Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (4): 429-435    DOI: 10.3724/zdxbyxb-2021-0288
专题报道     
新生儿遗传病基因筛查技术及相关疾病
韩连书
上海交通大学医学院附属新华医院 上海市儿科医学研究所小儿内分泌遗传代谢科,上海 200092
Genetic screening techniques and diseases for neonatal genetic diseases
HAN Lianshu
Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
 全文: PDF(2229 KB)   HTML( 10 )
摘要:

新生儿遗传病筛查目前以代谢物生化指标检测为主,检测结果假阳性率较高,且有一定的假阴性,筛查的病种较少。近几年逐步开展的新生儿遗传病筛查基因检测技术包括定量聚合酶链反应技术和高通量测序。高通量测序又分为基因包测序、全外显子组测序和全基因组测序。但目前用于新生儿遗传病筛查的基因技术主要为定量聚合酶链反应技术和基因包测序。新生儿基因筛查病种由单病种筛查如耳聋、脊髓性肌萎缩及重症联合免疫缺陷病等向多病种筛查发展。新生儿基因筛查结果解读除遵循美国医学遗传学与基因组学学会联合分子病理协会在2015年提出的“序列变异解读标准和指南”外,还需要结合生化指标检测及其他检测结果综合分析。新生儿遗传病基因筛查的开展需要遵循伦理原则,包括将新生儿基因筛查作为公共卫生项目的伦理、新生儿及其家庭成员知情选择权和隐私权伦理等。新生儿遗传病基因筛查的开展将使更多的遗传病患者能够早期诊断,改善其预后,在新生儿遗传病筛查领域具有里程碑意义。

关键词: 新生儿筛查遗传性疾病, 先天性基因定量PCR高通量测序综述    
Abstract:

Neonatal genetic disease is currently screened mainly based on metabolite biochemical technology. The false positive rate of biochemical screening technology is relatively high, and there are certain false negatives, and only few types of diseases can be screened. The genetic techniques have been gradually used for neonatal genetic disease screening in recent years. Gene detection technology includes quantitative PCR (qPCR) and high-throughput sequencing. High-throughput sequencing includes gene panel sequencing, whole-exome sequencing and whole-genome sequencing. At present, qPCR and gene panel sequencing are the main technologies to be used for newborn genetic disease screening. Genetic screening diseases range from single disease such as hearing loss, spinal muscular atrophy and severe combined immunodeficiency to multiple diseases. Besides standards and guidelines for the interpretation of sequence variants proposed by the American College of Medical Genetics and Genomics and the Association for Molecular Pathology in 2015, the interpretation of genetic screening results should also consider biochemical results and other results. The development of newborn genetic screening needs to follow ethical principles, including the ethics of newborn genetic screening as a public health project, the privacy ethics of newborns and their family members, and the ethics of bioinformatics. The development of newborn genetic screening will enable more patients with inherited diseases to receive early diagnosis and treatment and improve their prognosis, which is a milestone in the field of neonatal screening.

Key words: Neonatal screening    Genetic disease, inborn    Gene    Quantitative PCR    High-throughput sequencing    Review
收稿日期: 2021-06-22 出版日期: 2021-11-01
CLC:  R394  
基金资助: 国家重点研发计划(2016YFC0901505)
通讯作者: 韩连书   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
韩连书

引用本文:

韩连书. 新生儿遗传病基因筛查技术及相关疾病[J]. 浙江大学学报(医学版), 2021, 50(4): 429-435.

HAN Lianshu. Genetic screening techniques and diseases for neonatal genetic diseases. J Zhejiang Univ (Med Sci), 2021, 50(4): 429-435.

链接本文:

http://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0288        http://www.zjujournals.com/med/CN/Y2021/V50/I4/429

