Please wait a minute...
浙江大学学报(医学版)  2022, Vol. 51 Issue (2): 185-191    DOI: 10.3724/zdxbyxb-2022-0047
专题报道     
脂质纳米粒-mRNA递送系统及其在嵌合抗原受体T细胞治疗中的应用
叶柏新1,2,3,4,胡永仙1,2,3,4,张明明1,2,3,4,黄河1,2,3,4,*()
1.浙江大学医学院附属第一医院骨髓移植中心,浙江 杭州 310003
2.浙江大学医学中心良渚实验室,浙江 杭州 311121
3.浙江大学血液学研究所,浙江 杭州 310058
4.浙江省干细胞与细胞免疫治疗工程实验室,浙江 杭州 310058
Research advance in lipid nanoparticle-mRNA delivery system and its application in CAR-T cell therapy
YE Baixin1,2,3,4,HU Yongxian1,2,3,4,ZHANG Mingming1,2,3,4,HUANG He1,2,3,4,*()
1. Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
2. Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China;
3. Institute of Hematology, Zhejiang University, Hangzhou 310058, China;
4. Zhejiang Provincial Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
 全文: PDF(9471 KB)   HTML( 8 )
摘要:

尽管嵌合抗原受体(CAR)T细胞治疗在血液系统恶性肿瘤患者中取得了显著的临床疗效,但需要进一步优化。脂质纳米粒(LNP)-信使核糖核酸(mRNA)递送系统作为一种非病毒性基因载体运用于CAR-T细胞治疗研究中,一方面通过LNP将密封蛋白-6 mRNA靶向递送至抗原提呈细胞,从而实现抗原提呈细胞辅助性增强密封蛋白-6靶向的CAR-T细胞的功能,以进一步诱导对实体瘤的清除;另一方面,通过LNP将成纤维细胞激活蛋白(FAP)CARmRNA靶向递送至T细胞,实现体内FAP靶向的CAR-T细胞的制备,以通过阻断心脏纤维化过程达到治疗急性心肌损伤的目的。在CAR-T细胞研究和治疗中,LNP-mRNA递送系统具有不与细胞基因组整合、价格便宜、毒副作用小及可修饰等优点,亦存在蛋白瞬时表达导致调控细胞功能的持久性不足及制备等方面的技术局限性。本文综述了LNP-mRNA递送系统及其在CAR-T细胞治疗中的应用研究。

关键词: 脂质纳米粒信使核糖核酸体内递送技术基因递送载体嵌合抗原受体T细胞综述    
Abstract:

Chimeric antigen receptor (CAR) T cell therapy has shown significant efficacy for hematological malignancies, however, it needs to be further optimized. Recently, the lipid nanoparticle (LNP)-mRNA delivery system as a nonviral gene transfer vector has gained rapid progress in CAR-T cell therapy. The claudin-6 (CLDN6) mRNA is delivered to antigen presenting cells (APCs) through LNP system, thereby enhancing the function of CLDN6 CAR-T cells for the clearance of solid tumor cells. For treatment of acute cardiac injury, the fibroblast activation protein (FAP) CAR mRNA can be delivered to T cells through LNP system for the in vivo production of FAP CAR-T cells, thereby blocking the process of myocardial fibrosis. The LNP-mRNA delivery system has advantages including having no integration in host genome, inexpensiveness, low toxicity and modifiability; on the other hand, it has certain disadvantages such as limited cell persistence caused by transient protein expression and limitations in preparation techniques. This article reviews the research advance in LNP-mRNA in vivo delivery system and its application in CAR-T cell therapy.

Key words: Lipid nanoparticle    Messenger RNA    In vivo delivery system    Gene transfer vector    Chimeric antigen receptor T cell    Review
收稿日期: 2022-02-17 出版日期: 2022-08-02
CLC:  R96  
基金资助: 国家自然科学基金(81730008)
通讯作者: 黄河     E-mail: huanghe@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
叶柏新
胡永仙
张明明
黄河

引用本文:

叶柏新,胡永仙,张明明,黄河. 脂质纳米粒-mRNA递送系统及其在嵌合抗原受体T细胞治疗中的应用[J]. 浙江大学学报(医学版), 2022, 51(2): 185-191.

YE Baixin,HU Yongxian,ZHANG Mingming,HUANG He. Research advance in lipid nanoparticle-mRNA delivery system and its application in CAR-T cell therapy. J Zhejiang Univ (Med Sci), 2022, 51(2): 185-191.

