综述 |
|
|
|
|
恶性肿瘤饥饿疗法研究现状 |
李健宜,佟丹丹,林俊生( ) |
华侨大学医学院,福建 泉州 362021 |
|
Current status of cancer starvation therapy |
LI Jianyi,TONG Dandan,LIN Junsheng( ) |
School of Medicine, Huaqiao University, Quanzhou 362021, Fujian Province, China |
1 |
刘宗超, 李哲轩, 张 阳, 等. 2020全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志,2021,7(2):1-14 LIU Zongchao, LI Zhexuan, ZHANG Yang, et al. Interpretation on the report of Global Cancer Statistics 2020[J]. Journal of Multidisciplinary Cancer Management (Electronic Version), 2021,7(2):1-14. (in Chinese)
|
2 |
张艾佳,王洪江.初诊Ⅳ期乳腺癌的外科治疗现状[J]. 大连医科大学学报, 2020, 42(5): 458-461 ZHANG Aijia, WANG Hongjiang. Current status of surgical approach in patients presenting with stage Ⅳ breast cancer[J]. Journal of Dalian Medical University, 2020, 42(5): 458-461. (in Chinese)
|
3 |
中华人民共和国国家卫生健康委员会医政医管局, 中华医学会肿瘤学分会. 中国结直肠癌诊疗规范(2020年版)[J].中国实用外科杂志, 2020, 40(6): 601-625 Hospital Authority of National Health Commission of the People’s Republic of China; Chinese Society of Oncology, Chinese Medical Association. Chinese protocol of diagnosis and treatment of colorectal cancer (2020 edition)[J]. Chinese Journal of Practical Surgery, 2020, 40(6): 601-625. (in Chinese)
|
4 |
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗规范(2019年版)[J]. 中国实用外科杂志, 2020, 40(2): 121-138 Bureau of Medical Administration, National Health Commission of the People’s Republic of China. Standardization for diagnosis and treatment of primary hepatic carcinom (2019 edition)[J]. Chinese Journal of Practical Surgery, 2020, 40(2): 121-138. (in Chinese)
|
5 |
中华人民共和国国家卫生健康委员会. 胃癌诊疗规范(2018年版)[J]. 肿瘤综合治疗电子杂志, 2019, 5(1): 55-82 National Health Commission of the People’s Republic of China. Gastric cancer diagnosis and treatment specification (2018 edition)[J]. Journal of Multidisciplinary Cancer Management (Electronic Version), 2019, 5(1): 55-82. (in Chinese)
|
6 |
中华人民共和国国家卫生健康委员会. 食管癌诊疗规范(2018年版)[J]. 肿瘤综合治疗电子杂志, 2019, 5(2): 50-86 National Health Commission of the People’s Republic of China. Esophageal cancer diagnosis and treatment specification (2018 edition)[J]. Journal of Multidisciplinary Cancer Management (Electronic Version), 2019, 5(2): 50-86. (in Chinese)
|
7 |
中华人民共和国国家卫生健康委员会. 淋巴瘤诊疗规范(2018年版)[J]. 肿瘤综合治疗电子杂志, 2019, 5(4): 50-71 National Health Commission of the People’s Republic of China. Lymphoma diagnosis and treatment specification(2018 edition)[J]. Journal of Multidisciplinary Cancer Management (Electronic Version), 2019, 5(4): 50-71. (in Chinese)
|
8 |
黄 唐, 刘 丹. 肺癌患者化学治疗后认知功能损伤的机制及诊疗进展[J]. 华西医学, 2021, 36(2): 255-259 HANG Tang, LIU Dan. Mechanism and progress of diagnosis and treatment of cognitive impairment in lung cancer patients after chemotherapy[J]. West China Medical Journal, 2021, 36(2): 255-259. (in Chinese)
|
9 |
皮慧敏, 符 琰, 郑儒君, 等. 情绪障碍对肺癌初治患者化疗毒副作用的影响[J]. 临床肺科杂志, 2019, 24(11): 2008-2012 PI Huimin, FU Yan, ZHENG Rujun, et al. Effect of emotional disorder on adverse effect in patients with lung cancer after primary chemotherapy[J]. Journal of Clinical Pulmonary Medicine, 2019, 24(11): 2008-2012. (in Chinese)
|
10 |
CASCELLA M, Di NAPOLI R, CARBONE D, et al. Chemotherapy-related cognitive impairment: mechanisms, clinical features and research perspectives[J]. Recenti Prog Med, 2018,109(11): 523-530
|
11 |
NYROPK A, DEALA M, SHACHARS S, et al.Patient-reported toxicities during chemotherapy regimens in current clinical practice for early breast cancer[J]Oncologist, 2019, 24( 6): 762-771.
