,胡永仙1,2,3,4,*(),黄河1,2,3,4,*()
1.浙江大学医学院附属第一医院骨髓移植中心,浙江 杭州 310003
2.浙江大学医学中心良渚实验室,浙江 杭州 311121
3.浙江大学血液学研究所,浙江 杭州 310058
4.浙江省干细胞与细胞免疫治疗工程实验室,浙江 杭州 310058
Progress on CAR-T cell therapy for hematological malignancies
HU Kejia1,2,3,4,HUANG Yue1,2,3,4,HU Yongxian1,2,3,4,*(),HUANG He1,2,3,4,*()
1. Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
2. Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China;
3. Institute of Hematology, Zhejiang University, Hangzhou 310058, China;
4. Zhejiang Provincial Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
 全文: PDF(3826 KB)   HTML( 10 )
摘要:

嵌合抗原受体(CAR)T细胞是血液系统恶性肿瘤的有效治疗方法,其发展经历了针对B细胞性白血病和淋巴瘤的CD19靶向的CAR-T细胞治疗、针对多发性骨髓瘤的B细胞成熟抗原(BCMA)靶向的CAR-T细胞治疗,近年已经开发出针对T细胞性血液系统恶性肿瘤的CD7靶向的CAR-T细胞治疗。另外,与其他血液系统恶性肿瘤相比,针对髓细胞性恶性肿瘤的CAR-T细胞治疗具有更多阻碍,相关研究也更多样化。为获得在临床上更有效和低毒性的CAR-T细胞,国内外学者开发了多靶点CAR-T细胞、通用型CAR-T细胞,以及从多能干细胞经过基因工程方法获得CAR-T细胞、CAR-自然杀伤细胞、CAR-诱导多能干细胞来源的巨噬细胞。我国学者从新型CAR-T细胞的研发到CAR-T细胞治疗临床研究体系的建立均开展了一系列研究。本文介绍CAR-T细胞治疗在B细胞性、T细胞性、髓细胞性血液系统恶性肿瘤等最新临床研究进展,也展望了多靶点、通用型和诱导多能干细胞来源的新型CAR相关细胞治疗的未来发展方向。

关键词: 嵌合抗原受体T细胞血液恶性肿瘤通用型基因编辑诱导多能干细胞综述    
Abstract:

Chimeric antigen receptor (CAR) T cell therapy is an effective treatment for hematological malignancies, which have experienced the development of CD19 CAR-T cells for B lymphoblastic leukemia and lymphoma, B cell maturation antigen (BCMA) CAR-T cells for multiple myeloid, and more recently, the development of CD7 CAR-T cells for T cell malignancies. There are more obstacles for myeloid malignancies compared to other hematological malignancies in this field, thus concerning researches are in more diverse ways. In order to obtain more effective clinical CAR-T cells with lower side effects, scientists have developed multi-target CAR-T cells, universal CAR-T cells, as well as CAR-T cells, CAR-NK cells, CAR-iMac cells derived from induced pluripotent stem cells (iPSC) by genetic engineering. Chinese scientists have made significant contribution to the invention and manufacture of origin CAR-T cells and the establishment of an intact clinical research system. This review introduces the latest progress involving CAR-T cell therapy for hematological malignancies including B lymphoblastic malignancies, T lymphoblastic malignancies and myeloid malignancies, and also discuss the future developments including multi-target, universal and iPSC-derived CAR-related cell therapy.

Key words: Chimeric antigen receptor T cell    Hematological malignancies    Universal    Gene editing    Induced pluripotent stem cell    Review
收稿日期: 2022-02-15 出版日期: 2022-08-02
CLC:  R73  
基金资助: 国家自然科学基金(81730008,81870153)
通讯作者: 胡永仙,黄河     E-mail: 1313016@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡珂嘉
黄玥
胡永仙
黄河

引用本文:

胡珂嘉,黄玥,胡永仙,黄河. 嵌合抗原受体T细胞治疗血液系统恶性肿瘤研究进展[J]. 浙江大学学报(医学版), 2022, 51(2): 192-203.

