Please wait a minute...
浙江大学学报(医学版)  2022, Vol. 51 Issue (2): 241-250    DOI: 10.3724/zdxbyxb-2021-0297
综述     
恶性肿瘤饥饿疗法研究现状
李健宜,佟丹丹,林俊生()
华侨大学医学院,福建 泉州 362021
Current status of cancer starvation therapy
LI Jianyi,TONG Dandan,LIN Junsheng()
School of Medicine, Huaqiao University, Quanzhou 362021, Fujian Province, China
 全文: PDF(4419 KB)   HTML( 34 )
摘要:

恶性肿瘤传统的治疗方法各有局限和弊端。近年来新兴的饥饿疗法通过阻断肿瘤的营养供应,达到“饿死”肿瘤细胞的目的。饥饿疗法的治疗策略主要包括:通过靶向抑制促血管生成因子及其受体和整合素,干预肿瘤血管生成机制,以抗肿瘤血管生成;通过栓塞和挤压血管,以阻断肿瘤血管的输血供氧功能;通过抑制线粒体的丝氨酸/甘氨酸/一碳代谢、抑制糖酵解、抑制氨基酸代谢等方式抑制肿瘤细胞代谢过程;饥饿疗法与氧化疗法、化学治疗、声动力疗法、抑制肿瘤细胞自噬等方法联合可以达到协同效果。本文从以上四个方面总结近年来肿瘤饥饿疗法的研究进展和存在的问题,以期对恶性肿瘤治疗策略的选择有所帮助。

关键词: 肿瘤饥饿疗法抗血管生成肿瘤代谢协同治疗综述    
Abstract:

Conventional therapies for malignant tumors have limitations and disadvantages. In recent years, the cancer starvation therapy has emerged which intends to deprive cancer cells of nutritional supply. There are several approaches to“starve” cancer cells: to intervene tumor angiogenesis by targeted inhibition of angiogenic factors or their receptors and integrins; to block the blood supply of cancer cells by embolizing or compressing blood vessels; to intervene metabolic process of cancer cells by inhibition of the signal pathways of mitochondrial serine-glycine-one earbon metabolism, glycolysis and amino acid metabolism; cancer starvation therapy can be employed with oxidation therapy, chemotherapy, sonodynamic therapy, anti-autophagy therapy or other therapies to achieve synergistic effects. This article reviews the research progress of cancer starvation therapy in recent years and discusses the existing problems.

Key words: Neoplasms    Starvation therapy    Anti-angiogenesis    Tumor metabolism    Synergistic therapy    Review
收稿日期: 2021-09-28 出版日期: 2022-08-02
CLC:  R73  
基金资助: 国家重点研发计划(2016YFE0101700);华侨大学高层次人才引进项目(13Y0391)
通讯作者: 林俊生     E-mail: junshenglin@hqu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李健宜
佟丹丹
林俊生

引用本文:

李健宜,佟丹丹,林俊生. 恶性肿瘤饥饿疗法研究现状[J]. 浙江大学学报(医学版), 2022, 51(2): 241-250.

LI Jianyi,TONG Dandan,LIN Junsheng. Current status of cancer starvation therapy. J Zhejiang Univ (Med Sci), 2022, 51(2): 241-250.

链接本文:

https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0297        https://www.zjujournals.com/med/CN/Y2022/V51/I2/241

图 1  抗肿瘤血管生成机制示意图促血管生成因子和整合素广泛参与血管生成,酪氨酸激酶是参与许多信号通路的关键酶,单克隆抗体(如贝伐珠单抗)可靶向促血管生成因子或其受体;RBM-007适体可靶向成纤维细胞生长因子2;西仑吉肽和自组装肽纳米粒可靶向整合素αvβ3,OS2966抗体可靶向整合素β1;索拉非尼等小分子化合物可靶向酪氨酸激酶,从而实现抗肿瘤血管生成. 血管生成模式从出芽式转换成套叠式可导致肿瘤产生耐药性,上调、、、和基因表达可抑制套叠式血管生成药物从而改善耐药性. CXCL:趋化因子CXC亚家族配体;ACTA:α-肌动蛋白;CALD:钙调蛋白结合蛋白;TEM:肿瘤内皮标志物;COUP-TF:鸡卵清蛋白上游启动子转录因子.
