专题报道 |
|
|
|
|
嵌合抗原受体T细胞治疗血液系统恶性肿瘤研究进展 |
胡珂嘉1,2,3,4,黄玥1,2,3,4,胡永仙1,2,3,4,*( ),黄河1,2,3,4,*( ) |
1.浙江大学医学院附属第一医院骨髓移植中心,浙江 杭州 310003 2.浙江大学医学中心良渚实验室,浙江 杭州 311121 3.浙江大学血液学研究所,浙江 杭州 310058 4.浙江省干细胞与细胞免疫治疗工程实验室,浙江 杭州 310058 |
|
Progress on CAR-T cell therapy for hematological malignancies |
HU Kejia1,2,3,4,HUANG Yue1,2,3,4,HU Yongxian1,2,3,4,*( ),HUANG He1,2,3,4,*( ) |
1. Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; 2. Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China; 3. Institute of Hematology, Zhejiang University, Hangzhou 310058, China; 4. Zhejiang Provincial Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China |
引用本文:
胡珂嘉,黄玥,胡永仙,黄河. 嵌合抗原受体T细胞治疗血液系统恶性肿瘤研究进展[J]. 浙江大学学报(医学版), 2022, 51(2): 192-203.
HU Kejia,HUANG Yue,HU Yongxian,HUANG He. Progress on CAR-T cell therapy for hematological malignancies. J Zhejiang Univ (Med Sci), 2022, 51(2): 192-203.
链接本文:
https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2022-0055
或
https://www.zjujournals.com/med/CN/Y2022/V51/I2/192
|
1 |
GROSSG, WAKST, ESHHARZ. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity[J]Proc Natl Acad Sci U S A, 1989, 86( 24): 10024-10028.
doi: 10.1073/pnas.86.24.10024
|
2 |
ESHHARZ, WAKST, GROSSG, et al.Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors.[J]Proc Natl Acad Sci U S A, 1993, 90( 2): 720-724.
doi: 10.1073/pnas.90.2.720
|
3 |
MAHERJ, BRENTJENSR J, GUNSETG, et al.Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor[J]Nat Biotechnol, 2002, 20( 1): 70-75.
doi: 10.1038/nbt0102-70
|
4 |
CARPENITOC, MILONEM C, HASSANR, et al.Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains[J]Proc Natl Acad Sci U S A, 2009, 106( 9): 3360-3365.
doi: 10.1073/pnas.0813101106
|
5 |
CHMIELEWSKIM, HOMBACHA A, ABKENH. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma[J]Immunol Rev, 2014, 257( 1): 83-90.
doi: 10.1111/imr.12125
|
6 |
SHIMABUKURO-VORNHAGENA, BÖLLB, SCHELLONGOWSKIP, et al.Critical care management of chimeric antigen receptor T‐cell therapy recipients[J]CA Cancer J Clin, 2022, 72( 1): 78-93.
doi: 10.3322/caac.21702
|
7 |
PARKJ H, RIVIÈREI, GONENM, et al.Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia[J]N Engl J Med, 2018, 378( 5): 449-459.
doi: 10.1056/NEJMoa1709919
|
8 |
MYERSR M, LIY, BARZ LEAHYA, et al.Humanized CD19-targeted chimeric antigen receptor (CAR) T cells in CAR-naive and CAR-exposed children and young adults with relapsed or refractory acute lymphoblastic leukemia[J]J Clin Oncol, 2021, 39( 27): 3044-3055.
doi: 10.1200/JCO.20.03458
|
9 |
MAUDES L, FREYN, SHAWP A, et al.Chimeric antigen receptor T cells for sustained remissions in leukemia[J]N Engl J Med, 2014, 371( 16): 1507-1517.
doi: 10.1056/NEJMoa1407222
|
10 |
MELENHORSTJ J, CHENG M, WANGM, et al.Decade-long leukaemia remissions with persistence of CD4+ CAR T cells[J]Nature, 2022, 602( 7897): 503-509.
doi: 10.1038/s41586-021-04390-6
|
11 |
MAUDES L, LAETSCHT W, BUECHNERJ, et al.Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia[J]N Engl J Med, 2018, 378( 5): 439-448.