HU Kejia,HUANG Yue,HU Yongxian,HUANG He. Progress on CAR-T cell therapy for hematological malignancies. J Zhejiang Univ (Med Sci), 2022, 51(2): 192-203.

链接本文:

https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2022-0055        https://www.zjujournals.com/med/CN/Y2022/V51/I2/192

图 1  CAR的基本结构和CAR-T细胞治疗机制A: CAR的基本结构:包括抗原结合区scFv、铰链区、跨膜段、共刺激域、含免疫受体酪氨酸活化基序且可传递下游信号的CD3ζ; B: CAR-T细胞杀伤肿瘤的机制:可识别特异性抗原的CAR-T细胞与表达相应抗原的肿瘤细胞结合,通过穿孔素/颗粒酶途径、Fas/FasL等途径介导肿瘤细胞裂解,从而发挥杀伤作用. scFv:单链可变区片段;CAR:嵌合抗原受体; FasL:Fas配体.
图 2  CAR-T细胞治疗血液系统恶性肿瘤常用靶点CAR-T细胞治疗常用靶点包括针对髓细胞性血液系统恶性肿瘤的CD123、针对T细胞性血液系统恶性肿瘤的CD7、针对多发性骨髓瘤的BCMA、针对B-ALL/B-NHL的CD19. CAR:嵌合抗原受体;BCMA:B细胞成熟抗原;B-ALL:急性B淋巴细胞白血病;B-NHL:B细胞非霍奇金淋巴瘤.
图 3  双靶点CAR-T细胞示意图并联型CAR系两种针对不同靶点的CAR分子表达在一个T细胞上,串联型CAR为一个CAR分子中同时表达了两种可结合不同靶点的单链可变区片段. CAR:嵌合抗原受体.
图 4  通用型CAR-T细胞制备过程示意图从健康人外周血中分离单个核细胞,通过基因编辑的手段,如敲除表达T细胞受体、MHCⅠ等分子的基因,再转入CAR分子,制备成通用型CAR-T细胞,可进行标准化生产并应用于患者. CAR:嵌合抗原受体;MHC:主要组织相容性复合体.
图 5  iPSC来源的CAR功能细胞制备过程示意图
1 GROSSG, WAKST, ESHHARZ. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity[J]Proc Natl Acad Sci U S A, 1989, 86( 24): 10024-10028.
doi: 10.1073/pnas.86.24.10024
2 ESHHARZ, WAKST, GROSSG, et al.Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors.[J]Proc Natl Acad Sci U S A, 1993, 90( 2): 720-724.
doi: 10.1073/pnas.90.2.720
3 MAHERJ, BRENTJENSR J, GUNSETG, et al.Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor[J]Nat Biotechnol, 2002, 20( 1): 70-75.
doi: 10.1038/nbt0102-70
4 CARPENITOC, MILONEM C, HASSANR, et al.Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains[J]Proc Natl Acad Sci U S A, 2009, 106( 9): 3360-3365.
doi: 10.1073/pnas.0813101106
5 CHMIELEWSKIM, HOMBACHA A, ABKENH. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma[J]Immunol Rev, 2014, 257( 1): 83-90.
doi: 10.1111/imr.12125
6 SHIMABUKURO-VORNHAGENA, BÖLLB, SCHELLONGOWSKIP, et al.Critical care management of chimeric antigen receptor T‐cell therapy recipients[J]CA Cancer J Clin, 2022, 72( 1): 78-93.
doi: 10.3322/caac.21702
7 PARKJ H, RIVIÈREI, GONENM, et al.Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia[J]N Engl J Med, 2018, 378( 5): 449-459.
doi: 10.1056/NEJMoa1709919
8 MYERSR M, LIY, BARZ LEAHYA, et al.Humanized CD19-targeted chimeric antigen receptor (CAR) T cells in CAR-naive and CAR-exposed children and young adults with relapsed or refractory acute lymphoblastic leukemia[J]J Clin Oncol, 2021, 39( 27): 3044-3055.