1 ALMANNAIM, MAROMR, SUTTONV R. Newborn screening: a review of history, recent advancements, and future perspectives in the era of next generation sequencing[J]Curr Opin Pediatr, 2016, 28( 6): 694-699.
doi: 10.1097/mop.0000000000000414
2 RYCKMANK K, BERBERICHS L, SHCHELOCHKOVO A, et al.Clinical and environmental influences on metabolic biomarkers collected for newborn screening[J]Clin Biochem, 2013, 46( 1-2): 133-138.
doi: 10.1016/j.clinbiochem.2012.09.013
3 PENGG, TANGY, GANDOTRAN, et al.Ethnic variability in newborn metabolic screening markers associated with false‐positive outcomes[J]J Inherit Metab Dis, 2020, 43( 5): 934-943.
doi: 10.1002/jimd.12236
4 JAMESP M, LEVYH L. The clinical aspects of newborn screening: importance of newborn screening follow-up[J]Ment Retard Dev Disabil Res Rev, 2006, 12( 4): 246-254.
doi: 10.1002/mrdd.20120
5 LINY, LIUY, ZHUL, et al.Combining newborn metabolic and genetic screening for neonatal intrahepatic cholestasis caused by citrin deficiency[J]J Inher Metab Dis, 2020, 43( 3): 467-477.
doi: 10.1002/jimd.12206
6 张伟然, 赵正言. 新生儿疾病基因筛查研究进展[J]. 中华儿科杂志, 2020, 58(12): 1033-1037
ZHANG Weiran, ZHAO Zhengyan. Advances in genetic screening for neonatal diseases[J]. Chinese Journal of Pediatrics, 2020, 58(12): 1033-1037. (in Chinese)
7 WRIGHTC F, FITZPATRICKD R, FIRTHH V. Paediatric genomics: diagnosing rare disease in children[J]Nat Rev Genet, 2018, 19( 5): 253-268.
doi: 10.1038/nrg.2017.116
8 LEES Y, OHD Y, HANJ H, et al.Flexible real-time polymerase chain reaction-based platforms for detecting deafness mutations in koreans: a proposed guideline for the etiologic diagnosis of auditory neuropathy spectrum disorder[J]Diagnostics, 2020, 10( 9): 672.
doi: 10.3390/diagnostics10090672
9 KRASZEWSKIJ N, KAYD M, STEVENSC F, et al.Pilot study of population-based newborn screening for spinal muscular atrophy in New York state[J]Genet Med, 2018, 20( 6): 608-613.
doi: 10.1038/gim.2017.152
10 WANGC, LIUY, CAIF, et al.Rapid screening of MMACHC gene mutations by high‐resolution melting curve analysis[J/OL]Mol Genet Genomic Med, 2020, 8( 6): e1221.
doi: 10.1002/mgg3.1221
11 XUA, LVT, ZHANGB, et al.Development and evaluation of an unlabeled probe high-resolution melting assay for detection of ATP7B mutations in Wilson’s disease[J/OL]J Clin Lab Anal, 2017, 31( 4): e22064.
doi: 10.1002/jcla.22064
12 PASQUALIMG, DOS SANTOSB A, GIUGLIANIR, et al.Simple and efficient screening of patients with Fabry disease with high resolution melting[J]Clin Biochem, 2018, 160-163.
doi: 10.1016/j.clinbiochem.2018.01.002
13 应斌武. 高分辨熔解曲线分析在遗传病分子诊断中的应用[J]. 中华检验医学杂志, 2017, 40(2): 146-148
YING Binwu. Application of high resolution fusion curve analysis in molecular diagnosis of genetic diseases[J]. Chinese Journal of Laboratory Medicine, 2017, 40(2): 146-148. (in Chinese)
14 XUEY, ANKALAA, WILCOXW R, et al.Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing[J]Genet Med, 2015, 17( 6): 444-451.
doi: 10.1038/gim.2014.122
15 KANNAN-SUNDHARIA, YAND, SAEIDIK, et al.Screening consanguineous families for hearing loss using the miamiotogenes panel[J]Genet Test Mol Biomarkers, 2020, 24( 10): 674-680.
doi: 10.1089/gtmb.2020.0153
16 CAMPENV, SOLLARSE S A, THOMASR C, et al.Next generation sequencing in newborn screening in the United Kingdom national health service[J]Int J Neonatal Screen, 2019, 5( 4): 40.
doi: 10.3390/ijns5040040
17 PARKK J, PARKS, LEEE, et al.A population-based genomic study of inherited metabolic diseases detected through newborn screening[J]Ann Lab Med, 2016, 36( 6): 561-572.