1 刘宗超, 李哲轩, 张 阳, 等. 2020全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志,2021,7(2):1-14
LIU Zongchao, LI Zhexuan, ZHANG Yang, et al. Interpretation on the report of Global Cancer Statistics 2020[J]. Journal of Multidisciplinary Cancer Management (Electronic Version), 2021,7(2):1-14. (in Chinese)
2 张艾佳,王洪江.初诊Ⅳ期乳腺癌的外科治疗现状[J]. 大连医科大学学报, 2020, 42(5): 458-461
ZHANG Aijia, WANG Hongjiang. Current status of surgical approach in patients presenting with stage Ⅳ breast cancer[J]. Journal of Dalian Medical University, 2020, 42(5): 458-461. (in Chinese)
3 中华人民共和国国家卫生健康委员会医政医管局, 中华医学会肿瘤学分会. 中国结直肠癌诊疗规范(2020年版)[J].中国实用外科杂志, 2020, 40(6): 601-625
Hospital Authority of National Health Commission of the People’s Republic of China; Chinese Society of Oncology, Chinese Medical Association. Chinese protocol of diagnosis and treatment of colorectal cancer (2020 edition)[J]. Chinese Journal of Practical Surgery, 2020, 40(6): 601-625. (in Chinese)
4 中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗规范(2019年版)[J]. 中国实用外科杂志, 2020, 40(2): 121-138
Bureau of Medical Administration, National Health Commission of the People’s Republic of China. Standardization for diagnosis and treatment of primary hepatic carcinom (2019 edition)[J]. Chinese Journal of Practical Surgery, 2020, 40(2): 121-138. (in Chinese)
5 中华人民共和国国家卫生健康委员会. 胃癌诊疗规范(2018年版)[J]. 肿瘤综合治疗电子杂志, 2019, 5(1): 55-82
National Health Commission of the People’s Republic of China. Gastric cancer diagnosis and treatment specification (2018 edition)[J]. Journal of Multidisciplinary Cancer Management (Electronic Version), 2019, 5(1): 55-82. (in Chinese)
6 中华人民共和国国家卫生健康委员会. 食管癌诊疗规范(2018年版)[J]. 肿瘤综合治疗电子杂志, 2019, 5(2): 50-86
National Health Commission of the People’s Republic of China. Esophageal cancer diagnosis and treatment specification (2018 edition)[J]. Journal of Multidisciplinary Cancer Management (Electronic Version), 2019, 5(2): 50-86. (in Chinese)
7 中华人民共和国国家卫生健康委员会. 淋巴瘤诊疗规范(2018年版)[J]. 肿瘤综合治疗电子杂志, 2019, 5(4): 50-71
National Health Commission of the People’s Republic of China. Lymphoma diagnosis and treatment specification(2018 edition)[J]. Journal of Multidisciplinary Cancer Management (Electronic Version), 2019, 5(4): 50-71. (in Chinese)
8 黄 唐, 刘 丹. 肺癌患者化学治疗后认知功能损伤的机制及诊疗进展[J]. 华西医学, 2021, 36(2): 255-259
HANG Tang, LIU Dan. Mechanism and progress of diagnosis and treatment of cognitive impairment in lung cancer patients after chemotherapy[J]. West China Medical Journal, 2021, 36(2): 255-259. (in Chinese)
9 皮慧敏, 符 琰, 郑儒君, 等. 情绪障碍对肺癌初治患者化疗毒副作用的影响[J]. 临床肺科杂志, 2019, 24(11): 2008-2012
PI Huimin, FU Yan, ZHENG Rujun, et al. Effect of emotional disorder on adverse effect in patients with lung cancer after primary chemotherapy[J]. Journal of Clinical Pulmonary Medicine, 2019, 24(11): 2008-2012. (in Chinese)
10 CASCELLA M, Di NAPOLI R, CARBONE D, et al. Chemotherapy-related cognitive impairment: mechanisms, clinical features and research perspectives[J]. Recenti Prog Med, 2018,109(11): 523-530
11 NYROPK A, DEALA M, SHACHARS S, et al.Patient-reported toxicities during chemotherapy regimens in current clinical practice for early breast cancer[J]Oncologist, 2019, 24( 6): 762-771.