doi: 10.1200/JCO.20.03458
9 MAUDES L, FREYN, SHAWP A, et al.Chimeric antigen receptor T cells for sustained remissions in leukemia[J]N Engl J Med, 2014, 371( 16): 1507-1517.
doi: 10.1056/NEJMoa1407222
10 MELENHORSTJ J, CHENG M, WANGM, et al.Decade-long leukaemia remissions with persistence of CD4+ CAR T cells[J]Nature, 2022, 602( 7897): 503-509.
doi: 10.1038/s41586-021-04390-6
11 MAUDES L, LAETSCHT W, BUECHNERJ, et al.Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia[J]N Engl J Med, 2018, 378( 5): 439-448.
doi: 10.1056/NEJMoa1709866
12 DAIH, ZHANGW, LIX, et al.Tolerance and efficacy of autologous or donor-derived T cells expressing CD19 chimeric antigen receptors in adult B-ALL with extramedullary leukemia[J/OL]Oncoimmunology, 2015, 4( 11): e1027469.
doi: 10.1080/2162402X.2015.1027469
13 HUY, WUZ, LUOY, et al.Potent anti-leukemia activities of chimeric antigen receptor-modified T cells against CD19 in Chinese patients with relapsed/refractory acute lymphocytic leukemia[J]Clin Cancer Res, 2017, 23( 13): 3297-3306.
doi: 10.1158/1078-0432.CCR-16-1799
14 WEIG, HUY, PUC, et al.CD19 targeted CAR-T therapy versus chemotherapy in re-induction treatment of refractory/relapsed acute lymphoblastic leukemia: results of a case-controlled study[J]Ann Hematol, 2018, 97( 5): 781-789.
doi: 10.1007/s00277-018-3246-4
15 ZHAOH, WEIJ, WEIG, et al.Pre-transplant MRD negativity predicts favorable outcomes of CAR-T therapy followed by haploidentical HSCT for relapsed/refractory acute lymphoblastic leukemia: a multi-center retrospective study[J]J Hematol Oncol, 2020, 13( 1): 42.
doi: 10.1186/s13045-020-00873-7
16 PANJ, ZUOS, DENGB, et al.Sequential CD19-22 CAR T therapy induces sustained remission in children with R/R B-ALL[J]Blood, 2020, 135( 5): 387-391.
doi: 10.1182/blood.2019003293
17 WANGN, HUX, CAOW, et al.Efficacy and safety of CAR19/22 T-cell cocktail therapy in patients with refractory/relapsed B-cell malignancies[J]Blood, 2020, 135( 1): 17-27.
doi: 10.1182/blood.2019000017
18 NEELAPUS S, LOCKEF L, BARTLETTN L, et al.Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma[J]N Engl J Med, 2017, 377( 26): 2531-2544.
doi: 10.1056/NEJMoa1707447
19 JACOBSONC, LOCKEF L, GHOBADIA, et al.Long-term (≥4 Year and ≥5 Year) overall survival (OS) by 12- and 24-month event-free survival (EFS): an updated analysis of ZUMA-1, the pivotal study of Axicabtagene Ciloleucel (Axi-Cel) in patients (Pts) with refractory large B-cell lymphoma (LBCL)[J]Blood, 2021, 138( Supplement 1): 1764.
doi: 10.1182/blood-2021-148078
20 JACOBSON C A, HUNTER B D, REDD R, et al. Axicabtagene ciloleucel in the non-trial setting: outcomes and correlates of response, resistance, and toxicity[J]. J Clin Oncol, 2020, 38(27): 3095-3106
21 SCHUSTERS J, TAMC S, BORCHMANNP, et al.Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): a multicentre, open-label, single-arm, phase 2 study[J]Lancet Oncol, 2021, 22( 10): 1403-1415.
doi: 10.1016/S1470-2045(21)00375-2
22 ABRAMSONJ S, PALOMBAM L, GORDONL I, et al.Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study[J]Lancet, 2020, 396( 10254): 839-852.