doi: 10.3343/alm.2016.36.6.561
18 ROMANT S, CROWLEYS B, ROCHEM I, et al.Genomic sequencing for newborn screening: results of the NC NEXUS project[J]Am J Hum Genet, 2020, 107( 4): 596-611.
doi: 10.1016/j.ajhg.2020.08.001
19 中国医师协会医学遗传医师分会, 中华医学会儿科学分会内分泌遗传代谢学组, 中国医师协会青春期医学专业委员会临床遗传学组, 等. 全基因组测序在遗传病检测中的临床应用专家共识[J]. 中华儿科杂志, 2019, 57(6): 419-423
Society of Medical Geneticists, Chinese Medical Doctor Association; Subspecialty Group of Endocrindogic, Hereditary and Metabolic Diseases, the Society of Pedratrics, Chinese Medical Association; Clinical Genetics Group, Adolescent Medicine Committee, Chinese Medical Doctor Association, et al. Consensus on the application of clinical whole genome sequencing in the diagnosis of genetic diseases[J].Chinese Journal of Pediatrics, 2019, 57(6): 419-423. (in Chinese)
20 MILLERN A, FARROWE G, GIBSONM, et al.A 26-hour system of highly sensitive whole genome sequencing for emergency management of genetic diseases[J]Genome Med, 2015, 7( 1): 100.
doi: 10.1186/s13073-015-0221-8
21 HOWARDH C, KNOPPERSB M, CORNELM C, et al.Whole-genome sequencing in newborn screening? A statement on the continued importance of targeted approaches in newborn screening programmes[J]Eur J Hum Genet, 2015, 23( 12): 1593-1600.
doi: 10.1038/ejhg.2014.289
22 PHORNPHUTKULC, PADBURYJ. Large scale next generation sequencing and newborn screening: are we ready?[J]J Pediatr, 2019, 9-10.
doi: 10.1016/j.jpeds.2019.01.037
23 FRIEDMANJ M, CORNELM C, GOLDENBERGA J, et al.Genomic newborn screening: public health policy considerations and recommendations[J]BMC Med Genomics, 2017, 10( 1): 9.
doi: 10.1186/s12920-017-0247-4
24 CEYHAN-BIRSOYO, MURRYJ B, MACHINIK, et al.Interpretation of genomic sequencing results in healthy and ill newborns: results from the babyseq project[J]Am J Hum Genet, 2019, 104( 1): 76-93.
doi: 10.1016/j.ajhg.2018.11.016
25 WANGQ, XIANGJ, SUNJ, et al.Nationwide population genetic screening improves outcomes of newborn screening for hearing loss in China[J]Genet Med, 2019, 21( 10): 2231-2238.
doi: 10.1038/s41436-019-0481-6
26 ZOUY, DAIQ Q, TAOW J, et al.Suspension array-based deafness genetic screening in 53,033 Chinese newborns identifies high prevalence of 109?G>A in GJB2[J]Int J Pediatr Otorhinolaryngol, 2019, 109630.
doi: 10.1016/j.ijporl.2019.109630
27 LINY, LINC H, YINX, et al.Newborn screening for spinal muscular atrophy in China using DNA mass spectrometry[J]Front Genet, 2019, 1255.
doi: 10.3389/fgene.2019.01255
28 TANM, BAIY, ZHANGX, et al.Early genetic screening uncovered a high prevalence of thalassemia among 18?309 neonates in Guizhou, China[J]Clin Genet, 2021, 99( 5): 704-712.
doi: 10.1111/cge.13923
29 孙碧君, 孙金峤. 新生儿重症联合免疫缺陷病筛查研究进展[J]. 中华儿科杂志, 2017, 55(1): 70-73
SUN Bijun, SUN Jinqiao. Development of newborn screening for severe combined immunodeficiency[J]. Chinese Journal of Pediatrics, 2017, 55(1): 70-73. (in Chinese)
30 CHIENY H, CHIANGS C, CHANGK L, et al.Incidence of severe combined immunodeficiency through newborn screening in a Chinese population[J]J Formo Med Assoc, 2015, 114( 1): 12-16.
doi: 10.1016/j.jfma.2012.10.020
31 FLEIGET, BURGGRAFS, CZIBEREL, et al.Next generation sequencing as second-tier test in high-throughput newborn screening for nephropathic cystinosis[J]Eur J Hum Genet, 2020, 28( 2): 193-201.
doi: 10.1038/s41431-019-0521-3