doi: 10.1634/theoncologist.2018-0590
12 PHILIPP A, LACYJ, PORTALESF, et al.Nab-paclitaxel plus gemcitabine in patients with locally advanced pancreatic cancer (LAPACT): a multicentre, open-label phase 2 study[J]Lancet Gastroenterol Hepatol, 2020, 5( 3): 285-294.
doi: 10.1016/S2468-1253(19)30327-9
13 舒晓宏. 胶质母细胞瘤的治疗策略[J]. 大连医科大学学报, 2020, 42(6): 481-486
SHU Xiaohong. Therapeutic strategies for glioblastoma[J]. Journal of Dalian Medical University, 2020, 42(6): 481-486. (in Chinese)
14 FOLKMANJ. Tumor angiogenesis: therapeutic implications[J]N Engl J Med, 1971, 285( 21): 1182-1186.
doi: 10.1056/NEJM197111182852108
15 郭崇真, 曲连悦, 杜荣蓉, 等. 贝伐珠单抗治疗卵巢癌的研究进展[J]. 中国新药杂志, 2020, 29(23): 2677-2682
GUO Chongzhen, QU Lianyue, DU Rongrong, et al. Research progress of bevacizumab in the treatment of ovarian cancer[J]. Chinese Journal of New Drugs, 2020, 29(23): 2677-2682. (in Chinese)
16 WILLEMS E, GERNE L, GEORGE C, et al. Adverse effects of bevacizumab in metastatic colorectal cancer: a case report and literature review[J]. Acta Gastroenterol Belg, 2019, 82(2): 322-325
17 程 军. 贝伐珠单抗致鼻中隔穿孔国内外文献分[?down]?>析[J].中国新药杂志, 2020, 29(19): 2265-2268
CHENG Jun. Analysis of bevacizumab-induced nasal septum perforation based on literature reviews[J]. Chinese Journal of New Drugs, 2020, 29(19): 2265-2268. (in Chinese)
18 SULIBHAVIA, THARMALINGAMS, MCCARROLLL, et al.Reversible bevacizumab induced vocal fold necrosis[J]J Voice, 2021. DOI: 10.1016/j.jvoice. 2020.11.028,
doi: 10.1016/j.jvoice.2020.11.028
19 SHETAM, HASSANG, AFIFYS M, et al.Chronic exposure to FGF2 converts iPSCs into cancer stem cells with an enhanced integrin/focal adhesion/PI3K/AKT axis[J]Cancer Lett, 2021, 142-154.
doi: 10.1016/j.canlet.2021.08.026
20 NAKAMURAY. Multiple therapeutic applications of rbm-007, an anti-FGF2 aptamer[J]Cells, 2021, 10( 7): 1617.
doi: 10.3390/cells10071617
21 JIAT, VAGANAYE, CARPENTIERG, et al.A collagen Vα1-derived fragment inhibits FGF-2 induced-angiogenesis by modulating endothelial cells plasticity through its heparin-binding site[J]Matrix Biol, 2020, 18-30.