doi: 10.1634/theoncologist.2018-0590
|
12 |
PHILIPP A, LACYJ, PORTALESF, et al.Nab-paclitaxel plus gemcitabine in patients with locally advanced pancreatic cancer (LAPACT): a multicentre, open-label phase 2 study[J]Lancet Gastroenterol Hepatol, 2020, 5( 3): 285-294.
doi: 10.1016/S2468-1253(19)30327-9
|
13 |
舒晓宏. 胶质母细胞瘤的治疗策略[J]. 大连医科大学学报, 2020, 42(6): 481-486 SHU Xiaohong. Therapeutic strategies for glioblastoma[J]. Journal of Dalian Medical University, 2020, 42(6): 481-486. (in Chinese)
|
14 |
FOLKMANJ. Tumor angiogenesis: therapeutic implications[J]N Engl J Med, 1971, 285( 21): 1182-1186.
doi: 10.1056/NEJM197111182852108
|
15 |
郭崇真, 曲连悦, 杜荣蓉, 等. 贝伐珠单抗治疗卵巢癌的研究进展[J]. 中国新药杂志, 2020, 29(23): 2677-2682 GUO Chongzhen, QU Lianyue, DU Rongrong, et al. Research progress of bevacizumab in the treatment of ovarian cancer[J]. Chinese Journal of New Drugs, 2020, 29(23): 2677-2682. (in Chinese)
|
16 |
WILLEMS E, GERNE L, GEORGE C, et al. Adverse effects of bevacizumab in metastatic colorectal cancer: a case report and literature review[J]. Acta Gastroenterol Belg, 2019, 82(2): 322-325
|
17 |
程 军. 贝伐珠单抗致鼻中隔穿孔国内外文献分[?down]?>析[J].中国新药杂志, 2020, 29(19): 2265-2268 CHENG Jun. Analysis of bevacizumab-induced nasal septum perforation based on literature reviews[J]. Chinese Journal of New Drugs, 2020, 29(19): 2265-2268. (in Chinese)
|
18 |
SULIBHAVIA, THARMALINGAMS, MCCARROLLL, et al.Reversible bevacizumab induced vocal fold necrosis[J]J Voice, 2021. DOI: 10.1016/j.jvoice. 2020.11.028,
doi: 10.1016/j.jvoice.2020.11.028
|
19 |
SHETAM, HASSANG, AFIFYS M, et al.Chronic exposure to FGF2 converts iPSCs into cancer stem cells with an enhanced integrin/focal adhesion/PI3K/AKT axis[J]Cancer Lett, 2021, 142-154.
doi: 10.1016/j.canlet.2021.08.026
|
20 |
NAKAMURAY. Multiple therapeutic applications of rbm-007, an anti-FGF2 aptamer[J]Cells, 2021, 10( 7): 1617.
doi: 10.3390/cells10071617
|
21 |
JIAT, VAGANAYE, CARPENTIERG, et al.A collagen Vα1-derived fragment inhibits FGF-2 induced-angiogenesis by modulating endothelial cells plasticity through its heparin-binding site[J]Matrix Biol, 2020, 18-30.
doi: 10.1016/j.matbio.2020.07.001
|
22 |
许中华, 王 敏, 张 瑗. 整合素αvβ3参与骨肉瘤发生进展机制的研究进展[J]. 重庆医学, 2021, 50(19): 3395-3399 XU Zhonghua, WANG Min, ZHANG Yuan. Research progress on the mechanism of integrin αvβ3 involved in the occurrence and progression of osteosarcoma[J]. Chongqing Medicine, 2021, 50(19): 3395-3399. (in Chinese)
|
23 |
PULOUSF E, CARNEVALEJ C, AL-YAFEAIZ, et al.Talin-dependent integrin activation is required for endothelial proliferation and postnatal angiogenesis[J]Angiogenesis, 2021, 24( 1): 177-190.
