Please wait a minute...
浙江大学学报(医学版)  2022, Vol. 51 Issue (1): 102-107    DOI: 10.3724/zdxbyxb-2021-0398
综述     
磁性纳米粒子复合支架及外加磁场影响成骨作用的研究进展
汪文妮,陈超群,顾新华
浙江大学医学院附属第一医院口腔科,浙江 杭州 310003
Research progress on effect of magnetic nanoparticle composite scaffold on osteogenesis
WANG Wenni,CHEN Chaoqun,GU Xinhua
Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
 全文: PDF(2002 KB)   HTML( 21 )
摘要:

磁性纳米粒子(MNP)具有独特的磁响应性、生物相容性,在作为生物材料时可通过其内在的微小磁场促进成骨分化。掺入MNP的磁性复合支架保留了MNP的超顺磁性,具有良好的物理机械性能以及生物学性能,在体内外均取得良好的成骨效果。外加磁场可通过影响细胞代谢行为促进骨组织修复,与MNP复合支架结合可起到协同促进骨组织修复再生的作用,在骨组织工程领域的应用潜力巨大。本文就MNP复合支架的性能、MNP复合支架和磁场的成骨作用研究进展作一综述,为MNP复合支架进一步研究和临床应用提供参考。

关键词: 磁性纳米粒子复合支架磁场成骨综述    
Abstract:

Magnetic nanoparticles (MNP) have been widely used as biomaterials due to their unique magnetic responsiveness and biocompatibility, which also can promote osteogenic differentiation through their inherent micro-magnetic field. The MNP composite scaffold retains its superparamagnetism, which has good physical, mechanical and biological properties with significant osteogenic effects in vitro and in vivo. Magnetic field has been proved to promote bone tissue repair by affecting cell metabolic behavior. MNP composite scaffolds under magnetic field can synergically promote bone tissue repair and regeneration, which has great application potential in the field of bone tissue engineering. This article summarizes the performance of magnetic composite scaffold, the research progress on the effect of MNP composite scaffold with magnetic fields on osteogenesis, to provide reference for further research and clinical application.

Key words: Magnetic nanoparticle    Composite scaffold    Magnetic field    Osteogenesis    Review
收稿日期: 2021-07-15 出版日期: 2022-05-17
CLC:  R459.9  
基金资助: 浙江省自然科学基金(LY20H140002)
通讯作者: 顾新华   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
汪文妮
陈超群
顾新华

引用本文:

汪文妮,陈超群,顾新华. 磁性纳米粒子复合支架及外加磁场影响成骨作用的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 102-107.

WANG Wenni,CHEN Chaoqun,GU Xinhua. Research progress on effect of magnetic nanoparticle composite scaffold on osteogenesis. J Zhejiang Univ (Med Sci), 2022, 51(1): 102-107.

链接本文:

https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0398        https://www.zjujournals.com/med/CN/Y2022/V51/I1/102