doi: 10.1056/NEJMoa1709866
|
12 |
DAIH, ZHANGW, LIX, et al.Tolerance and efficacy of autologous or donor-derived T cells expressing CD19 chimeric antigen receptors in adult B-ALL with extramedullary leukemia[J/OL]Oncoimmunology, 2015, 4( 11): e1027469.
doi: 10.1080/2162402X.2015.1027469
|
13 |
HUY, WUZ, LUOY, et al.Potent anti-leukemia activities of chimeric antigen receptor-modified T cells against CD19 in Chinese patients with relapsed/refractory acute lymphocytic leukemia[J]Clin Cancer Res, 2017, 23( 13): 3297-3306.
doi: 10.1158/1078-0432.CCR-16-1799
|
14 |
WEIG, HUY, PUC, et al.CD19 targeted CAR-T therapy versus chemotherapy in re-induction treatment of refractory/relapsed acute lymphoblastic leukemia: results of a case-controlled study[J]Ann Hematol, 2018, 97( 5): 781-789.
doi: 10.1007/s00277-018-3246-4
|
15 |
ZHAOH, WEIJ, WEIG, et al.Pre-transplant MRD negativity predicts favorable outcomes of CAR-T therapy followed by haploidentical HSCT for relapsed/refractory acute lymphoblastic leukemia: a multi-center retrospective study[J]J Hematol Oncol, 2020, 13( 1): 42.
doi: 10.1186/s13045-020-00873-7
|
16 |
PANJ, ZUOS, DENGB, et al.Sequential CD19-22 CAR T therapy induces sustained remission in children with R/R B-ALL[J]Blood, 2020, 135( 5): 387-391.
doi: 10.1182/blood.2019003293
|
17 |
WANGN, HUX, CAOW, et al.Efficacy and safety of CAR19/22 T-cell cocktail therapy in patients with refractory/relapsed B-cell malignancies[J]Blood, 2020, 135( 1): 17-27.
doi: 10.1182/blood.2019000017
|
18 |
NEELAPUS S, LOCKEF L, BARTLETTN L, et al.Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma[J]N Engl J Med, 2017, 377( 26): 2531-2544.
doi: 10.1056/NEJMoa1707447
|
19 |
JACOBSONC, LOCKEF L, GHOBADIA, et al.Long-term (≥4 Year and ≥5 Year) overall survival (OS) by 12- and 24-month event-free survival (EFS): an updated analysis of ZUMA-1, the pivotal study of Axicabtagene Ciloleucel (Axi-Cel) in patients (Pts) with refractory large B-cell lymphoma (LBCL)[J]Blood, 2021, 138( Supplement 1): 1764.
doi: 10.1182/blood-2021-148078
|
20 |
JACOBSON C A, HUNTER B D, REDD R, et al. Axicabtagene ciloleucel in the non-trial setting: outcomes and correlates of response, resistance, and toxicity[J]. J Clin Oncol, 2020, 38(27): 3095-3106
|
21 |
SCHUSTERS J, TAMC S, BORCHMANNP, et al.Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): a multicentre, open-label, single-arm, phase 2 study[J]Lancet Oncol, 2021, 22( 10): 1403-1415.
doi: 10.1016/S1470-2045(21)00375-2
|
22 |
ABRAMSONJ S, PALOMBAM L, GORDONL I, et al.Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study[J]Lancet, 2020, 396( 10254): 839-852.
doi: 10.1016/S0140-6736(20)31366-0
|
23 |
WANGY, ZHANGW, HANQ, et al.Effective response and delayed toxicities of refractory advanced diffuse large B-cell lymphoma treated by CD20-directed chimeric antigen receptor-modified T cells[J]Clin Immunol, 2014, 155( 2): 160-175.
doi: 10.1016/j.clim.2014.10.002
|
24 |
SANGW, SHIM, YANGJ, et al.Phase Ⅱ trial of co‐administration of CD19‐ and CD20‐targeted chimeric antigen receptor T cells for relapsed and refractory diffuse large B cell lymphoma[J]Cancer Med, 2020, 9( 16): 5827-5838.
doi: 10.1002/cam4.3259
|
25 |
RAJEN, BERDEJAJ, LINY, et al.Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma[J]N Engl J Med, 2019, 380( 18): 1726-1737.
