综述 |
|
|
|
|
囊泡转运在肌萎缩侧索硬化中的作用研究进展 |
杨朝森,张晓明 |
浙江大学基础医学院解剖与组织胚胎学系,浙江 杭州 310058 |
|
Research progress on vesicular trafficking in amyotrophic lateral sclerosis |
YANG Chaosen,ZHANG Xiaoming |
Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China |
1 |
MCALARY L, YERBURY J J, CASHMAN N R. The prion-like nature of amyotrophic lateral sclerosis[J]. Prog Mol Biol Transl Sci, 2020, 175: 261-296
|
2 |
LE GALLL, ANAKORE, CONNOLLYO, et al.Molecular and cellular mechanisms affected in ALS[J]J Pers Med, 2020, 10( 3): 101.
doi: 10.3390/jpm10030101
|
3 |
VAN RHEENENW, VAN DER SPEKR A A, BAKKERM K, et al.Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology[J]Nat Genet, 2021, 53( 12): 1636-1648.
doi: 10.1038/s41588-021-00973-1
|
4 |
CONNERS D, SCHMIDS L. Regulated portals of entry into the cell[J]Nature, 2003, 422( 6927): 37-44.
doi: 10.1038/nature01451
|
5 |
SCHMIDS L, FROLOVV A. Dynamin: functional design of a membrane fission catalyst[J]Annu Rev Cell Dev Biol, 2011, 27( 1): 79-105.
doi: 10.1146/annurev-cellbio-100109-104016
|
6 |
MAYORS, PAGANOR E. Pathways of clathrin-independent endocytosis[J]Nat Rev Mol Cell Biol, 2007, 8( 8): 603-612.
doi: 10.1038/nrm2216
|
7 |
THALD R, VON ARNIMC, GRIFFINW S T, et al.Pathology of clinical and preclinical Alzheimer’s disease[J]Eur Arch Psychiatry Clin Neurosci, 2013, 263( S2): 137-145.
doi: 10.1007/s00406-013-0449-5
|
8 |
PUANGMALAIN, BHATTN, MONTALBANOM, et al.Internalization mechanisms of brain-derived tau oligomers from patients with Alzheimer’s disease, progressive supranuclear palsy and dementia with Lewy bodies[J]Cell Death Dis, 2020, 11( 5): 314.
doi: 10.1038/s41419-020-2503-3
|
9 |
JINS, KEDIAN, ILLES-TOTHE, et al.Amyloid-β(1-42) aggregation initiates its cellular uptake and cytotoxicity[J]J Biol Chem, 2016, 291( 37): 19590-19606.
doi: 10.1074/jbc.M115.691840
|
10 |
SZABOM P, MISHRAS, KNUPPA, et al.The role of Alzheimer’s disease risk genes in endolysosomal pathways[J]Neurobiol Dis, 2022, 105576.
doi: 10.1016/j.nbd.2021.105576
|
11 |
GOEDERTM. Alpha-synuclein and neurodegenerative diseases[J]Nat Rev Neurosci, 2001, 2( 7): 492-501.
doi: 10.1038/35081564
|
12 |
FREUNDTE C, MAYNARDN, CLANCYE K, et al.Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport[J]Ann Neurol, 2012, 72( 4): 517-524.
doi: 10.1002/ana.23747
|
13 |
TEIXEIRAM, SHETAR, IDIW, et al.Alpha-synuclein and the endolysosomal system in Parkinson’s disease: guilty by association[J]Biomolecules, 2021, 11( 9): 1333.
doi: 10.3390/biom11091333
|
14 |
MÜNCHC, O′BRIENJ, BERTOLOTTIA. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells[J]Proc Natl Acad Sci USA, 2011, 108( 9): 3548-3553.
doi: 10.1073/pnas.1017275108
|
15 |
CULLENP J, STEINBERGF. To degrade or not to degrade: mechanisms and significance of endocytic recycling[J]Nat Rev Mol Cell Biol, 2018, 19( 11): 679-696.
doi: 10.1038/s41580-018-0053-7
|
16 |
WOODMANP G. Biogenesis of the sorting endosome: the role of Rab5[J]Traffic, 2000, 1( 9): 695-701.
doi: 10.1034/j.1600-0854.2000.010902.x
|
17 |
PENSALFINIA, KIMS, SUBBANNAS, et al.Endosomal dysfunction induced by directly overactivating Rab5 recapitulates prodromal and neurodegenerative features of Alzheimer’s disease[J]Cell Rep, 2020, 33( 8): 108420.
