综述 |
|
|
|
|
T淋巴细胞体外发育方法的研究进展 |
李芸,陈新( ) |
浙江大学医学院药物生物技术研究所,浙江 杭州 310030 |
|
Progress on methods of T lymphocyte development in vitro |
LI Yun,CHEN Xin( ) |
Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310030, China |
1 |
JUNE C H , RIDDELL S R , SCHUMACHER T N . Adoptive cellular therapy: a race to the finish line[J]Sci Transl Med, 2015, 7( 280): 280ps7.
doi: 10.1126/scitranslmed.aaa3643
|
2 |
YING L , YAZDANI M , KOYA R , et al.Engineering tumor stromal mechanics for improved T cell therapy[J]Biochim Biophys Acta Gen Subj, 2022, 1866( 4): 130095.
doi: 10.1016/j.bbagen.2022.130095
|
3 |
HONDA T , ANDO M , ANDO J , et al.Sustainable tumor-suppressive effect of iPSC-derived rejuvenated T cells targeting cervical cancers[J]Mol Ther, 2020, 28( 11): 2394-2405.
doi: 10.1016/j.ymthe.2020.07.004
|
4 |
COMITO F , PAGANI R , GRILLI G , et al.Emerging novel therapeutic approaches for treatment of advanced cutaneous melanoma[J]Cancers, 2022, 14( 2): 271.
doi: 10.3390/cancers14020271
|
5 |
KASHIMA S , MAEDA T , MASUDA K , et al.Cytotoxic T lymphocytes regenerated from iPS cells have therapeutic efficacy in a patient-derived xenograft solid tumor model[J]iScience, 2020, 23( 4): 100998.
doi: 10.1016/j.isci.2020.100998
|
6 |
FREY N V , GILL S , HEXNER E O , et al.Long-term outcomes from a randomized dose optimization study of chimeric antigen receptor modified T cells in relapsed chronic lymphocytic leukemia[J]J Clin Oncol, 2020, 38( 25): 2862-2871.
doi: 10.1200/JCO.19.03237
|
7 |
GU R , LIU F , ZOU D , et al.Efficacy and safety of CD19 CAR T constructed with a new anti-CD19 chimeric antigen receptor in relapsed or refractory acute lymphoblastic leukemia[J]J Hematol Oncol, 2020, 13( 1): 122.
doi: 10.1186/s13045-020-00953-8
|
8 |
JOYCE J A , FEARON D T . T cell exclusion, immune privilege, and the tumor microenvironment[J]Science, 2015, 348( 6230): 74-80.
doi: 10.1126/science.aaa6204
|
9 |
SMIRNOV S , PETUKHOV A , LEVCHUK K , et al.Strategies to circumvent the side-effects of immunotherapy using allogeneic CAR-T cells and boost its efficacy: results of recent clinical trials[J]Front Immunol, 2021, 780145.
doi: 10.3389/fimmu.2021.780145
|
10 |
MORENO D F , CID J . Graft-versus-hast disease receptor[J]Med Clin (Bare), 2019, 152( 1): 22-28.
doi: 10.1016/j.medcli.2018.07.012
|
11 |
ABRAMSON J , ANDERSON G . Thymic epithelial cells[J]Annu Rev Immunol, 2017, 35( 1): 85-118.
doi: 10.1146/annurev-immunol-051116-052320
|
12 |
INGLESFIELD S , COSWAY E J , JENKINSON W E , et al.Rethinking thymic tolerance: lessons from mice[J]Trends Immunol, 2019, 40( 4): 279-291.
doi: 10.1016/j.it.2019.01.011
|
13 |
TAKABA H , MORISHITA Y , TOMOFUJI Y , et al.Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance[J]Cell, 2015, 163( 4): 975-987.
doi: 10.1016/j.cell.2015.10.013
|
14 |
BESNARD M , PADONOU F , PROVIN N , et al.AIRE deficiency, from preclinical models to human APECED disease[J]Dis Model Mech, 2021, 14( 2): dmm046359.