链接本文:

https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2022-0047        https://www.zjujournals.com/med/CN/Y2022/V51/I2/185

图 1  LNP-mRNA递送系统组成及结构LNP-mRNA递送系统由外层脂质分子形成的膜性外壳及包裹了mRNA分子的含水内核组成,外层脂质分子可进行修饰,如连接相应的基团或特异性抗体等,从而实现其细胞靶向性. LNP:脂质纳米粒;mRNA:信使核糖核酸.
图 2  LNP-mRNA递送系统的作用过程LNP-mRNA与细胞膜相关分子或受体结合(A),以内吞的方式进入细胞质内(B)形成内体(C),LNP-mRNA与内体膜融合并释放mRNA分子,mRNA在细胞质内进行翻译合成功能性蛋白(D). LNP:脂质纳米粒;mRNA:信使核糖核酸.
图 3  基于LNP-mRNA递送系统的树突状细胞激活对CAR-T细胞治疗效果的影响LNP-mRNA靶向导入树突状细胞后,在树突状细胞细胞膜表面表达靶标分子CLDN6,该靶标分子CLDN6与CLDN6靶向的CAR-T细胞结合,能辅助性功能增强CLDN6靶向的CAR-T细胞杀伤肿瘤细胞的功能. CLDN:密封蛋白;CAR:嵌合抗原受体;LNP:脂质纳米粒;mRNA:信使核糖核酸.
图 4  基于LNP-mRNA递送系统的体内嵌合抗原受体T细胞的制备LNP-mRNA递送系统通过其表面抗CD5抗体,与体内T细胞膜表面CD5结合,促使T细胞膜表面表达FAP CAR分子,从而完成体内生成FAP靶向的CAR-T细胞.FAP靶向的CAR-T细胞与心肌纤维细胞膜表面FAP分子结合,可介导心肌纤维细胞的凋亡过程. FAP:成纤维细胞激活蛋白;CAR:嵌合抗原受体;LNP:脂质纳米粒;mRNA:信使核糖核酸.
1 FRIEDMANS L. Fighting cardiac fibrosis with CAR T cells[J]N Engl J Med, 2022, 386( 16): 1576-1578.
doi: 10.1056/NEJMcibr2201182
2 KOCHENDERFERJ N, WILSONW H, JANIKJ E, et al.Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19[J]Blood, 2010, 116( 20): 4099-4102.
doi: 10.1182/blood-2010-04-281931
3 ZHAOY, MOONE, CARPENITOC, et al.Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor[J]Cancer Res, 2010, 70( 22): 9053-9061.
doi: 10.1158/0008-5472.CAN-10-2880
4 KALOSM, LEVINEB L, PORTERD L, et al.T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia[J]Sci Transl Med, 2011, 3( 95): 95ra73.
doi: 10.1126/scitranslmed.3002842
5 MELENHORSTJ J, CHENG M, WANGM, et al.Decade-long leukaemia remissions with persistence of CD4+ CAR T cells[J]Nature, 2022, 602( 7897): 503-509.
doi: 10.1038/s41586-021-04390-6
6 JUNEC H, O′CONNORR S, KAWALEKARO U, et al.CAR T cell immunotherapy for human cancer[J]Science, 2018, 359( 6382): 1361-1365.
doi: 10.1126/science.aar6711
7 GILLMOREJ D, GANEE, TAUBELJ, et al.CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis[J]N Engl J Med, 2021, 385( 6): 493-502.
doi: 10.1056/NEJMoa2107454
8 LIMW A, JUNEC H. The principles of engineering immune cells to treat cancer[J]Cell, 2017, 168( 4): 724-740.
doi: 10.1016/j.cell.2017.01.016
9 RURIKJ G, TOMBÁCZI, YADEGARIA, et al.CAR T cells produced in vivo to treat cardiac injury[J]Science, 2022, 375( 6576): 91-96.
doi: 10.1126/science.abm0594
10 REINHARDK, RENGSTLB, OEHMP, et al.An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors[J]Science, 2020, 367( 6476): 446-453.
doi: 10.1126/science.aay5967
11 HOUX, ZAKST, LANGERR, et al.Lipid nanoparticles for mRNA delivery[J]Nat Rev Mater, 2021, 6( 12): 1078-1094.
doi: 10.1038/s41578-021-00358-0
12 ALDOSARIB N, ALFAGIHI M, ALMURSHEDIA S. Lipid nanoparticles as delivery systems for RNA-based vaccines[J]Pharmaceutics, 2021, 13( 2): 206.
doi: 10.3390/pharmaceutics13020206
13 KULKARNIJ A, CULLISP R, VAN DER MEELR. Lipid nanoparticles enabling gene therapies: from concepts to clinical utility[J]Nucleic Acid Ther, 2018, 28( 3): 146-157.
doi: 10.1089/nat.2018.0721