doi: 10.1056/NEJMoa1817226
|
26 |
MUNSHIN C, ANDERSON JR.L D, SHAHN, et al.Idecabtagene vicleucel in relapsed and refractory multiple myeloma[J]N Engl J Med, 2021, 384( 8): 705-716.
doi: 10.1056/NEJMoa2024850
|
27 |
WANGB Y, ZHAOW H, LIUJ, et al.Long-term follow-up of a phase 1, first-in-human open-label study of LCAR-B38M, a structurally differentiated chimeric antigen receptor T (CAR-T) cell therapy targeting B-cell maturation antigen (BCMA), in patients (pts) with relapsed/refractory multiple myeloma (RRMM)[J]Blood, 2019, 134( Supplement_1): 579.
doi: 10.1182/blood-2019-124953
|
28 |
FUC, JIANGS, JINJ, et al.Integrated analysis of b-cell maturation antigen-specific CAR T cells (ct053) in relapsed and refractory multiple myeloma subjects by high-risk factors[J]Blood, 2021, 138( Supplement 1): 1751.
doi: 10.1182/blood-2021-151935
|
29 |
ZHANGM, ZHOUL, ZHAOH, et al.Risk factors associated with durable progression-free survival in patients with relapsed or refractory multiple myeloma treated with anti-BCMA CAR T-cell therapy[J]Clin Cancer Res, 2021, 27( 23): 6384-6392.
doi: 10.1158/1078-0432.CCR-21-2031
|
30 |
MAILANKODYS, DIAMONTEC, FITZGERALDL, et al.phase Ⅰ first-in-class trial of MCARH109, a G protein coupled receptor class C group 5 member D (GPRE5D) targeted CAR T cell therapy in patients with relapsed or refractory multiple myeloma[J]Blood, 2021, 138( Supplement 1): 827.
doi: 10.1182/blood-2021-153204
|
31 |
MOHYUDDIN G R, ROONEY A, BALMACEDA N, et al. Chimeric antigen receptor T-cell therapy in multiple myeloma: a systematic review and meta-analysis of 950 patients[J]. Blood Adv, 2021, 5(4): 1097-1101
|
32 |
PINZK, LIUH, GOLIGHTLYM, et al.Preclinical targeting of human T-cell malignancies using CD4-specific chimeric antigen receptor (CAR)-engineered T cells[J]Leukemia, 2016, 30( 3): 701-707.
doi: 10.1038/leu.2015.311
|
33 |
CHENK H, WADAM, PINZK G, et al.Preclinical targeting of aggressive T-cell malignancies using anti-CD5 chimeric antigen receptor[J]Leukemia, 2017, 31( 10): 2151-2160.
doi: 10.1038/leu.2017.8
|
34 |
XIEL, MAL, LIUS, et al.Chimeric antigen receptor T cells targeting CD7 in a child with high-risk T-cell acute lymphoblastic leukemia[J]Int Immunopharmacol, 2021, 107731.
doi: 10.1016/j.intimp.2021.107731
|
35 |
PANJ, TANY, WANGG, et al.Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: first-in-human, phase Ⅰ trial[J]J Clin Oncol, 2021, 39( 30): 3340-3351.
doi: 10.1200/JCO.21.00389
|
36 |
GOMES-SILVAD, SRINIVASANM, SHARMAS, et al.CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies[J]Blood, 2017, 130( 3): 285-296.
doi: 10.1182/blood-2017-01-761320
|
37 |
MARDIANAS, GILLS. CAR T cells for acute myeloid leukemia: state of the art and future directions[J]Front Oncol, 2020, 697.
doi: 10.3389/fonc.2020.00697
|
38 |
TETTAMANTIS, MARINV, PIZZITOLAI, et al.Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor[J]Br J Haematol, 2013, 161( 3): 389-401.
doi: 10.1111/bjh.12282
|
39 |
TASHIROH, SAUERT, SHUMT, et al.Treatment of acute myeloid leukemia with T cells expressing chimeric antigen receptors directed to c-type lectin-like molecule 1[J]Mol Ther, 2017, 25( 9): 2202-2213.