32 IBARRA-GONZáLEZI, FERNáNDEZ-LAINEZC, GUILLéN-LóPEZS, et al.Molecular analysis using targeted next generation DNA sequencing and clinical spectrum of Mexican patients with isovaleric acidemia[J]Clinica Chim Acta, 2020, 216-221.
doi: 10.1016/j.cca.2019.10.041
33 ADHIKARIA N, GALLAGHERR C, WANGY, et al.The role of exome sequencing in newborn screening for inborn errors of metabolism[J]Nat Med, 2020, 26( 9): 1392-1397.
doi: 10.1038/s41591-020-0966-5
34 LUOX, SUNY, XUF, et al.A pilot study of expanded newborn screening for 573 genes related to severe inherited disorders in China: results from 1,127 newborns[J]Ann Transl Med, 2020, 8( 17): 1058.
doi: 10.21037/atm-20-1147
35 SMONA, REPIC LAMPRETB, GROSELJU, et al.Next generation sequencing as a follow-up test in an expanded newborn screening programme[J]Clin Biochem, 2018, 48-55.
doi: 10.1016/j.clinbiochem.2017.10.016
36 敖桢桢, 王 静, 李思涛, 等. 串联质谱联合二代测序在2万例新生儿遗传病筛查分析中的应用[J]. 中华实用儿科临床杂志, 2020, 35(24): 1881-1885
AO Zhenzhen, WANG Jing, LI Sitao, et al. Application of tandem mass spectrometry combined with second-generation sequencing in screening and analysis of 20,000 neonatal genetic diseases[J]. Chinese Clinical Journal of Practical Pediatrics, 2020, 35(24): 1881-1885. (in Chinese)
37 RICHARDSS, AZIZN, BALES, et al.Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]Genet Med, 2015, 17( 5): 405-423.
doi: 10.1038/gim.2015.30
38 中华儿科杂志编辑委员会. 儿童遗传病遗传检测临床应用专家共识[J]. 中华儿科杂志, 2019, 57(3): 172-176
The Editorial Board, Chinese Journal of Pediatrics. Consensus recommendations for the clinical application of genetic testing for children’s genetic diseases[J]. Chinese Journal of Pediatrics, 2019, 57(3): 172-176. (in Chinese)
39 KALIAS S, ADELMANK, BALES J, et al.Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics[J]Genet Med, 2017, 19( 2): 249-255.
doi: 10.1038/gim.2016.190
40 BOTKINJ R, BELMONTJ W, BERGJ S, et al.Points to consider: ethical, legal, and psychosocial implications of genetic testing in children and adolescents[J]Am J Hum Genet, 2015, 97( 1): 6-21.
doi: 10.1016/j.ajhg.2015.05.022
41 JOHNSTONJ, LANTOSJ D, GOLDENBERGA, et al.Sequencing newborns: a call for nuanced use of genomic technologies[J]Hastings Cent Rep, 2018, 48( Suppl 2): S2-S6.
doi: 10.1002/hast.874
[1] 胡靖依,王青青,刘杨. 蛋白酶体亚基对肝细胞癌发生发展的调控作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 396-402.
[2] 葛瀛洲,刘欣梅,黄荷凤. 沉默信息调节因子家族参与病理妊娠的研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 335-344.
[3] 税剑,王海晨,陶晓燕,闵昌航,李军,邹明祥. 铜绿假单胞菌泳动、蹭行能力及Ⅲ型分泌系统与成膜能力的关系[J]. 浙江大学学报(医学版), 2021, 50(3): 345-351.
[4] 王锦涛,黄蕾,魏丽丽,陈炜. 重复经颅磁刺激治疗阿尔茨海默病患者的疗效影响因素[J]. 浙江大学学报(医学版), 2021, 50(3): 383-389.
[5] 庄文雯,杨咏琪,李洪亮,梁景岩. 动脉粥样硬化过程中核因子E2相关因子2对血管平滑肌细胞的调控作用[J]. 浙江大学学报(医学版), 2021, 50(3): 390-395.
[6] 朱锋,项迎春,曾玲晖. 线粒体沉默信息调节因子家族在癫痫发生发展中的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 403-408.
[7] 旷文静,罗小波,王冏珂,曾昕. 梅–罗综合征患者的表征及其诊治[J]. 浙江大学学报(医学版), 2021, 50(2): 148-154.
[8] 王晨宇,王英男,汪存艺,施洁珺,王慧明. 组织工程修复颞下颌关节的关键因素研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 212-221.
[9] 任超杰,钟丹妮,周民. 微藻在生物医学领域的研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 261-266.
[10] 应颖超,江佩芳. 瞬时受体电位 M2 型离子通道在神经系统疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 267-276.
[11] 韩恒毅,冯帆,李海涛. 表观遗传与肿瘤代谢研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 1-16.
[12] 陈菲,虞敏,钟永红,华雯,黄华琼. 中性粒细胞在哮喘中的地位和作用[J]. 浙江大学学报(医学版), 2021, 50(1): 123-130.
[13] 颜京,张婷婷,赵葵. 核医学分子影像探针应用于神经内分泌肿瘤的研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 131-137.
[14] 张明佺,潘俊辰,黄蓬. RAS基因与脂代谢在恶性肿瘤中的相互调控[J]. 浙江大学学报(医学版), 2021, 50(1): 17-22.
[15] 胡鑫暘,金洪传,朱丽媛. 谷氨酰胺代谢途径在肿瘤化疗耐药中的功能机制[J]. 浙江大学学报(医学版), 2021, 50(1): 32-40.