doi: 10.1016/j.matbio.2020.07.001
22 许中华, 王 敏, 张 瑗. 整合素αvβ3参与骨肉瘤发生进展机制的研究进展[J]. 重庆医学, 2021, 50(19): 3395-3399
XU Zhonghua, WANG Min, ZHANG Yuan. Research progress on the mechanism of integrin αvβ3 involved in the occurrence and progression of osteosarcoma[J]. Chongqing Medicine, 2021, 50(19): 3395-3399. (in Chinese)
23 PULOUSF E, CARNEVALEJ C, AL-YAFEAIZ, et al.Talin-dependent integrin activation is required for endothelial proliferation and postnatal angiogenesis[J]Angiogenesis, 2021, 24( 1): 177-190.
doi: 10.1007/s10456-020-09756-4
24 DESGROSELLIERJ S, CHERESHD A. Integrins in cancer: biological implications and therapeutic opportunities[J]Nat Rev Cancer, 2010, 10( 1): 9-22.
doi: 10.1038/nrc2748
25 SLACKR J, MACDONALDS J F, ROPERJ A, et al.Emerging therapeutic opportunities for integrin inhibitors[J]Nat Rev Drug Discov, 2022, 21( 1): 60-78.
doi: 10.1038/s41573-021-00284-4
26 CHENZ, ZHANGK, FANJ, et al.In situ construction of ligand nano-network to integrin αvβ3 for angiogenesis inhibition[J]Chin Chem Lett, 2020, 31( 12): 3107-3112.
doi: 10.1016/j.cclet.2020.04.006
27 李 娜, 邢书娟, 黄国友, 等. 抗肿瘤血管生成治疗的研究进展及应对策略[J]. 生命科学研究, 2020, 24(1): 62-67
LI Na, XING Shujuan, HUANG Guoyou, et al. Research progress of anti-tumor angiogenesis therapy and its countermeasures[J]. Life Science Research, 2020, 24(1): 62-67. (in Chinese)
28 SARAVANANS, VIMALRAJS, PAVANIK, et al.Intussusceptive angiogenesis as a key therapeutic target for cancer therapy[J]Life Sci, 2020, 117670.
doi: 10.1016/j.lfs.2020.117670
29 LIS, JIANGQ, LIUS, et al.A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo[J]Nat Biotechnol, 2018, 36( 3): 258-264.
doi: 10.1038/nbt.4071
30 ZHANGC, NID, LIUY, et al.Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy[J]Nat Nanotech, 2017, 12( 4): 378-386.
doi: 10.1038/nnano.2016.280
31 ZHANGK, FANGY, HEY, et al.Extravascular gelation shrinkage-derived internal stress enables tumor starvation therapy with suppressed metastasis and recurrence[J]Nat Commun, 2019, 10( 1): 5380.
doi: 10.1038/s41467-019-13115-3
32 LIA M, YEJ. Reprogramming of serine, glycine and one-carbon metabolism in cancer[J]Biochim Biophys Acta Mol Basis Dis, 2020, 1866( 10): 165841.
doi: 10.1016/j.bbadis.2020.165841
33 LIQ, LIY, LIANGL, et al.Klotho negatively regulated aerobic glycolysis in colorectal cancer via ERK/HIF1α axis[J]Cell Commun Signal, 2018, 16( 1): 26.
doi: 10.1186/s12964-018-0241-2
34 CUIH, GAOQ, ZHANGL, et al.Knockdown of FOXK1 suppresses liver cancer cell viability by inhibiting glycolysis[J]Life Sci, 2018, 66-73.
doi: 10.1016/j.lfs.2018.10.018
35 JIAOL, WANGS, ZHENGY, et al.Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-κB/c-Myc pathway[J]Biochem Pharmacol, 2019, 149-162.
doi: 10.1016/j.bcp.2019.01.016
36 MENDEZL E, MANCIN, CANTUARIAG, et al.Expression of glucose transporter-1 in cervical cancer and its precursors[J]Gynecol Oncol, 2002, 86( 2): 138-143.