doi: 10.1242/dmm.046359
|
15 |
YAN F , MO X , LIU J , et al.Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling[J]Mol Med Rep, 2017, 16( 5): 7175-7184.
doi: 10.3892/mmr.2017.7525
|
16 |
ROBINSON J H, OWEN J J. Generation of T-cell function in organ culture of foetal mouse thymus. II. mixed lymphocyte culture reactivity[J]. Clin Exp Immunol, 1977, 27(2): 322-327
|
17 |
COHEN A, LEE J W, DOSCH H M, et al. The expression of deoxyguanosine toxicity in T lymphocytes at different stages of maturation[J]. J Immunol, 1980, 125(4): 1578-1582
|
18 |
JENKINSON E J , FRANCHI L L , KINGSTON R , et al.Effect of deoxyguanosine on lymphopoiesis in the developing thymus rudimentin in vitro: application in the production of chimeric thymus rudiments[J]Eur J Immunol, 1982, 12( 7): 583-587.
doi: 10.1002/eji.1830120710
|
19 |
HAN J , ZÚÑIGA-PFLÜCKER J C . High-oxygen submersion fetal thymus organ cultures enable FOXN1-dependent and -independent support of T lymphopoiesis[J]Front Immunol, 2021, 652665.
doi: 10.3389/fimmu.2021.652665
|
20 |
NAKAYAMA Y , MASUDA Y , OHTA H , et al.Fgf21 regulates T-cell development in the neonatal and juvenile thymus[J]Sci Rep, 2017, 7( 1): 330.
doi: 10.1038/s41598-017-00349-8
|
21 |
SHEN H , YIN C , GAO Y N , et al.Recirculating Th2 cells induce severe thymic dysfunction via IL-4/STAT6 signaling pathway[J]Biochem Biophysl Res Commun, 2018, 501( 1): 320-327.
doi: 10.1016/j.bbrc.2018.05.030
|
22 |
CHUNG B , MONTEL-HAGEN A , GE S , et al.Engineering the human thymic microenvironment to support thymopoiesis in vivo[J]Stem Cells, 2014, 32( 9): 2386-2396.
doi: 10.1002/stem.1731
|
23 |
HERPPICH S , BECKSTETTE M , HUEHN J . The thymic microenvironment gradually modulates the phenotype of thymus‐homing peripheral conventional dendritic cells[J]Immun Inflam Dis, 2022, 10( 2): 175-188.
doi: 10.1002/iid3.559
|
24 |
DENG Z, LIU H, RUI J, et al. Reconstituted thymus organ culture[J]. Methods Mol Biol, 2016, 1323: 151-158
|
25 |
ANDERSON G , JENKINSON E J , MOORE N C , et al.MHC class Ⅱ-positive epithelium and mesenchyme cells are both required for T-cell development in the thymus[J]Nature, 1993, 362( 6415): 70-73.
doi: 10.1038/362070a0
|
26 |
MOHTASHAMI M , ZÚÑIGA-PFLÜCKER J C . Cutting edge: three-dimensional architecture of the thymus is required to maintain delta-like expression necessary for inducing T cell development[J]J Immunol, 2006, 176( 2): 730-734.
doi: 10.4049/jimmunol.176.2.730
|
27 |
YE W , LUO C , LI C , et al.Organoids to study immune functions, immunological diseases and immunotherapy[J]Cancer Lett, 2020, 31-40.
doi: 10.1016/j.canlet.2020.02.027
|
28 |
POZNANSKY M C , EVANS R H , FOXALL R B , et al.Efficient generation of human T cells from a tissue-engineered thymic organoid[J]Nat Biotechnol, 2000, 18( 7): 729-734.
doi: 10.1038/77288
|
29 |
BLACK J . Biologic performance of tantalum[J]Clin Mater, 1994, 16( 3): 167-173.
doi: 10.1016/0267-6605(94)90113-9
|
30 |
BOBYN J D , STACKPOOL G J , HACKING S A , et al.Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial[J]J Bone Joint Surg Br, 1999, 81( 5): 907-914.