doi: 10.1016/j.celrep.2020.108420
|
18 |
ARRAZOLA SASTREA, LUQUE MONTOROM, LACERDAH M, et al.Small GTPases of the Rab and Arf families: key regulators of intracellular trafficking in neurodegeneration[J]Int J Mol Sci, 2021, 22( 9): 4425.
doi: 10.3390/ijms22094425
|
19 |
CATALDOA M, PETERHOFFC M, TRONCOSOJ C, et al.Endocytic pathway abnormalities precede amyloid β deposition in sporadic Alzheimer’s disease and Down syndrome[J]Am J Pathol, 2000, 157( 1): 277-286.
doi: 10.1016/S0002-9440(10)64538-5
|
20 |
CATALDOA M, PETANCESKAS, TERION B, et al.Aβ localization in abnormal endosomes: association with earliest Aβ elevations in AD and Down syndrome[J]Neurobiol Aging, 2004, 25( 10): 1263-1272.
doi: 10.1016/j.neurobiolaging.2004.02.027
|
21 |
GUINEYS J, ADLARDP A, LEIP, et al.Fibrillar α-synuclein toxicity depends on functional lysosomes[J]J Biol Chem, 2020, 295( 51): 17497-17513.
doi: 10.1074/jbc.RA120.013428
|
22 |
HASEGAWAT, KONNOM, BABAT, et al.The AAA-ATPase VPS4 regulates extracellular secretion and lysosomal targeting of α-synuclein[J/OL]PLoS One, 2011, 6( 12): e29460.
doi: 10.1371/journal.pone.0029460
|
23 |
GAUTAMM, JARAJ H, SEKERKOVAG, et al.Absence of alsin function leads to corticospinal motor neuron vulnerability via novel disease mechanisms[J]Hum Mol Genet, 2016, 25( 6): 1074-1087.
doi: 10.1093/hmg/ddv631
|
24 |
FARGM A, SUNDARAMOORTHYV, SULTANAJ M, et al.C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking[J]Hum Mol Genet, 2017, 26( 20): 4093-4094.
doi: 10.1093/hmg/ddx309
|
25 |
PARAKHS, PERRIE R, JAGARAJC J, et al.Rab-dependent cellular trafficking and amyotrophic lateral sclerosis[J]Crit Rev Biochem Mol Biol, 2018, 53( 6): 623-651.
doi: 10.1080/10409238.2018.1553926
|
26 |
BRUNDINP, MELKIR, KOPITOR. Prion-like transmission of protein aggregates in neurodegenerative diseases[J]Nat Rev Mol Cell Biol, 2010, 11( 4): 301-307.
doi: 10.1038/nrm2873
|
27 |
GRUENBERGJ, STENMARKH. The biogenesis of multivesicular endosomes[J]Nat Rev Mol Cell Biol, 2004, 5( 4): 317-323.
doi: 10.1038/nrm1360
|
28 |
HUOL, DUX, LIX, et al.The emerging role of neural cell-derived exosomes in intercellular communication in health and neurodegenerative diseases[J]Front Neurosci, 2021, 738442.
doi: 10.3389/fnins.2021.738442
|
29 |
LI C C, HSU W F, WO A M. Exosomes-potential for blood-based marker in Alzheimer’s disease[J]. Acta Neurol Taiwan, 2022, 31(1): 1-6
|
30 |
RODRIGUEZL, MOHAMEDN V, DESJARDINSA, et al.Rab7A regulates tau secretion[J]J Neurochem, 2017, 141( 4): 592-605.
doi: 10.1111/jnc.13994
|
31 |
ALVAREZ-ERVITIL, SEOWY, SCHAPIRAA H, et al.Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission[J]Neurobiol Dis, 2011, 42( 3): 360-367.
doi: 10.1016/j.nbd.2011.01.029
|
32 |
KATSINELOST, ZEITLERM, DIMOUE, et al.Unconventional secretion mediates the trans-cellular spreading of Tau[J]Cell Rep, 2018, 23( 7): 2039-2055.
doi: 10.1016/j.celrep.2018.04.056
|
33 |
POLANCOJ C, GÖTZJ. Exosomal and vesicle‐free tau seeds——propagation and convergence in endolysosomal permeabilization[J]FEBS J, 2021. DOI: 10.1111/febs.16055,
doi: 10.1111/febs.16055
|
34 |
LAIJ D, ICHIDAJ K. C9ORF72 protein function and immune dysregulation in amyotrophic lateral sclerosis[J]Neurosci Lett, 2019, 134523.
doi: 10.1016/j.neulet.2019.134523
|
35 |
SHIY, LINS, STAATSK A, et al.Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons[J]Nat Med, 2018, 24( 3): 313-325.