1 HUANGJ, LIUW, LIANGY, et al.Preparation and biocompatibility of diphasic magnetic nanocomposite scaffold[J]Mater Sci Eng C, 2018, 70-77.
doi: 10.1016/j.msec.2018.02.003
2 SASAKIT, IWASAKIN, KOHNOK, et al.Magnetic nanoparticles for improving cell invasion in tissue engineering[J]J Biomed Mater Res B Appl BioMater, 2008, 86A( 4): 969-978.
doi: 10.1002/jbm.a.31724
3 MONDOLS, MANIVASAGANP, BHARATHIRAJAS, et al.Magnetic hydroxyapatite: a promising multifunctional platform for nanomedicine application[J]Int J Nanomedicine, 2017, 8389-8410.
doi: 10.2147/IJN.S147355
4 LIX, WEIJ, AIFANTISK E, et al.Current investigations into magnetic nanoparticles for biomedical applications[J]J Biomed Mater Res B Appl BioMater, 2016, 104( 5): 1285-1296.
doi: 10.1002/jbm.a.35654
5 YUNH M, AHNS J, PARKK R, et al.Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation[J]Biomaterials, 2016, 88-98.
doi: 10.1016/j.biomaterials.2016.01.035
6 SINGHR K, PATELK D, LEEJ H, et al.Potential of magnetic nanofiber scaffolds with mechanical and biological properties applicable for bone regeneration[J/OL]PLoS One, 2014, 9( 4): e91584.
doi: 10.1371/journal.pone.0091584
7 PAUNI A, CALINB S, MUSTACIOSUC C, et al.3D superparamagnetic scaffolds for bone mineralization under static magnetic field stimulation[J]Materials, 2019, 12( 17): 2834.
doi: 10.3390/ma12172834
8 CAIQ, SHIY, SHAND, et al.Osteogenic differentiation of MC3T3-E1 cells on poly(l-lactide)/Fe3O4 nanofibers with static magnetic field exposure[J]Mater Sci Eng C, 2015, 166-173.
doi: 10.1016/j.msec.2015.05.002
9 ZHAOY, FANT, CHENJ, et al.Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration[J]Colloids Surfs B Biointerfaces, 2019, 70-79.
doi: 10.1016/j.colsurfb.2018.11.003
10 SUNS, ZENGH, ROBINSOND B, et al.Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles[J]J Am Chem Soc, 2004, 126( 1): 273-279.
doi: 10.1021/ja0380852
11 CHENH, SUNJ, WANGZ, et al.Magnetic cell-scaffold interface constructed by superparamagnetic IONP enhanced osteogenesis of adipose-derived stemcells[J]ACS Appl Mater Interfaces, 2018, 10( 51): 44279-44289.
doi: 10.1021/acsami.8b17427
12 GOLDK, SLAYB, KNACKSTEDTM, et al.Antimicrobial activity of metal and metal‐oxide basednanoparticles[J]Adv Therap, 2018, 1( 3): 1700033.
doi: 10.1002/adtp.201700033
13 GUOX, LIW, LUOL, et al.External magnetic field-enhanced chemo-photothermal combination tumor therapy via iron oxide nanoparticles[J]ACS Appl Mater Interfaces, 2017, 9( 19): 16581-16593.
doi: 10.1021/acsami.6b16513
14 WANGQ, CHENB, CAOM, et al.Response of MAPK pathway to iron oxide nanoparticlesin vitro treatment promotes osteogenic differentiation of hBMSCs[J]Biomaterials, 2016, 11-20.
doi: 10.1016/j.biomaterials.2016.02.004
15 LUJ W, YANGF, KEQ F, et al.Magnetic nanoparticles modified-porous scaffolds for bone regeneration and photothermal therapy against tumors[J]Nanomed Nanotechnol Biol Med, 2018, 14( 3): 811-822.
doi: 10.1016/j.nano.2017.12.025
16 ZHANGW, YANGG, WANGX, et al.Magnetically controlled growth-factor-immobilized multilayer cell sheets for complex tissue regeneration[J]Adv Mater, 2017, 29( 43): 1703795.