doi: 10.1302/0301-620X.81B5.0810907
|
31 |
TRUONG V X , HUN M L , LI F , et al. In situ-forming click-crosslinked gelatin based hydrogels for 3D culture of thymic epithelial cells[J]Biomater Sci, 2016, 4( 7): 1123-1131.
doi: 10.1039/C6BM00254D
|
32 |
SURAIYA A B , HUN M L , TRUONG V X , et al.Gelatin-based 3D microgels for in vitro T lineage cell generation[J]ACS Biomater Sci Eng, 2020, 6( 4): 2198-2208.
doi: 10.1021/acsbiomaterials.9b01610
|
33 |
BORTOLOMAI I , SANDRI M , DRAGHICI E , et al.Gene modification and three-dimensional scaffolds as novel tools to allow the use of postnatal thymic epithelial cells for thymus regeneration approaches[J]Stem Cells Transl Med, 2019, 8( 10): 1107-1122.
doi: 10.1002/sctm.18-0218
|
34 |
OCAMPO J S P , DE BRITO J M , CORRÊA-DE-SANTANA E , et al.Laminin-211 controls thymocyte——thymic epithelial cell interactions[J]Cell Immunol, 2008, 254( 1): 1-9.
doi: 10.1016/j.cellimm.2008.06.005
|
35 |
SHICHKIN V P , ANTICA M . Key factors for thymic function and development[J]Front Immunol, 2022, 926516.
doi: 10.3389/fimmu.2022.926516
|
36 |
BAJAJ P , SCHWELLER R M , KHADEMHOSSEINI A , et al.3D biofabrication strategies for tissue engineering and regenerative medicine[J]Annu Rev Biomed Eng, 2014, 16( 1): 247-276.
doi: 10.1146/annurev-bioeng-071813-105155
|
37 |
FAN Y , TAJIMA A , GOH S K , et al.Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts[J]Mol Ther, 2015, 23( 7): 1262-1277.
doi: 10.1038/mt.2015.77
|
38 |
OTT H C , MATTHIESEN T S , GOH S K , et al.Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart[J]Nat Med, 2008, 14( 2): 213-221.
doi: 10.1038/nm1684
|
39 |
CAMPINOTI S , GJINOVCI A , RAGAZZINI R , et al.Reconstitution of a functional human thymus by postnatal stromal progenitor cells and natural whole-organ scaffolds[J]Nat Commun, 2020, 11( 1): 6372.
doi: 10.1038/s41467-020-20082-7
|
40 |
ORLANDO G , SOKER S , STRATTA R J . Organ bioengineering and regeneration as the new Holy Grail for organ transplantation[J]Ann Surg, 2013, 258( 2): 221-232.
doi: 10.1097/SLA.0b013e31829c79cf
|
41 |
CARLYLE J R , MICHIE A M , FURLONGER C , et al.Identification of a novel developmental stage marking lineage commitment of progenitor thymocytes[J]J Exp Med, 1997, 186( 2): 173-182.
doi: 10.1084/jem.186.2.173
|
42 |
NAKANO T , KODAMA H , HONJO T . Generation of lymphohematopoietic cells from embryonic stem cells in culture[J]Science, 1994, 265( 5175): 1098-1101.
doi: 10.1126/science.8066449
|
43 |
NG H L , QUAIL E , CRUICKSHANK M N , et al.To be, or notch to be: mediating cell fate from embryogenesis to lymphopoiesis[J]Biomolecules, 2021, 11( 6): 849.
doi: 10.3390/biom11060849
|
44 |
MIZOGUCHI T, HANDA H, OMARU S, et al. Artificial notch signaling activation method using immobilized ligand beads[J]. Methods Mol Biol, 2022, 2472: 57-66
|
45 |
HIRANO K I , SUGANAMI A , TAMURA Y , et al.Delta-like 1 and Delta-like 4 differently require their extracellular domains for triggering Notch signaling in mice[J/OL]eLife, 2020, e50979.
doi: 10.7554/eLife.50979
|
46 |
SCHMITT T M , ZÚÑIGA-PFLÜCKER J C . Induction of T cell development from hematopoietic progenitor cells by Delta-like-1 in vitro[J]Immunity, 2002, 17( 6): 749-756.