doi: 10.1006/gyno.2002.6745
37 HUSSEINY R, BANDYOPADHYAYS, SEMAANA, et al.Glut-1 expression correlates with basal-like breast cancer[J]Transl Oncol, 2011, 4( 6): 321-327.
doi: 10.1593/tlo.11256
38 WANGJ, XUW, WANGB, et al.GLUT1 is an AR target contributing to tumor growth and glycolysis in castration-resistant and enzalutamide-resistant prostate cancers[J]Cancer Lett, 2020, 45-55.
doi: 10.1016/j.canlet.2020.05.007
39 ZHUW W, LUM, WANGX Y, et al.The fuel and engine: the roles of reprogrammed metabolism in metastasis of primary liver cancer[J]Genes Dis, 2020, 7( 3): 299-307.
doi: 10.1016/j.gendis.2020.01.016
40 DOHERTYJ R, CLEVELANDJ L. Targeting lactate metabolism for cancer therapeutics[J]J Clin Invest, 2013, 123( 9): 3685-3692.
doi: 10.1172/JCI69741
41 WANGJ X, CHOIS Y C, NIUX, et al.Lactic acid and an acidic tumor microenvironment suppress anticancer immunity[J]Int J Mol Sci, 2020, 21( 21): 8363.
doi: 10.3390/ijms21218363
42 FAUBERTB, LIK Y, CAIL, et al.Lactate metabolism in human lung tumors[J]Cell, 2017, 171( 2): 358-371.
doi: 10.1016/j.cell.2017.09.019
43 RABINOWITZJ D, ENERBÄCKS. Lactate: the ugly duckling of energy metabolism[J]Nat Metab, 2020, 2( 7): 566-571.
doi: 10.1038/s42255-020-0243-4
44 LUANY, ZHANGW, XIEJ, et al.CDKN2A inhibits cell proliferation and invasion in cervical cancer through LDHA-mediated AKT/mTOR pathway[J]Clin Transl Oncol, 2021, 23( 2): 222-228.
doi: 10.1007/s12094-020-02409-4
45 SHAOX, ZHENGX, MAD, et al.Inhibition of lncRNA-NEAT1 sensitizes 5-Fu resistant cervical cancer cells through de-repressing the microRNA-34a/LDHA axis[J]Biosci Rep, 2021, 41( 7): BSR20200533.
doi: 10.1042/BSR20200533
46 CHENGA, ZHANGP, WANGB, et al.Aurora-A mediated phosphorylation of LDHB promotes glycolysis and tumor progression by relieving the substrate-inhibition effect[J]Nat Commun, 2019, 10( 1): 5566.
doi: 10.1038/s41467-019-13485-8
47 KUOM T, CHENH H W, FEUNL G, et al.Targeting the proline-glutamine-asparagine-arginine metabolic axis in amino acid starvation cancer therapy[J]Pharmaceuticals, 2021, 14( 1): 72.
doi: 10.3390/ph14010072
48 LIJ, LIX, WUL, et al.miR‐145 inhibits glutamine metabolism through c‐myc/GLS1 pathways in ovarian cancer cells[J]Cell Biol Int, 2019, 43( 8): 921-930.
doi: 10.1002/cbin.11182
49 ISHAK GABRAM B, YANGY, LOWMANX H, et al.IKKβ activates p53 to promote cancer cell adaptation to glutamine deprivation[J]Oncogenesis, 2018, 7( 11): 93.
doi: 10.1038/s41389-018-0104-0
50 KUMARA, GIRIS, SHAHAC. Sestrin2 facilitates glutamine‐dependent transcription of PGC‐1α and survival of liver cancer cells under glucose limitation[J]FEBS J, 2018, 285( 7): 1326-1345.