doi: 10.1016/j.ymthe.2017.05.024
|
40 |
KENDERIANS S, RUELLAM, SHESTOVAO, et al.CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia[J]Leukemia, 2015, 29( 8): 1637-1647.
doi: 10.1038/leu.2015.52
|
41 |
SALLMAND A, BRAYERJ, SAGATYSE M, et al.NKG2D-based chimeric antigen receptor therapy induced remission in a relapsed/refractory acute myeloid leukemia patient[J/OL]Haematologica, 2018, 103( 9): e424-e426.
doi: 10.3324/haematol.2017.186742
|
42 |
YOSHIDAT, MIHARAK, TAKEIY, et al.All-trans retinoic acid enhances cytotoxic effect of T cells with an anti-CD38 chimeric antigen receptor in acute myeloid leukemia[J/OL]Clin Trans Immunol, 2016, 5( 12): e116.
doi: 10.1038/cti.2016.73
|
43 |
YUS, YIM, QINS, et al.Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity[J]Mol Cancer, 2019, 18( 1): 125.
doi: 10.1186/s12943-019-1057-4
|
44 |
MINAGAWAK, JAMILM O, AL-OBAIDIM, et al.In vitro pre-clinical validation of suicide gene modified anti-CD33 redirected chimeric antigen receptor T-cells for acute myeloid leukemia[J/OL]PLoS One, 2016, 11( 12): e0166891.
doi: 10.1371/journal.pone.0166891
|
45 |
TASIANS K, KENDERIANS S, SHENF, et al.Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia[J]Blood, 2017, 129( 17): 2395-2407.
doi: 10.1182/blood-2016-08-736041
|
46 |
WANGQ, WANGY, LVH, et al.Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia[J]Mol Ther, 2015, 23( 1): 184-191.
doi: 10.1038/mt.2014.164
|
47 |
CUIQ, QIANC, XUN, et al.CD38-directed CAR-T cell therapy: a novel immunotherapy strategy for relapsed acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation[J]J Hematol Oncol, 2021, 14( 1): 82.
doi: 10.1186/s13045-021-01092-4
|
48 |
ZHANGH, WANGP, LIZ, et al.Anti-CLL1 chimeric antigen receptor T-cell therapy in children with relapsed/refractory acute myeloid leukemia[J]Clin Cancer Res, 2021, 27( 13): 3549-3555.
doi: 10.1158/1078-0432.CCR-20-4543
|
49 |
SAFARZADEH KOZANIP, SAFARZADEH KOZANIP, O’CONNORR S. In like a lamb; out like a lion: marching CAR T cells toward enhanced efficacy in B-ALL[J]Mol Cancer Ther, 2021, 20( 7): 1223-1233.
doi: 10.1158/1535-7163.MCT-20-1089
|
50 |
SHAHN N, JOHNSONB D, SCHNEIDERD, et al.Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trialNat Med, 2020, 26( 10): 1569-1575.
doi: 10.1016/j.stem.2018.06.002
|
72 |
SPIEGEL J Y, PATEL S, MUGGLY L, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med, 2021, 27(8):1419-1431
|
51 |
TONGC, ZHANGY, LIUY, et al.Optimized tandem CD19/CD20 CAR-engineered T cells in refractory/relapsed B cell lymphoma[J]Blood, 2020, 136( 14): 1632-1644.
doi: 10.1182/blood.2020005278
|
52 |
WEIG, ZHANGY, ZHAOH, et al.CD19/CD22 dual-targeted CAR T-cell therapy for relapsed/refractory aggressive B-cell lymphoma: a safety and efficacy study[J]Cancer Immunol Res, 2021, 9( 9): 1061-1070.
doi: 10.1158/2326-6066.CIR-20-0675
|
53 |
YANZ, CAOJ, CHENGH, et al.A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase 2 trial[J/OL]Lancet Haematology, 2019, 6( 10): e521-e529.
doi: 10.1016/S2352-3026(19)30115-2
|
54 |
MEIH, LIC, JIANGH, et al.A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma[J]J Hematol Oncol, 2021, 14( 1): 161.
doi: 10.1186/s13045-021-01170-7
|
55 |
LEEL, DRAPERB, CHAPLINN, et al.An APRIL-based chimeric antigen receptor for dual targeting of BCMA and TACI in multiple myeloma[J]Blood, 2018, 131( 7): 746-758.