doi: 10.1016/S1074-7613(02)00474-0
|
47 |
LA MOTTE-MOHS R N , HERER E , ZÚÑIGA-PFLÜCKER J C . Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro[J]Blood, 2005, 105( 4): 1431-1439.
doi: 10.1182/blood-2004-04-1293
|
48 |
DE SMEDT M , HOEBEKE I , PLUM J . Human bone marrow CD34+ progenitor cells mature to T cells on OP9-DL1 stromal cell line without thymus microenvironment[J]Blood Cells Molecules Dis, 2004, 33( 3): 227-232.
doi: 10.1016/j.bcmd.2004.08.007
|
49 |
ANDERSON G , MOORE N C , OWEN J J T , et al.Cellular interactions in thymocyte development[J]Annu Rev Immunol, 1996, 14( 1): 73-99.
doi: 10.1146/annurev.immunol.14.1.73
|
50 |
LIND E F , PROCKOP S E , PORRITT H E , et al.Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development[J]J Exp Med, 2001, 194( 2): 127-134.
doi: 10.1084/jem.194.2.127
|
51 |
VIJAYARAGHAVAN J, OSBORNE B A. Notch and T cell function——a complex tale[J]. Adv Exp Med Biol, 2018, 1066: 339-354
|
52 |
MOHTASHAMI M , SHAH D K , KIANIZAD K , et al.Induction of T-cell development by Delta-like 4-expressing fibroblasts[J]Int Immunol, 2013, 25( 10): 601-611.
doi: 10.1093/intimm/dxt027
|
53 |
SEET C S , HE C , BETHUNE M T , et al.Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids[J]Nat Methods, 2017, 14( 5): 521-530.
doi: 10.1038/nmeth.4237
|
54 |
MONTEL-HAGEN A , SEET C S , LI S , et al.Organoid-induced differentiation of conventional T cells from human pluripotent stem cells[J]Cell Stem Cell, 2019, 24( 3): 376-389.e8.
doi: 10.1016/j.stem.2018.12.011
|
55 |
SHARMA H , MORONI L . Recent advancements in regenerative approaches for thymus rejuvenation[J]Adv Sci, 2021, 8( 14): 2100543.
doi: 10.1002/advs.202100543
|
56 |
BOSTICARDO M , PALA F , CALZONI E , et al.Artificial thymic organoids represent a reliable tool to study T-cell differentiation in patients with severe T-cell lymphopenia[J]Blood Adv, 2020, 4( 12): 2611-2616.
doi: 10.1182/bloodadvances.2020001730
|
57 |
VARNUM-FINNEY B , WU L , YU M , et al.Immobilization of Notch ligand, Delta-1, is required for induction of Notch signaling[J]J Cell Sci, 2000, 113( 23): 4313-4318.
doi: 10.1242/jcs.113.23.4313
|
58 |
TAQVI S , DIXIT L , ROY K . Biomaterial-based notch signaling for the differentiation of hematopoietic stem cells into T cells[J]J Biomed Mater Res B Appl Biomater, 2006, 79A( 3): 689-697.
doi: 10.1002/jbm.a.30916
|
59 |
OHISHI K , VARNUM-FINNEY B , BERNSTEIN I D . Delta-1 enhances marrow and thymus repopulating ability of human CD34 +CD38 – cord blood cells[J]J Clin Invest, 2002, 110( 8): 1165-1174.
doi: 10.1172/JCI0216167
|
60 |
DALLAS M H , VARNUM-FINNEY B , MARTIN P J , et al.Enhanced T-cell reconstitution by hematopoietic progenitors expanded ex vivo using the Notch ligand Delta1[J]Blood, 2007, 109( 8): 3579-3587.
doi: 10.1182/blood-2006-08-039842
|
61 |
ZÚÑIGA-PFLÜCKER J C . T-cell development made simple[J]Nat Rev Immunol, 2004, 4( 1): 67-72.