doi: 10.1016/S0140-6736(20)31366-0
23 WANGY, ZHANGW, HANQ, et al.Effective response and delayed toxicities of refractory advanced diffuse large B-cell lymphoma treated by CD20-directed chimeric antigen receptor-modified T cells[J]Clin Immunol, 2014, 155( 2): 160-175.
doi: 10.1016/j.clim.2014.10.002
24 SANGW, SHIM, YANGJ, et al.Phase Ⅱ trial of co‐administration of CD19‐ and CD20‐targeted chimeric antigen receptor T cells for relapsed and refractory diffuse large B cell lymphoma[J]Cancer Med, 2020, 9( 16): 5827-5838.
doi: 10.1002/cam4.3259
25 RAJEN, BERDEJAJ, LINY, et al.Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma[J]N Engl J Med, 2019, 380( 18): 1726-1737.
doi: 10.1056/NEJMoa1817226
26 MUNSHIN C, ANDERSON JR.L D, SHAHN, et al.Idecabtagene vicleucel in relapsed and refractory multiple myeloma[J]N Engl J Med, 2021, 384( 8): 705-716.
doi: 10.1056/NEJMoa2024850
27 WANGB Y, ZHAOW H, LIUJ, et al.Long-term follow-up of a phase 1, first-in-human open-label study of LCAR-B38M, a structurally differentiated chimeric antigen receptor T (CAR-T) cell therapy targeting B-cell maturation antigen (BCMA), in patients (pts) with relapsed/refractory multiple myeloma (RRMM)[J]Blood, 2019, 134( Supplement_1): 579.
doi: 10.1182/blood-2019-124953
28 FUC, JIANGS, JINJ, et al.Integrated analysis of b-cell maturation antigen-specific CAR T cells (ct053) in relapsed and refractory multiple myeloma subjects by high-risk factors[J]Blood, 2021, 138( Supplement 1): 1751.
doi: 10.1182/blood-2021-151935
29 ZHANGM, ZHOUL, ZHAOH, et al.Risk factors associated with durable progression-free survival in patients with relapsed or refractory multiple myeloma treated with anti-BCMA CAR T-cell therapy[J]Clin Cancer Res, 2021, 27( 23): 6384-6392.
doi: 10.1158/1078-0432.CCR-21-2031
30 MAILANKODYS, DIAMONTEC, FITZGERALDL, et al.phase Ⅰ first-in-class trial of MCARH109, a G protein coupled receptor class C group 5 member D (GPRE5D) targeted CAR T cell therapy in patients with relapsed or refractory multiple myeloma[J]Blood, 2021, 138( Supplement 1): 827.
doi: 10.1182/blood-2021-153204
31 MOHYUDDIN G R, ROONEY A, BALMACEDA N, et al. Chimeric antigen receptor T-cell therapy in multiple myeloma: a systematic review and meta-analysis of 950 patients[J]. Blood Adv, 2021, 5(4): 1097-1101
32 PINZK, LIUH, GOLIGHTLYM, et al.Preclinical targeting of human T-cell malignancies using CD4-specific chimeric antigen receptor (CAR)-engineered T cells[J]Leukemia, 2016, 30( 3): 701-707.
doi: 10.1038/leu.2015.311
33 CHENK H, WADAM, PINZK G, et al.Preclinical targeting of aggressive T-cell malignancies using anti-CD5 chimeric antigen receptor[J]Leukemia, 2017, 31( 10): 2151-2160.
doi: 10.1038/leu.2017.8
34 XIEL, MAL, LIUS, et al.Chimeric antigen receptor T cells targeting CD7 in a child with high-risk T-cell acute lymphoblastic leukemia[J]Int Immunopharmacol, 2021, 107731.
doi: 10.1016/j.intimp.2021.107731
35 PANJ, TANY, WANGG, et al.Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: first-in-human, phase Ⅰ trial[J]J Clin Oncol, 2021, 39( 30): 3340-3351.