doi: 10.1002/adma.201703795
17 HUANGD M, HSIAOJ K, CHENY C, et al.The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles[J]Biomaterials, 2009, 30( 22): 3645-3651.
doi: 10.1016/j.biomaterials.2009.03.032
18 LIL, YANGG, LIJ, et al.Cell behaviors on magnetic electrospun poly-D, L-lactide nanofibers[J]Mater Sci Eng C, 2014, 252-261.
doi: 10.1016/j.msec.2013.09.021
19 LIUQ, FENGL, CHENZ, et al.Ultrasmall superparamagnetic iron oxide labeled silk fibroin/hydroxyapatite multifunctional scaffold loaded with bone marrow-derived mesenchymal stem cells for bone regeneration[J]Front Bioeng Biotechnol, 2020, 697.
doi: 10.3389/fbioe.2020.00697
20 HUS, ZHOUY, ZHAOY, et al.Enhanced bone regeneration and visual monitoring via superparamagnetic iron oxide nanoparticle scaffold in rats[J/OL]J Tissue Eng Regen Med, 2018, 12( 4): e2085-e2098.
doi: 10.1002/term.2641
21 ZHUY, YANGQ, YANGM, et al.Protein corona of magnetic hydroxyapatite scaffold improves cell proliferation via activation of mitogen-activated protein kinase signaling pathway[J]ACS Nano, 2017, 11( 4): 3690-3704.
doi: 10.1021/acsnano.6b08193
22 ZHUY, LIZ, ZHANGY, et al.The essential role of osteoclast-derived exosomes in magnetic nanoparticle-infiltrated hydroxyapatite scaffold modulated osteoblast proliferation in an osteoporosis model[J]Nanoscale, 2020, 12( 16): 8720-8726.
doi: 10.1039/D0NR00867B
23 BAX, HADJIARGYROUM, DIMASIE, et al.The role of moderate static magnetic fields on biomineralization of osteoblasts on sulfonated polystyrene films[J]Biomaterials, 2011, 32( 31): 7831-7838.
doi: 10.1016/j.biomaterials.2011.06.053
24 TANASAE, ZAHARIAC, HUDITAA, et al.Impact of the magnetic field on 3T3-E1 preosteoblasts inside SMART silk fibroin-based scaffolds decorated with magnetic nanoparticles[J]Mater Sci Eng C, 2020, 110714.
doi: 10.1016/j.msec.2020.110714
25 PAUNI A, POPESCUR C, CALINB S, et al.3D biomimetic magnetic structures for static magnetic field stimulation of osteogenesis[J]Int J Mol Sci, 2018, 19( 2): 495.
doi: 10.3390/ijms19020495
26 LIP, ZHANGS, LIK, et al.The promoting effect on pre-osteoblast growth under electrical and magnetic double stimulation based on PEDOT/Fe3O4/PLGA magnetic-conductive bi-functional scaffolds[J]J Mater Chem B, 2018, 6( 30): 4952-4962.
doi: 10.1039/c8tb00985f
27 FILIPPIM, DASENB, GUERREROJ, et al.Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells[J]Biomaterials, 2019, 119468.
doi: 10.1016/j.biomaterials.2019.119468
28 ROSENA D. Mechanism of action of moderate-intensity static magnetic fields on biological systems[J]Cell Biochem Biophys, 2003, 39( 2): 163-174.
doi: 10.1385/CBB:39:2:163
29 KOTANIH, IWASAKAM, UENOS, et al.Magnetic orientation of collagen and bone mixture[J]J Appl Phys, 2000, 87( 9): 6191-6193.
doi: 10.1063/1.372652
30 WANGH, TANGX, LIW, et al.Enhanced osteogenesis of bone marrow stem cells cultured on hydroxyapatite/collagen Ⅰ scaffold in the presence of low-frequency magnetic field[J]J Mater Sci Mater Med, 2019, 30( 8): 89.