14 MUCKERE M, KARMALIP P, VEGAJ, et al.Lipid nanoparticle formulation increases efficiency of DNA-vectored vaccines/immunoprophylaxis in animals including transchromosomic bovines[J]Sci Rep, 2020, 10( 1): 8764.
doi: 10.1038/s41598-020-65059-0
15 PAUNOVSKAK, LOUGHREYD, DAHLMANJ E. Drug delivery systems for RNA therapeutics[J]Nat Rev Genet, 2022, 23( 5): 265-280.
doi: 10.1038/s41576-021-00439-4
16 YEB, STARYC M, LIX, et al.Engineering chimeric antigen receptor-T cells for cancer treatment[J]Mol Cancer, 2018, 17( 1): 32.
doi: 10.1186/s12943-018-0814-0
17 YEB, STARYC M, GAOQ, et al.Genetically modified T-cell-based adoptive immunotherapy in hematological malignancies[J]J Immunol Res, 2017, 1-13.
doi: 10.1155/2017/5210459
18 MAUDES L, FREYN, SHAWP A, et al.Chimeric antigen receptor T cells for sustained remissions in leukemia[J]N Engl J Med, 2014, 371( 16): 1507-1517.
doi: 10.1056/NEJMoa1407222
19 PORTERD L, HWANGW T, FREYN V, et al.Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia[J]Sci Transl Med, 2015, 7( 303): 303ra139.
doi: 10.1126/scitranslmed.aac5415
20 GARGETTT, YUW, DOTTIG, et al.GD2-specific CAR T cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by PD-1 blockade[J]Mol Ther, 2016, 24( 6): 1135-1149.
doi: 10.1038/mt.2016.63
21 FENGK, GUOY, DAIH, et al.Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer[J]Sci China Life Sci, 2016, 59( 5): 468-479.
doi: 10.1007/s11427-016-5023-8
22 O’ROURKED M, NASRALLAHM L P, DESAIA, et al.A single dose of peripherally infused EGFRvⅢ-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma[J]Sci Transl Med, 2017, 9( 399): eaaa0984.
doi: 10.1126/scitranslmed.aaa0984
23 KRANZL M, DIKENM, HAASH, et al.Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy[J]Nature, 2016, 534( 7607): 396-401.
doi: 10.1038/nature18300
24 TURKSENK, TROYT C. Claudin-6: a novel tight junction molecule is developmentally regulated in mouse embryonic epithelium[J]Dev Dyn, 2001, 222( 2): 292-300.
doi: 10.1002/dvdy.1174
25 USHIKUT, SHINOZAKI-USHIKUA, MAEDAD, et al.Distinct expression pattern of claudin-6, a primitive phenotypic tight junction molecule, in germ cell tumours and visceral carcinomas[J]Histopathology, 2012, 61( 6): 1043-1056.
doi: 10.1111/j.1365-2559.2012.04314.x
26 NOBLESC L, SHERRILL-MIXS, EVERETTJ K, et al.CD19-targeting CAR T cell immunotherapy outcomes correlate with genomic modification by vector integration[J]J Clin Invest, 2020, 130( 2): 673-685.
doi: 10.1172/JCI130144
27 HENDERSONN C, RIEDERF, WYNNT A. Fibrosis: from mechanisms to medicines[J]Nature, 2020, 587( 7835): 555-566.
doi: 10.1038/s41586-020-2938-9
28 SCHAFERS, VISWANATHANS, WIDJAJAA A, et al.IL-11 is a crucial determinant of cardiovascular fibrosis[J]Nature, 2017, 552( 7683): 110-115.
doi: 10.1038/nature24676
29 KHALILH, KANISICAKO, PRASADV, et al.Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis[J]J Clin Invest, 2017, 127( 10): 3770-3783.
doi: 10.1172/JCI94753