doi: 10.1200/JCO.21.00389
36 GOMES-SILVAD, SRINIVASANM, SHARMAS, et al.CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies[J]Blood, 2017, 130( 3): 285-296.
doi: 10.1182/blood-2017-01-761320
37 MARDIANAS, GILLS. CAR T cells for acute myeloid leukemia: state of the art and future directions[J]Front Oncol, 2020, 697.
doi: 10.3389/fonc.2020.00697
38 TETTAMANTIS, MARINV, PIZZITOLAI, et al.Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor[J]Br J Haematol, 2013, 161( 3): 389-401.
doi: 10.1111/bjh.12282
39 TASHIROH, SAUERT, SHUMT, et al.Treatment of acute myeloid leukemia with T cells expressing chimeric antigen receptors directed to c-type lectin-like molecule 1[J]Mol Ther, 2017, 25( 9): 2202-2213.
doi: 10.1016/j.ymthe.2017.05.024
40 KENDERIANS S, RUELLAM, SHESTOVAO, et al.CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia[J]Leukemia, 2015, 29( 8): 1637-1647.
doi: 10.1038/leu.2015.52
41 SALLMAND A, BRAYERJ, SAGATYSE M, et al.NKG2D-based chimeric antigen receptor therapy induced remission in a relapsed/refractory acute myeloid leukemia patient[J/OL]Haematologica, 2018, 103( 9): e424-e426.
doi: 10.3324/haematol.2017.186742
42 YOSHIDAT, MIHARAK, TAKEIY, et al.All-trans retinoic acid enhances cytotoxic effect of T cells with an anti-CD38 chimeric antigen receptor in acute myeloid leukemia[J/OL]Clin Trans Immunol, 2016, 5( 12): e116.
doi: 10.1038/cti.2016.73
43 YUS, YIM, QINS, et al.Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity[J]Mol Cancer, 2019, 18( 1): 125.
doi: 10.1186/s12943-019-1057-4
44 MINAGAWAK, JAMILM O, AL-OBAIDIM, et al.In vitro pre-clinical validation of suicide gene modified anti-CD33 redirected chimeric antigen receptor T-cells for acute myeloid leukemia[J/OL]PLoS One, 2016, 11( 12): e0166891.
doi: 10.1371/journal.pone.0166891
45 TASIANS K, KENDERIANS S, SHENF, et al.Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia[J]Blood, 2017, 129( 17): 2395-2407.
doi: 10.1182/blood-2016-08-736041
46 WANGQ, WANGY, LVH, et al.Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia[J]Mol Ther, 2015, 23( 1): 184-191.
doi: 10.1038/mt.2014.164
47 CUIQ, QIANC, XUN, et al.CD38-directed CAR-T cell therapy: a novel immunotherapy strategy for relapsed acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation[J]J Hematol Oncol, 2021, 14( 1): 82.
doi: 10.1186/s13045-021-01092-4
48 ZHANGH, WANGP, LIZ, et al.Anti-CLL1 chimeric antigen receptor T-cell therapy in children with relapsed/refractory acute myeloid leukemia[J]Clin Cancer Res, 2021, 27( 13): 3549-3555.
doi: 10.1158/1078-0432.CCR-20-4543
49 SAFARZADEH KOZANIP, SAFARZADEH KOZANIP, O’CONNORR S. In like a lamb; out like a lion: marching CAR T cells toward enhanced efficacy in B-ALL[J]Mol Cancer Ther, 2021, 20( 7): 1223-1233.
doi: 10.1158/1535-7163.MCT-20-1089
50 SHAHN N, JOHNSONB D, SCHNEIDERD, et al.Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trialNat Med, 2020, 26( 10): 1569-1575.
doi: 10.1016/j.stem.2018.06.002
72 SPIEGEL J Y, PATEL S, MUGGLY L, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med, 2021, 27(8):1419-1431
51 TONGC, ZHANGY, LIUY, et al.Optimized tandem CD19/CD20 CAR-engineered T cells in refractory/relapsed B cell lymphoma[J]Blood, 2020, 136( 14): 1632-1644.