doi: 10.1182/blood-2017-05-781351
|
56 |
TORIKAIH, REIKA, LIUP Q, et al.A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR[J]Blood, 2012, 119( 24): 5697-5705.
doi: 10.1182/blood-2012-01-405365
|
57 |
TORIKAIH, REIKA, SOLDNERF, et al.Toward eliminating HLA class I expression to generate universal cells from allogeneic donors[J]Blood, 2013, 122( 8): 1341-1349.
doi: 10.1182/blood-2013-03-478255
|
58 |
LEEJ, SHEENJ H, LIMO, et al.Abrogation of HLA surface expression using CRISPR/Cas9 genome editing: a step toward universal T cell therapy[J]Sci Rep, 2020, 10( 1): 17753.
doi: 10.1038/s41598-020-74772-9
|
59 |
STANESCU U, GRIGORESCU E. Immunotherapeutic properties of medicinal plants. Ⅱ. Plant immunomodulator macromolecules[J].Rev Med Chir Soc Med Nat Iasi, 1987, 91(4): 731-739
|
60 |
HUY, ZHOUY, ZHANGM, et al.CRISPR/Cas9-engineered universal CD19/CD22 dual-targeted CAR-T cell therapy for relapsed/refractory B-cell acute lymphoblastic leukemia[J]Clin Cancer Res, 2021, 27( 10): 2764-2772.
doi: 10.1158/1078-0432.CCR-20-3863
|
61 |
TAKAHASHIK, TANABEK, OHNUKIM, et al.Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]Cell, 2007, 131( 5): 861-872.
doi: 10.1016/j.cell.2007.11.019
|
62 |
COUCHIED, FAGESC, BRIDOUXA M, et al.Microtubule-associated proteins and in vitro astrocyte differentiation[J]J Cell Biol, 1985, 101( 6): 2095-2103.
doi: 10.1083/jcb.101.6.2095
|
73 |
LI Y, HERMANSON D L, MORIARITY B S, et al. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity[J]. Cell Stem Cell, 2018, 23(2): 181-192e185
|
63 |
GOODRIDGEJ P, MAHMOODS, ZHUH, et al.FT596: translation of first-of-kind multi-antigen targeted off-the-shelf CAR-NK cell with engineered persistence for the treatment of B cell malignancies[J]Blood, 2019, 134( Supplement_1): 301.
doi: 10.1182/blood-2019-129319
|
64 |
GOULDINGJ, HANCOCKB, BLUMR, et al.117 FT536 path to IND: ubiquitous targeting of solid tumors with an off-the-shelf, first-of-kind MICA/B-specific CAR-iNK cellular immunotherapy[J]J Immunother Cancer, 2021, 9( Suppl 2): A126.
doi: 10.1136/jitc-2021-SITC2021.117
|
65 |
BJORDAHLR, GAIDAROVAS, GOODRIDGEJ P, et al.FT576: a novel multiplexed engineered off-the-shelf natural killer cell immunotherapy for the dual-targeting of CD38 and BCMA for the treatment of multiple myeloma[J]Blood, 2019, 134( Supplement_1): 3214.
doi: 10.1182/blood-2019-131373
|
66 |
ZHANGL, TIANL, DAIX, et al.Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions[J]J Hematol Oncol, 2020, 13( 1): 153.
doi: 10.1186/s13045-020-00983-2
|
67 |
RATAJCZAKM Z, BUJKOK, WOJAKOWSKIW. Stem cells and clinical practice: new advances and challenges at the time of emerging problems with induced pluripotent stem cell therapies[J]Polish Arch Internal Med, 2016, 126( 11): 879-890.
doi: 10.20452/pamw.3644
|
68 |
KANEMURAH, GOM J, SHIKAMURAM, et al.Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degenera-tion[J/OL]PLoS One, 2014, 9( 1): e85336.
doi: 10.1371/journal.pone.0085336
|
69 |
ATTWOODS W, EDELM J. iPS-cell technology and the problem of genetic instability——can it ever be safe for clinical use?[J]J Clin Med, 2019, 8( 3): 288.
doi: 10.3390/jcm8030288
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|