doi: 10.1007/s10856-019-6289-8
31 HUANGJ, WANGD, CHENJ, et al.Osteogenic differentiation of bone marrow mesenchymal stem cells by magnetic nanoparticle composite scaffolds under a pulsed electromagnetic field[J]Saudi Pharma-ceutical J, 2017, 25( 4): 575-579.
doi: 10.1016/j.jsps.2017.04.026
32 TAMPIERIA, IAFISCOM, SANDRIM, et al.Magnetic bioinspired hybrid nanostructured collagen-hydroxyapatite scaffolds supporting cell proliferation and tuning regenerative process[J]ACS Appl Mater Interfaces, 2014, 6( 18): 15697-15707.
doi: 10.1021/am5050967
33 YUANZ, MEMARZADEHK, STEPHENA S, et al.Development of a 3D collagen model for the in vitro evaluation of magnetic-assisted osteogenesis[J]Sci Rep, 2018, 8( 1): 16270.
doi: 10.1038/s41598-018-33455-2
34 HUANGZ, HEY, CHANGX, et al.A magnetic iron oxide/polydopamine coating can improve osteogenesis of 3D‐printed porous titanium scaffolds with a static magnetic field by upregulating the TGFβ‐smads pathway[J]Adv Healthcare Mater, 2020, 9( 14): 2000318.
doi: 10.1002/adhm.202000318
35 NOMURAS, TAKANO-YAMAMOTOT. Molecular events caused by mechanical stress in bone[J]Matrix Biol, 2000, 19( 2): 91-96.
doi: 10.1016/s0945-053x(00)00050-0
36 KATARIVASL G, BIRCHM A, BROOKSR A, et al.Stimulation of human osteoblast differentiation in magneto-mechanically actuated ferromagnetic fiber networks[J]J Clin Med, 2019, 8( 10): 1522.
doi: 10.3390/jcm8101522
37 HAOS, MENGJ, ZHANGY, et al.Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization[J]Biomaterials, 2017, 16-25.
doi: 10.1016/j.biomaterials.2017.06.013
38 MENGJ, XIAOB, ZHANGY, et al.Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo[J]Sci Rep, 2013, 3( 1): 2655.
doi: 10.1038/srep02655
[1] 卢茜璇,包黎莎,潘宗富,葛明华. 甲状腺未分化癌免疫治疗的现状及未来[J]. 浙江大学学报(医学版), 2021, 50(6): 675-684.
[2] 钱晨宏,蒋烈浩,许世莹,王佳峰,谭卓,忻莹,葛明华. 甲状腺未分化癌靶向治疗研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 685-693.
[3] 周靖,王艳,徐恩萍. 微单倍型在法医遗传学中的研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 777-782.
[4] 任渊,崔戈丹,高永翔. 原发性干燥综合征患者颌下腺炎症反应机制研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 783-794.
[5] 马丽娟,吴爽,张凯,田梅,张宏. 大麻素1型受体正电子发射断层显像在神经精神疾病中的应用进展[J]. 浙江大学学报(医学版), 2021, 50(5): 666-673.
[6] 宣自学,张轶雯,潘宗富,郑小卫,黄萍. 天然药物成分干预铁死亡抑制肿瘤的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(5): 601-606.
[7] 曲文政,庄英粮,李学坤. 表观遗传修饰在神经退行性变性疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(5): 642-650.
[8] 孙琦,曹蔚,罗建红. GluN3亚基的N-甲基-D-天冬氨酸受体及其在中枢神经系统的功能[J]. 浙江大学学报(医学版), 2021, 50(5): 651-658.
[9] 史建蓉,马望前,汤慧芳. 磷酸二酯酶抑制剂治疗炎性肠病的研究进展[J]. 浙江大学学报(医学版), 2021, 50(5): 659-665.
[10] 唐玥,孔元原. 遗传性酪氨酸血症Ⅰ型及其筛查和诊治进展[J]. 浙江大学学报(医学版), 2021, 50(4): 514-523.
[11] 刘飞,冯春月,毛建华,傅海东. 2019冠状病毒病疫苗接种相关新发及复发肾小球病研究进展[J]. 浙江大学学报(医学版), 2021, 50(4): 524-528.
[12] 韩连书. 新生儿遗传病基因筛查技术及相关疾病[J]. 浙江大学学报(医学版), 2021, 50(4): 429-435.
[13] 胡茫莎,韦树丽,周武源,王苹莉. 新生儿Fc受体基础研究和临床应用进展[J]. 浙江大学学报(医学版), 2021, 50(4): 537-544.
[14] 胡靖依,王青青,刘杨. 蛋白酶体亚基对肝细胞癌发生发展的调控作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 396-402.
[15] 葛瀛洲,刘欣梅,黄荷凤. 沉默信息调节因子家族参与病理妊娠的研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 335-344.