doi: 10.1182/blood.2020005278
52 WEIG, ZHANGY, ZHAOH, et al.CD19/CD22 dual-targeted CAR T-cell therapy for relapsed/refractory aggressive B-cell lymphoma: a safety and efficacy study[J]Cancer Immunol Res, 2021, 9( 9): 1061-1070.
doi: 10.1158/2326-6066.CIR-20-0675
53 YANZ, CAOJ, CHENGH, et al.A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase 2 trial[J/OL]Lancet Haematology, 2019, 6( 10): e521-e529.
doi: 10.1016/S2352-3026(19)30115-2
54 MEIH, LIC, JIANGH, et al.A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma[J]J Hematol Oncol, 2021, 14( 1): 161.
doi: 10.1186/s13045-021-01170-7
55 LEEL, DRAPERB, CHAPLINN, et al.An APRIL-based chimeric antigen receptor for dual targeting of BCMA and TACI in multiple myeloma[J]Blood, 2018, 131( 7): 746-758.
doi: 10.1182/blood-2017-05-781351
56 TORIKAIH, REIKA, LIUP Q, et al.A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR[J]Blood, 2012, 119( 24): 5697-5705.
doi: 10.1182/blood-2012-01-405365
57 TORIKAIH, REIKA, SOLDNERF, et al.Toward eliminating HLA class I expression to generate universal cells from allogeneic donors[J]Blood, 2013, 122( 8): 1341-1349.
doi: 10.1182/blood-2013-03-478255
58 LEEJ, SHEENJ H, LIMO, et al.Abrogation of HLA surface expression using CRISPR/Cas9 genome editing: a step toward universal T cell therapy[J]Sci Rep, 2020, 10( 1): 17753.
doi: 10.1038/s41598-020-74772-9
59 STANESCU U, GRIGORESCU E. Immunotherapeutic properties of medicinal plants. Ⅱ. Plant immunomodulator macromolecules[J].Rev Med Chir Soc Med Nat Iasi, 1987, 91(4): 731-739
60 HUY, ZHOUY, ZHANGM, et al.CRISPR/Cas9-engineered universal CD19/CD22 dual-targeted CAR-T cell therapy for relapsed/refractory B-cell acute lymphoblastic leukemia[J]Clin Cancer Res, 2021, 27( 10): 2764-2772.
doi: 10.1158/1078-0432.CCR-20-3863
61 TAKAHASHIK, TANABEK, OHNUKIM, et al.Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]Cell, 2007, 131( 5): 861-872.
doi: 10.1016/j.cell.2007.11.019
62 COUCHIED, FAGESC, BRIDOUXA M, et al.Microtubule-associated proteins and in vitro astrocyte differentiation[J]J Cell Biol, 1985, 101( 6): 2095-2103.
doi: 10.1083/jcb.101.6.2095
73 LI Y, HERMANSON D L, MORIARITY B S, et al. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity[J]. Cell Stem Cell, 2018, 23(2): 181-192e185
63 GOODRIDGEJ P, MAHMOODS, ZHUH, et al.FT596: translation of first-of-kind multi-antigen targeted off-the-shelf CAR-NK cell with engineered persistence for the treatment of B cell malignancies[J]Blood, 2019, 134( Supplement_1): 301.
doi: 10.1182/blood-2019-129319
64 GOULDINGJ, HANCOCKB, BLUMR, et al.117 FT536 path to IND: ubiquitous targeting of solid tumors with an off-the-shelf, first-of-kind MICA/B-specific CAR-iNK cellular immunotherapy[J]J Immunother Cancer, 2021, 9( Suppl 2): A126.
doi: 10.1136/jitc-2021-SITC2021.117
65 BJORDAHLR, GAIDAROVAS, GOODRIDGEJ P, et al.FT576: a novel multiplexed engineered off-the-shelf natural killer cell immunotherapy for the dual-targeting of CD38 and BCMA for the treatment of multiple myeloma[J]Blood, 2019, 134( Supplement_1): 3214.