doi: 10.1111/febs.14406
51 何晓博, 何咏竞, 李鹏平, 等. 葡萄糖氧化酶介导的抗癌疗法[J]. 肿瘤, 2020, 40(2): 146-152
HE Xiaobo, HE Yongjing, LI Pengping, et al. Anticancer therapy mediated by glucose oxidase[J]. Tumor, 2020, 40(2): 146-152. (in Chinese)
52 CHANG M, WANG M, WANG M, et al. A multifunctional cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy[J/OL]. Adv Mater, 2019, 31(51): e1905271
53 YAOZ, ZHANGB, LIANGT, et al.Promoting oxidative stress in cancer starvation therapy by site-specific startup of hyaluronic acid-enveloped dual-catalytic nanoreactors[J]ACS Appl Mater Interfaces, 2019, 11( 21): 18995-19005.
doi: 10.1021/acsami.9b06034
54 ZHANGM K, LIC X, WANGS B, et al.Tumor starvation induced spatiotemporal control over chemotherapy for synergistic therapy[J]Small, 2018, 14( 50): 1803602.
doi: 10.1002/smll.201803602
55 ZHANGR, FENGL, DONGZ, et al.Glucose & oxygen exhausting liposomes for combined cancer starvation and hypoxia-activated therapy[J]Biomaterials, 2018, 123-131.
doi: 10.1016/j.biomaterials.2018.02.004
56 SHAOF, WUY, TIANZ, et al.Biomimetic nanoreactor for targeted cancer starvation therapy and cascade amplificated chemotherapy[J]Biomaterials, 2021, 120869.
doi: 10.1016/j.biomaterials.2021.120869
57 RAFFAGHELLOL, LEEC, SAFDIEF M, et al.Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy[J]Proc Natl Acad Sci U S A, 2008, 105( 24): 8215-8220.
doi: 10.1073/pnas.0708100105
58 YUMITAN, NISHIGAKIR, UMEMURAK, et al.Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound[J]Jpn J Cancer Res, 1989, 80( 3): 219-222.
doi: 10.1111/j.1349-7006.1989.tb02295.x
59 UMEMURA S I, YUMITA N, NISHIGAKI R, et al. Sonochemical activation of hematoporphyrin: a potential modality for cancer treatment[C]. New York: IEEE, 1989
60 UMEMURAS, YUMITAN, NISHIGAKIR, et al.Mechanism of cell damage by ultrasound in combination with hematoporphyrin[J]Jpn J Cancer Res, 1990, 81( 9): 962-966.
doi: 10.1111/j.1349-7006.1990.tb02674.x
61 YUMITAN, NISHIGAKIR, UMEMURAK, et al.Synergistic effect of ultrasound and hematoporphyrin on sarcoma 180[J]Jpn J Cancer Res, 1990, 81( 3): 304-308.
doi: 10.1111/j.1349-7006.1990.tb02565.x
62 杨 凡, 田宇航, 程 文. 声动力疗法治疗疾病的研究进展[J]. 现代肿瘤医学, 2019, 27(20): 3706-3709
YANG Fan, TIAN Yuhang, CHENG Wen. The development of sonodynamic therapy in treating diseases[J]. Modern Oncology, 2019, 27(20): 3706-3709. (in Chinese)
63 ZHANGY, WANGH, JIAX, et al.Cascade catalytic nanoplatform for enhanced starvation and sonodynamic therapy[J]J Drug Targeting, 2019, 28( 2): 195-203.
doi: 10.1080/1061186X.2019.1641507
64 YANGB, DINGL, CHENY, et al.Augmenting tumor-starvation therapy by cancer cell autophagy inhibition[J]Adv Sci, 2020, 7( 6): 1902847.
doi: 10.1002/advs.201902847
65 任晓蕾, 邢丽秋, 詹轶秋, 等. 北京地区贝伐珠单抗不良反应报告分析及安全性研究[J].中国新药杂志,2020, 29(14): 1670-1674
REN Xiaolei, XING Liqiu, ZHAN Yiqiu, et al. Analysis of adverse reaction reports of bevacizumab in Beijing area[J]. Chinese Journal of New Drugs, 2020, 29(14): 1670-1674. (in Chinese)
66 PÜSCHELF, FAVAROF, REDONDO-PEDRAZAJ, et al.Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells[J]Proc Natl Acad Sci U S A, 2020, 117( 18): 9932-9941.