doi: 10.1007/s10456-020-09756-4
|
24 |
DESGROSELLIERJ S, CHERESHD A. Integrins in cancer: biological implications and therapeutic opportunities[J]Nat Rev Cancer, 2010, 10( 1): 9-22.
doi: 10.1038/nrc2748
|
25 |
SLACKR J, MACDONALDS J F, ROPERJ A, et al.Emerging therapeutic opportunities for integrin inhibitors[J]Nat Rev Drug Discov, 2022, 21( 1): 60-78.
doi: 10.1038/s41573-021-00284-4
|
26 |
CHENZ, ZHANGK, FANJ, et al.In situ construction of ligand nano-network to integrin αvβ3 for angiogenesis inhibition[J]Chin Chem Lett, 2020, 31( 12): 3107-3112.
doi: 10.1016/j.cclet.2020.04.006
|
27 |
李 娜, 邢书娟, 黄国友, 等. 抗肿瘤血管生成治疗的研究进展及应对策略[J]. 生命科学研究, 2020, 24(1): 62-67 LI Na, XING Shujuan, HUANG Guoyou, et al. Research progress of anti-tumor angiogenesis therapy and its countermeasures[J]. Life Science Research, 2020, 24(1): 62-67. (in Chinese)
|
28 |
SARAVANANS, VIMALRAJS, PAVANIK, et al.Intussusceptive angiogenesis as a key therapeutic target for cancer therapy[J]Life Sci, 2020, 117670.
doi: 10.1016/j.lfs.2020.117670
|
29 |
LIS, JIANGQ, LIUS, et al.A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo[J]Nat Biotechnol, 2018, 36( 3): 258-264.
doi: 10.1038/nbt.4071
|
30 |
ZHANGC, NID, LIUY, et al.Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy[J]Nat Nanotech, 2017, 12( 4): 378-386.
doi: 10.1038/nnano.2016.280
|
31 |
ZHANGK, FANGY, HEY, et al.Extravascular gelation shrinkage-derived internal stress enables tumor starvation therapy with suppressed metastasis and recurrence[J]Nat Commun, 2019, 10( 1): 5380.
doi: 10.1038/s41467-019-13115-3
|
32 |
LIA M, YEJ. Reprogramming of serine, glycine and one-carbon metabolism in cancer[J]Biochim Biophys Acta Mol Basis Dis, 2020, 1866( 10): 165841.
doi: 10.1016/j.bbadis.2020.165841
|
33 |
LIQ, LIY, LIANGL, et al.Klotho negatively regulated aerobic glycolysis in colorectal cancer via ERK/HIF1α axis[J]Cell Commun Signal, 2018, 16( 1): 26.
doi: 10.1186/s12964-018-0241-2
|
34 |
CUIH, GAOQ, ZHANGL, et al.Knockdown of FOXK1 suppresses liver cancer cell viability by inhibiting glycolysis[J]Life Sci, 2018, 66-73.
doi: 10.1016/j.lfs.2018.10.018
|
35 |
JIAOL, WANGS, ZHENGY, et al.Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-κB/c-Myc pathway[J]Biochem Pharmacol, 2019, 149-162.
doi: 10.1016/j.bcp.2019.01.016
|
36 |
MENDEZL E, MANCIN, CANTUARIAG, et al.Expression of glucose transporter-1 in cervical cancer and its precursors[J]Gynecol Oncol, 2002, 86( 2): 138-143.
doi: 10.1006/gyno.2002.6745
|
37 |
HUSSEINY R, BANDYOPADHYAYS, SEMAANA, et al.Glut-1 expression correlates with basal-like breast cancer[J]Transl Oncol, 2011, 4( 6): 321-327.
doi: 10.1593/tlo.11256
|
38 |
WANGJ, XUW, WANGB, et al.GLUT1 is an AR target contributing to tumor growth and glycolysis in castration-resistant and enzalutamide-resistant prostate cancers[J]Cancer Lett, 2020, 45-55.
doi: 10.1016/j.canlet.2020.05.007
|
39 |
ZHUW W, LUM, WANGX Y, et al.The fuel and engine: the roles of reprogrammed metabolism in metastasis of primary liver cancer[J]Genes Dis, 2020, 7( 3): 299-307.