doi: 10.1038/nm.4490
|
36 |
BALENDRAR, ISAACSA M. C9ORF72-mediated ALS and FTD: multiple pathways to disease[J]Nat Rev Neurol, 2018, 14( 9): 544-558.
doi: 10.1038/s41582-018-0047-2
|
37 |
MANALA F, VINODS, JESSICAM S, et al.C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking[J]Hum Mol Genet, 2014, 23( 13): 3579-3595.
doi: 10.15252/embj.201593350
|
38 |
BLANCL, VIDALM. New insights into the function of Rab GTPases in the context of exosomal secretion[J]Small GTPases, 2018, 9( 1-2): 95-106.
doi: 10.1080/21541248.2016.1264352
|
39 |
AOKIY, MANZANOR, LEEY, et al.C9ORF72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia[J]Brain, 2017, 140( 4): 887-897.
doi: 10.1093/brain/awx024
|
40 |
SREEDHARANJ, BLAIRI P, TRIPATHIV B, et al.TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis[J]Science, 2008, 319( 5870): 1668-1672.
doi: 10.1126/science.1154584
|
41 |
LIUG, COYNEA N, PEIF, et al.Endocytosis regulates TDP-43 toxicity and turnover[J]Nat Commun, 2017, 8( 1): 2092.
doi: 10.1038/s41467-017-02017-x
|
42 |
SCHWENKB M, HARTMANNH, SERDAROGLUA, et al.TDP‐43 loss of function inhibits endosomal trafficking and alters trophic signaling in neurons[J]EMBO J, 2016, 35( 21): 2350-2370.
doi: 10.15252/embj.201694221
|
43 |
TORTELLIR, CONFORTIF L, CORTESER, et al.Amyotrophic lateral sclerosis: a new missense mutation in the SOD1 gene[J]Neurobiol Aging, 2013, 34( 6): 1709.e3-1709.e5.
doi: 10.1016/j.neurobiolaging.2012.10.027
|
44 |
ZEINEDDINER, PUNDAVELAJ F, CORCORANL, et al.SOD1 protein aggregates stimulate macropinocytosis in neurons to facilitate their propagation[J]Mol Neurodegeneration, 2015, 10( 1): 57.
doi: 10.1186/s13024-015-0053-4
|
45 |
ZHONGZ, GRASSOL, SIBILLAC, et al.Prion‐like protein aggregates exploit the RHO GTPase to cofilin‐1 signaling pathway to enter cells[J/OL]EMBO J, 2018, 37( 6): e97822.
doi: 10.15252/embj.201797822
|
46 |
GRADL I, YERBURYJ J, TURNERB J, et al.Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms[J]Proc Natl Acad Sci U S A, 2014, 111( 9): 3620-3625.
doi: 10.1073/pnas.1312245111
|
47 |
FERRARAD, PASETTOL, BONETTOV, et al.Role of extracellular vesicles in amyotrophic lateral sclerosis[J]Front Neurosci, 2018, 574.
doi: 10.3389/fnins.2018.00574
|
48 |
ONOS, OTOMOA, MURAKOSHIS, et al.ALS2, the small GTPase Rab17-interacting protein, regulates maturation and sorting of Rab17-associated endosomes[J]Biochem Biophysl Res Commun, 2020, 523( 4): 908-915.
doi: 10.1016/j.bbrc.2019.12.122
|
49 |
ROCHAN, KUIJLC, VAN DER KANTR, et al.Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150Glued and late endosome positioning[J]J Cell Biol, 2009, 185( 7): 1209-1225.
doi: 10.1083/jcb.200811005
|
50 |
UGBODEC, WESTR J H. Lessons learned from CHMP2B, implications for frontotemporal dementia and amyotrophic lateral sclerosis[J]Neurobiol Dis, 2021, 105144.
doi: 10.1016/j.nbd.2020.105144
|
51 |
TRNKAF, HOFFMANNC, WANGH, et al.Aberrant phase separation of FUS leads to lysosome sequestering and acidification[J]Front Cell Dev Biol, 2021, 716919.
doi: 10.3389/fcell.2021.716919
|
52 |
MARTYNC, LIJ. Fig4 deficiency: a newly emerged lysosomal storage disorder?[J]Prog Neurobiol, 2013, 35-45.
doi: 10.1016/j.pneurobio.2012.11.001
|
53 |
TOTHR P, ATKINJ D. Dysfunction of optineurin in amyotrophic lateral sclerosis and glaucoma[J]Front Immunol, 2018, 1017.