doi: 10.1073/pnas.1913707117
67 KUCZYNSKIE A, REYNOLDSA R. Vessel co-option and resistance to anti-angiogenic therapy[J]Angiogenesis, 2020, 23( 1): 55-74.
doi: 10.1007/s10456-019-09698-6
68 陈国想, 周 茉, 陈 圣, 等. 非编码RNA在索拉非尼治疗肝细胞癌耐药中的作用机制[J]. 临床肝胆病杂志, 2021,37(3): 699-703
CHEN Guoxiang, ZHOU Mo, CHEN Sheng, et al. Mechanism of action of non-coding RNA in sorafenib resistance in hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2021, 37(3): 699-703. (in Chinese)
69 FINLEYS D, CHUL H, POPELA S. Computational systems biology approaches to anti-angiogenic cancer therapeutics[J]Drug Discovery Today, 2015, 20( 2): 187-197.
doi: 10.1016/j.drudis.2014.09.026
[1] 张棋琦,祖成,孟夜,吕雨琦,胡永仙,黄河. BCMA靶向的嵌合抗原受体T细胞治疗复发/难治多发性骨髓瘤患者发生肿瘤溶解综合征的危险因素[J]. 浙江大学学报(医学版), 2022, 51(2): 144-150.
[2] 叶柏新,胡永仙,张明明,黄河. 脂质纳米粒-mRNA递送系统及其在嵌合抗原受体T细胞治疗中的应用[J]. 浙江大学学报(医学版), 2022, 51(2): 185-191.
[3] 刘娇,涂晓璇,刘璐璐,方维佳. 嵌合抗原受体T细胞治疗恶性实体瘤新进展[J]. 浙江大学学报(医学版), 2022, 51(2): 175-184.
[4] 胡珂嘉,黄玥,胡永仙,黄河. 嵌合抗原受体T细胞治疗血液系统恶性肿瘤研究进展[J]. 浙江大学学报(医学版), 2022, 51(2): 192-203.
[5] 张少琪,孙洁. 纳米药物递送系统在急性髓细胞性白血病治疗中的应用[J]. 浙江大学学报(医学版), 2022, 51(2): 233-240.
[6] 刘德坤,刘佳丽,张丹,杨雯晴. 细胞衰老与动脉粥样硬化的相关研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 95-101.
[7] 陈遒,蔡良良,梁景岩. 基于转录组学膀胱癌临床预后模型的构建[J]. 浙江大学学报(医学版), 2022, 51(1): 79-86.
[8] 汪文妮,陈超群,顾新华. 磁性纳米粒子复合支架及外加磁场影响成骨作用的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 102-107.
[9] 边梦瑶,陈莉丽,雷利红. 慢性牙周炎与帕金森病相关性的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 108-114.
[10] 金群,黄丽华. 神经认知障碍患者多成分运动干预的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 38-46.
[11] 卢茜璇,包黎莎,潘宗富,葛明华. 甲状腺未分化癌免疫治疗的现状及未来[J]. 浙江大学学报(医学版), 2021, 50(6): 675-684.
[12] 钱晨宏,蒋烈浩,许世莹,王佳峰,谭卓,忻莹,葛明华. 甲状腺未分化癌靶向治疗研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 685-693.
[13] 周靖,王艳,徐恩萍. 微单倍型在法医遗传学中的研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 777-782.
[14] 任渊,崔戈丹,高永翔. 原发性干燥综合征患者颌下腺炎症反应机制研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 783-794.
[15] 马丽娟,吴爽,张凯,田梅,张宏. 大麻素1型受体正电子发射断层显像在神经精神疾病中的应用进展[J]. 浙江大学学报(医学版), 2021, 50(5): 666-673.