doi: 10.1016/j.gendis.2020.01.016
|
40 |
DOHERTYJ R, CLEVELANDJ L. Targeting lactate metabolism for cancer therapeutics[J]J Clin Invest, 2013, 123( 9): 3685-3692.
doi: 10.1172/JCI69741
|
41 |
WANGJ X, CHOIS Y C, NIUX, et al.Lactic acid and an acidic tumor microenvironment suppress anticancer immunity[J]Int J Mol Sci, 2020, 21( 21): 8363.
doi: 10.3390/ijms21218363
|
42 |
FAUBERTB, LIK Y, CAIL, et al.Lactate metabolism in human lung tumors[J]Cell, 2017, 171( 2): 358-371.
doi: 10.1016/j.cell.2017.09.019
|
43 |
RABINOWITZJ D, ENERBÄCKS. Lactate: the ugly duckling of energy metabolism[J]Nat Metab, 2020, 2( 7): 566-571.
doi: 10.1038/s42255-020-0243-4
|
44 |
LUANY, ZHANGW, XIEJ, et al.CDKN2A inhibits cell proliferation and invasion in cervical cancer through LDHA-mediated AKT/mTOR pathway[J]Clin Transl Oncol, 2021, 23( 2): 222-228.
doi: 10.1007/s12094-020-02409-4
|
45 |
SHAOX, ZHENGX, MAD, et al.Inhibition of lncRNA-NEAT1 sensitizes 5-Fu resistant cervical cancer cells through de-repressing the microRNA-34a/LDHA axis[J]Biosci Rep, 2021, 41( 7): BSR20200533.
doi: 10.1042/BSR20200533
|
46 |
CHENGA, ZHANGP, WANGB, et al.Aurora-A mediated phosphorylation of LDHB promotes glycolysis and tumor progression by relieving the substrate-inhibition effect[J]Nat Commun, 2019, 10( 1): 5566.
doi: 10.1038/s41467-019-13485-8
|
47 |
KUOM T, CHENH H W, FEUNL G, et al.Targeting the proline-glutamine-asparagine-arginine metabolic axis in amino acid starvation cancer therapy[J]Pharmaceuticals, 2021, 14( 1): 72.
doi: 10.3390/ph14010072
|
48 |
LIJ, LIX, WUL, et al.miR‐145 inhibits glutamine metabolism through c‐myc/GLS1 pathways in ovarian cancer cells[J]Cell Biol Int, 2019, 43( 8): 921-930.
doi: 10.1002/cbin.11182
|
49 |
ISHAK GABRAM B, YANGY, LOWMANX H, et al.IKKβ activates p53 to promote cancer cell adaptation to glutamine deprivation[J]Oncogenesis, 2018, 7( 11): 93.
doi: 10.1038/s41389-018-0104-0
|
50 |
KUMARA, GIRIS, SHAHAC. Sestrin2 facilitates glutamine‐dependent transcription of PGC‐1α and survival of liver cancer cells under glucose limitation[J]FEBS J, 2018, 285( 7): 1326-1345.
doi: 10.1111/febs.14406
|
51 |
何晓博, 何咏竞, 李鹏平, 等. 葡萄糖氧化酶介导的抗癌疗法[J]. 肿瘤, 2020, 40(2): 146-152 HE Xiaobo, HE Yongjing, LI Pengping, et al. Anticancer therapy mediated by glucose oxidase[J]. Tumor, 2020, 40(2): 146-152. (in Chinese)
|
52 |
CHANG M, WANG M, WANG M, et al. A multifunctional cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy[J/OL]. Adv Mater, 2019, 31(51): e1905271
|
53 |
YAOZ, ZHANGB, LIANGT, et al.Promoting oxidative stress in cancer starvation therapy by site-specific startup of hyaluronic acid-enveloped dual-catalytic nanoreactors[J]ACS Appl Mater Interfaces, 2019, 11( 21): 18995-19005.
doi: 10.1021/acsami.9b06034
|
54 |
ZHANGM K, LIC X, WANGS B, et al.Tumor starvation induced spatiotemporal control over chemotherapy for synergistic therapy[J]Small, 2018, 14( 50): 1803602.
doi: 10.1002/smll.201803602
|
55 |
ZHANGR, FENGL, DONGZ, et al.Glucose & oxygen exhausting liposomes for combined cancer starvation and hypoxia-activated therapy[J]Biomaterials, 2018, 123-131.