doi: 10.3389/fimmu.2018.01017
|
54 |
BUGM, MEYERH. Expanding into new markets——VCP/p97 in endocytosis and autophagy[J]J Struct Biol, 2012, 179( 2): 78-82.
doi: 10.1016/j.jsb.2012.03.003
|
55 |
NONISD, SCHMIDTM H H, VAN DE LOOS, et al.Ataxin-2 associates with the endocytosis complex and affects EGF receptor trafficking[J]Cell Signalling, 2008, 20( 10): 1725-1739.
doi: 10.1016/j.cellsig.2008.05.018
|
56 |
BRANCHUJ, BOUTRYM, SOURDL, et al.Loss of spatacsin function alters lysosomal lipid clearance leading to upper and lower motor neuron degeneration[J]Neurobiol Dis, 2017, 21-37.
doi: 10.1016/j.nbd.2017.02.007
|
57 |
CHEN-PLOTKINA S, UNGERT L, GALLAGHERM D, et al.TMEM106B, the risk gene for frontotemporal dementia, is regulated by the microRNA-132/212 cluster and affects progranulin pathways[J]J Neurosci, 2012, 32( 33): 11213-11227.
doi: 10.1523/JNEUROSCI.0521-12.2012
|
58 |
CHUAJ P, DE CALBIACH, KABASHIE, et al.Autophagy and ALS: mechanistic insights and therapeutic implications[J]Autophagy, 2022, 18( 2): 254-282.
doi: 10.1080/15548627.2021.1926656
|
59 |
RENAUDL, PICHER-MARTELV, CODRONP, et al.Key role of UBQLN2 in pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia[J]Acta Neuropathol Commun, 2019, 7( 1): 103.
doi: 10.1186/s40478-019-0758-7
|
60 |
BURKK, PASTERKAMPR J. Disrupted neuronal trafficking in amyotrophic lateral sclerosis[J]Acta Neuropathol, 2019, 137( 6): 859-877.
doi: 10.1007/s00401-019-01964-7
|
61 |
ABOUWARDR, SCHIAVOG. Walking the line: mechanisms underlying directional mRNA transport and localisation in neurons and beyond[J]Cell Mol Life Sci, 2021, 78( 6): 2665-2681.
doi: 10.1007/s00018-020-03724-3
|
62 |
SEVERB, CIFTCIH, DEMIRCIH, et al.Comprehensive research on past and future therapeutic strategies devoted to treatment of amyotrophic lateral sclerosis[J]Int J Mol Sci, 2022, 23( 5): 2400.
doi: 10.3390/ijms23052400
|
63 |
ROBERTSK, ZEINEDDINER, CORCORANL, et al.Extracellular aggregated Cu/Zn superoxide dismutase activates microglia to give a cytotoxic phenotype[J]Glia, 2013, 61( 3): 409-419.
doi: 10.1002/glia.22444
|
64 |
LEEJ Y, KOGAH, KAWAGUCHIY, et al.HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy[J]EMBO J, 2010, 29( 5): 969-980.
doi: 10.1038/emboj.2009.405
|
65 |
CHENS, ZHANGX J, LIL X, et al.Histone deacetylase 6 delays motor neuron degeneration by ameliorating the autophagic flux defect in a transgenic mouse model of amyotrophic lateral sclerosis[J]Neurosci Bull, 2015, 31( 4): 459-468.
doi: 10.1007/s12264-015-1539-3
|
66 |
BAIL, WANGY, HUOJ, et al.Simvastatin accelerated motoneurons death in SOD1G93A mice through inhibiting Rab7-mediated maturation of late autophagic vacuoles[J]Cell Death Dis, 2021, 12( 4): 392.
doi: 10.1038/s41419-021-03669-w
|
67 |
XIAOY, WANGS K, ZHANGY, et al.Role of extracellular vesicles in neurodegenerative diseases[J]Prog Neurobiol, 2021, 102022.
doi: 10.1016/j.pneurobio.2021.102022
|
68 |
PUSICA D, PUSICK M, CLAYTONB L L, et al.IFNγ-stimulated dendritic cell exosomes as a potential therapeutic for remyelination[J]J Neuroimmunol, 2014, 266( 1-2): 12-23.
doi: 10.1016/j.jneuroim.2013.10.014
|
69 |
GAGLIARDID, BRESOLINN, COMIG P, et al.Extracellular vesicles and amyotrophic lateral sclerosis: from misfolded protein vehicles to promising clinical biomarkers[J]Cell Mol Life Sci, 2021, 78( 2): 561-572.
doi: 10.1007/s00018-020-03619-3
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|