doi: 10.1182/blood-2019-131373
66 ZHANGL, TIANL, DAIX, et al.Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions[J]J Hematol Oncol, 2020, 13( 1): 153.
doi: 10.1186/s13045-020-00983-2
67 RATAJCZAKM Z, BUJKOK, WOJAKOWSKIW. Stem cells and clinical practice: new advances and challenges at the time of emerging problems with induced pluripotent stem cell therapies[J]Polish Arch Internal Med, 2016, 126( 11): 879-890.
doi: 10.20452/pamw.3644
68 KANEMURAH, GOM J, SHIKAMURAM, et al.Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degenera-tion[J/OL]PLoS One, 2014, 9( 1): e85336.
doi: 10.1371/journal.pone.0085336
69 ATTWOODS W, EDELM J. iPS-cell technology and the problem of genetic instability——can it ever be safe for clinical use?[J]J Clin Med, 2019, 8( 3): 288.
doi: 10.3390/jcm8030288
[1] 吕雨琦,张明明,魏国庆,丁淑怡,胡永仙,黄河. BCMA靶向的嵌合抗原受体T细胞治疗复发/难治多发性骨髓瘤患者发生急性肾损伤的危险因素[J]. 浙江大学学报(医学版), 2022, 51(2): 137-143.
[2] 张棋琦,祖成,孟夜,吕雨琦,胡永仙,黄河. BCMA靶向的嵌合抗原受体T细胞治疗复发/难治多发性骨髓瘤患者发生肿瘤溶解综合征的危险因素[J]. 浙江大学学报(医学版), 2022, 51(2): 144-150.
[3] 黄荦,张明明,魏国庆,赵厚力,胡永仙,黄河. CD19 靶向的嵌合抗原受体 T 细胞治疗急性 B 淋巴细胞白血病伴髓外复发患者的疗效和安全性[J]. 浙江大学学报(医学版), 2022, 51(2): 151-159.
[4] 祖成,王柯馨,张棋琦,胡永仙,黄河. BCMA 靶向的嵌合抗原受体 T 细胞治疗复发/难治多发性骨髓瘤患者并发噬血细胞综合征临床观察[J]. 浙江大学学报(医学版), 2022, 51(2): 160-166.
[5] 付珊,胡永仙,黄河. 嵌合抗原受体T细胞治疗复发/难治B细胞非霍奇金淋巴瘤患者的长期疗效[J]. 浙江大学学报(医学版), 2022, 51(2): 167-174.
[6] 叶柏新,胡永仙,张明明,黄河. 脂质纳米粒-mRNA递送系统及其在嵌合抗原受体T细胞治疗中的应用[J]. 浙江大学学报(医学版), 2022, 51(2): 185-191.
[7] 刘娇,涂晓璇,刘璐璐,方维佳. 嵌合抗原受体T细胞治疗恶性实体瘤新进展[J]. 浙江大学学报(医学版), 2022, 51(2): 175-184.
[8] 刘德坤,刘佳丽,张丹,杨雯晴. 细胞衰老与动脉粥样硬化的相关研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 95-101.
[9] 汪文妮,陈超群,顾新华. 磁性纳米粒子复合支架及外加磁场影响成骨作用的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 102-107.
[10] 边梦瑶,陈莉丽,雷利红. 慢性牙周炎与帕金森病相关性的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 108-114.
[11] 金群,黄丽华. 神经认知障碍患者多成分运动干预的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 38-46.
[12] 卢茜璇,包黎莎,潘宗富,葛明华. 甲状腺未分化癌免疫治疗的现状及未来[J]. 浙江大学学报(医学版), 2021, 50(6): 675-684.
[13] 钱晨宏,蒋烈浩,许世莹,王佳峰,谭卓,忻莹,葛明华. 甲状腺未分化癌靶向治疗研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 685-693.
[14] 周靖,王艳,徐恩萍. 微单倍型在法医遗传学中的研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 777-782.
[15] 任渊,崔戈丹,高永翔. 原发性干燥综合征患者颌下腺炎症反应机制研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 783-794.