doi: 10.1016/j.biomaterials.2018.02.004
|
56 |
SHAOF, WUY, TIANZ, et al.Biomimetic nanoreactor for targeted cancer starvation therapy and cascade amplificated chemotherapy[J]Biomaterials, 2021, 120869.
doi: 10.1016/j.biomaterials.2021.120869
|
57 |
RAFFAGHELLOL, LEEC, SAFDIEF M, et al.Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy[J]Proc Natl Acad Sci U S A, 2008, 105( 24): 8215-8220.
doi: 10.1073/pnas.0708100105
|
58 |
YUMITAN, NISHIGAKIR, UMEMURAK, et al.Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound[J]Jpn J Cancer Res, 1989, 80( 3): 219-222.
doi: 10.1111/j.1349-7006.1989.tb02295.x
|
59 |
UMEMURA S I, YUMITA N, NISHIGAKI R, et al. Sonochemical activation of hematoporphyrin: a potential modality for cancer treatment[C]. New York: IEEE, 1989
|
60 |
UMEMURAS, YUMITAN, NISHIGAKIR, et al.Mechanism of cell damage by ultrasound in combination with hematoporphyrin[J]Jpn J Cancer Res, 1990, 81( 9): 962-966.
doi: 10.1111/j.1349-7006.1990.tb02674.x
|
61 |
YUMITAN, NISHIGAKIR, UMEMURAK, et al.Synergistic effect of ultrasound and hematoporphyrin on sarcoma 180[J]Jpn J Cancer Res, 1990, 81( 3): 304-308.
doi: 10.1111/j.1349-7006.1990.tb02565.x
|
62 |
杨 凡, 田宇航, 程 文. 声动力疗法治疗疾病的研究进展[J]. 现代肿瘤医学, 2019, 27(20): 3706-3709 YANG Fan, TIAN Yuhang, CHENG Wen. The development of sonodynamic therapy in treating diseases[J]. Modern Oncology, 2019, 27(20): 3706-3709. (in Chinese)
|
63 |
ZHANGY, WANGH, JIAX, et al.Cascade catalytic nanoplatform for enhanced starvation and sonodynamic therapy[J]J Drug Targeting, 2019, 28( 2): 195-203.
doi: 10.1080/1061186X.2019.1641507
|
64 |
YANGB, DINGL, CHENY, et al.Augmenting tumor-starvation therapy by cancer cell autophagy inhibition[J]Adv Sci, 2020, 7( 6): 1902847.
doi: 10.1002/advs.201902847
|
65 |
任晓蕾, 邢丽秋, 詹轶秋, 等. 北京地区贝伐珠单抗不良反应报告分析及安全性研究[J].中国新药杂志,2020, 29(14): 1670-1674 REN Xiaolei, XING Liqiu, ZHAN Yiqiu, et al. Analysis of adverse reaction reports of bevacizumab in Beijing area[J]. Chinese Journal of New Drugs, 2020, 29(14): 1670-1674. (in Chinese)
|
66 |
PÜSCHELF, FAVAROF, REDONDO-PEDRAZAJ, et al.Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells[J]Proc Natl Acad Sci U S A, 2020, 117( 18): 9932-9941.
doi: 10.1073/pnas.1913707117
|
67 |
KUCZYNSKIE A, REYNOLDSA R. Vessel co-option and resistance to anti-angiogenic therapy[J]Angiogenesis, 2020, 23( 1): 55-74.
doi: 10.1007/s10456-019-09698-6
|
68 |
陈国想, 周 茉, 陈 圣, 等. 非编码RNA在索拉非尼治疗肝细胞癌耐药中的作用机制[J]. 临床肝胆病杂志, 2021,37(3): 699-703 CHEN Guoxiang, ZHOU Mo, CHEN Sheng, et al. Mechanism of action of non-coding RNA in sorafenib resistance in hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2021, 37(3): 699-703. (in Chinese)
|
69 |
FINLEYS D, CHUL H, POPELA S. Computational systems biology approaches to anti-angiogenic cancer therapeutics[J]Drug Discovery Today, 2015, 20( 2): 187-197.
doi: 10.1016/j.drudis.2014.09.026
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|