doi: 10.1038/nri1257
|
62 |
VAN COPPERNOLLE S , VERSTICHEL G , TIMMERMANS F , et al.Functionally mature CD4 and CD8 TCRαβ cells are generated in OP9-DL1 cultures from human CD34 + hematopoietic cells[J]J Immunol, 2009, 183( 8): 4859-4870.
doi: 10.4049/jimmunol.0900714
|
63 |
GHOSH A , SMITH M , JAMES S E , et al.Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity[J]Nat Med, 2017, 23( 2): 242-249.
doi: 10.1038/nm.4258
|
64 |
YANG L , BALTIMORE D . Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells[J]Proc Natl Acad Sci U S A, 2005, 102( 12): 4518-4523.
doi: 10.1073/pnas.0500600102
|
65 |
ZAKRZEWSKI J L , SUH D , MARKLEY J C , et al.Tumor immunotherapy across MHC barriers using allogeneic T-cell precursors[J]Nat Biotechnol, 2008, 26( 4): 453-461.
doi: 10.1038/nbt1395
|
66 |
VIZCARDO R , RAFIQUL ISLAM S M , MAEDA T , et al.A three-dimensional thymic culture system to generate murine induced pluripotent stem cell-derived tumor antigen-specific thymic emigrants[J]J Vis Exp, 2019, 10.3791/58672.
doi: 10.3791/58672
|
67 |
OTSUKA R , WADA H , TSUJI H , et al.Efficient generation of thymic epithelium from induced pluripotent stem cells that prolongs allograft survival[J]Sci Rep, 2020, 10( 1): 224.
doi: 10.1038/s41598-019-57088-1
|
68 |
XIONG Y , LIU Y , GE J . Induction of pluripotent stem cells by reprogramming human ocular fibroblasts under xeno-free conditions[J]Arq Bras Oftalmol, 2018, 81( 5): 376-383.
doi: 10.5935/0004-2749.20180075
|
69 |
ZHANG Y X , LIU L P , LI M , et al.Development of individualized induced pluripotent stem cells from fibroblasts of keloid lesions in patients[J]Transplant Proc, 2018, 50( 9): 2868-2871.
doi: 10.1016/j.transproceed.2018.04.008
|
70 |
ZHANG Y , HU W , MA K , et al.Reprogramming of keratinocytes as donor or target cells holds great promise for cell therapy and regenerative medicine[J]Stem Cell Rev Rep, 2019, 15( 5): 680-689.
doi: 10.1007/s12015-019-09900-8
|
71 |
ISOGAI S , YAMAMOTO N , HIRAMATSU N , et al.Preparation of induced pluripotent stem cells using human peripheral blood monocytes[J]Cell Reprogram, 2018, 20( 6): 347-355.
doi: 10.1089/cell.2018.0024
|
72 |
HIRAMATSU N , YAMAMOTO N , ISOGAI S , et al.An analysis of monocytes and dendritic cells differentiated from human peripheral blood monocyte-derived induced pluripotent stem cells[J]Med Mol Morphol, 2020, 53( 2): 63-72.
doi: 10.1007/s00795-019-00231-8
|
73 |
KIM K , ZHAO R , DOI A , et al.Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells[J]Nat Biotechnol, 2011, 29( 12): 1117-1119.
doi: 10.1038/nbt.2052
|
74 |
NISHIMURA T , KANEKO S , KAWANA-TACHIKAWA A , et al.Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation[J]Cell Stem Cell, 2013, 12( 1): 114-126.
doi: 10.1016/j.stem.2012.11.002
|
75 |
MAEDA T , NAGANO S , ICHISE H , et al.Regeneration of CD8αβ T cells from T-cell-derived iPSC imparts potent tumor antigen-specific cytotoxicity[J]Cancer Res, 2016, 76( 23): 6839-6850.
doi: 10.1158/0008-5472.CAN-16-1149
|
76 |
THEMELI M , KLOSS C C , CIRIELLO G , et al.Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy[J]Nat Biotechnol, 2013, 31( 10): 928-933.
doi: 10.1038/nbt.2678
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|