30 KAURH, TAKEFUJIM, NGAIC Y, et al.Targeted ablation of periostin-expressing activated fibroblasts prevents adverse cardiac remodeling in mice[J]Circ Res, 2016, 118( 12): 1906-1917.
doi: 10.1161/CIRCRESAHA.116.308643
31 WANGL C S, LOA, SCHOLLERJ, et al.Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity[J]Cancer Immunol Res, 2014, 2( 2): 154-166.
doi: 10.1158/2326-6066.CIR-13-0027
32 AGHAJANIANH, KIMURAT, RURIKJ G, et al.Targeting cardiac fibrosis with engineered T cells[J]Nature, 2019, 573( 7774): 430-433.
doi: 10.1038/s41586-019-1546-z
33 SOLDEVILAG, RAMANC, LOZANOF. The immunomodulatory properties of the CD5 lymphocyte receptor in health and disease[J]Curr Opin Immunol, 2011, 23( 3): 310-318.
doi: 10.1016/j.coi.2011.03.003
34 BIASCOL, IZOTOVAN, RIVATC, et al.Clonal expansion of T memory stem cells determines early anti-leukemic responses and long-term CAR T cell persistence in patients[J]Nat Cancer, 2021, 2( 6): 629-642.
doi: 10.1038/s43018-021-00207-7
35 MOUGIAKAKOSD, KRÖNKEG, VÖLKLS, et al.CD19-targeted CAR T cells in refractory systemic lupus erythematosus[J]N Engl J Med, 2021, 385( 6): 567-569.
doi: 10.1056/NEJMc2107725
36 ONUORAS. CAR T cells induce remission in a patient with refractory SLE[J]Nat Rev Rheumatol, 2021, 17( 10): 579.
doi: 10.1038/s41584-021-00691-2
37 MALDINIC R, CLAIBORNED T, OKAWAK, et al.Dual CD4-based CAR T cells with distinct costimulatory domains mitigate HIV pathogenesis in vivo[J]Nat Med, 2020, 26( 11): 1776-1787.
doi: 10.1038/s41591-020-1039-5
[1] 吕雨琦,张明明,魏国庆,丁淑怡,胡永仙,黄河. BCMA靶向的嵌合抗原受体T细胞治疗复发/难治多发性骨髓瘤患者发生急性肾损伤的危险因素[J]. 浙江大学学报(医学版), 2022, 51(2): 137-143.
[2] 张棋琦,祖成,孟夜,吕雨琦,胡永仙,黄河. BCMA靶向的嵌合抗原受体T细胞治疗复发/难治多发性骨髓瘤患者发生肿瘤溶解综合征的危险因素[J]. 浙江大学学报(医学版), 2022, 51(2): 144-150.
[3] 黄荦,张明明,魏国庆,赵厚力,胡永仙,黄河. CD19 靶向的嵌合抗原受体 T 细胞治疗急性 B 淋巴细胞白血病伴髓外复发患者的疗效和安全性[J]. 浙江大学学报(医学版), 2022, 51(2): 151-159.
[4] 祖成,王柯馨,张棋琦,胡永仙,黄河. BCMA 靶向的嵌合抗原受体 T 细胞治疗复发/难治多发性骨髓瘤患者并发噬血细胞综合征临床观察[J]. 浙江大学学报(医学版), 2022, 51(2): 160-166.
[5] 付珊,胡永仙,黄河. 嵌合抗原受体T细胞治疗复发/难治B细胞非霍奇金淋巴瘤患者的长期疗效[J]. 浙江大学学报(医学版), 2022, 51(2): 167-174.
[6] 刘娇,涂晓璇,刘璐璐,方维佳. 嵌合抗原受体T细胞治疗恶性实体瘤新进展[J]. 浙江大学学报(医学版), 2022, 51(2): 175-184.
[7] 刘德坤,刘佳丽,张丹,杨雯晴. 细胞衰老与动脉粥样硬化的相关研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 95-101.
[8] 汪文妮,陈超群,顾新华. 磁性纳米粒子复合支架及外加磁场影响成骨作用的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 102-107.
[9] 边梦瑶,陈莉丽,雷利红. 慢性牙周炎与帕金森病相关性的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 108-114.
[10] 金群,黄丽华. 神经认知障碍患者多成分运动干预的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 38-46.
[11] 卢茜璇,包黎莎,潘宗富,葛明华. 甲状腺未分化癌免疫治疗的现状及未来[J]. 浙江大学学报(医学版), 2021, 50(6): 675-684.
[12] 钱晨宏,蒋烈浩,许世莹,王佳峰,谭卓,忻莹,葛明华. 甲状腺未分化癌靶向治疗研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 685-693.
[13] 周靖,王艳,徐恩萍. 微单倍型在法医遗传学中的研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 777-782.
[14] 任渊,崔戈丹,高永翔. 原发性干燥综合征患者颌下腺炎症反应机制研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 783-794.
[15] 马丽娟,吴爽,张凯,田梅,张宏. 大麻素1型受体正电子发射断层显像在神经精神疾病中的应用进展[J]. 浙江大学学报(医学版), 2021, 50(5): 666-673.