Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (6): 675-684    DOI: 10.3724/zdxbyxb-2021-0273
专题报道     
甲状腺未分化癌免疫治疗的现状及未来
卢茜璇1,2,包黎莎1,2,潘宗富2,3,*(),葛明华1,2,*()
1.杭州医学院附属人民医院 浙江省人民医院耳鼻喉科-头颈外科中心头颈外科,浙江杭州 310014
2.浙江省内分泌腺体疾病诊治研究重点实验室,浙江 杭州 310014
3.杭州医学院附属人民医院 浙江省人民医院临床药学中心药学部,浙江 杭州 310014
Immunotherapy for anaplastic thyroid carcinoma: the present and future
LU Xixuan1,2,BAO Lisha1,2,PAN Zongfu2,3,*(),GE Minghua1,2,*()
1. Department of Head and Neck Surgery, Center of Otolaryngology, Head and Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China;
2. Zhejiang Provincial Key Laboratory of Endocrine Gland Diseases, Hangzhou 310014, China;
3. Department of Pharmacy, Clinical Pharmacy Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
 全文: PDF(3690 KB)   HTML( 23 )
摘要:

甲状腺未分化癌(ATC)是恶性程度最高的内分泌系统肿瘤,是当前亟待攻克的医学难题。目前,针对ATC的免疫治疗研究主要包括阻断肿瘤相关巨噬细胞(TAM)的招募、诱导TAM重编程以及恢复其吞噬功能;靶向T淋巴细胞及自然杀伤细胞的相关免疫逃逸检查点;基于溶瘤病毒和树突状细胞的肿瘤疫苗以及过继免疫治疗。其中,以靶向阻断免疫检查点程序性死亡蛋白1/程序性死亡蛋白配体1为代表的免疫治疗策略已初步证实对ATC患者有获益,尤其是分子靶向抑制剂联合免疫治疗具有极佳的治疗效果。由于ATC存在极大的异质性,针对ATC开展包括生物、免疫或细胞治疗等多种免疫治疗研究,并探索下一代免疫检查点抑制剂对ATC的治疗潜力,有望为ATC患者提供更丰富的治疗策略。本文综述了ATC的免疫治疗潜在靶点以及相关的免疫疗法进展。

关键词: 甲状腺未分化癌免疫逃逸临床研究免疫治疗综述    
Abstract:

Anaplastic thyroid carcinoma (ATC) is the most malignant tumor of endocrine system, which is an urgent medical problem to be solved. At present, immunotherapy studies on ATC mainly include cutting off the recruitment of tumor-associated macrophage (TAM), inducing the reprogramming of TAM and restoring its phagocytic function, targeting related immune checkpoints on T cells and natural killer cells, tumor vaccines based on oncolytic viruses and dendritic cells, and adoptive immunotherapy. Among them, immunotherapy strategies represented by targeted blocking of programmed death-1/programmed death ligand-1 at immune checkpoint have been preliminarily confirmed to benefit ATC patients, especially the combination of molecular targeted inhibitors and immunotherapy has shown excellent therapeutic effects. Due to the great heterogeneity of ATC, it is expected to provide more therapeutic strategies for patients of ATC by carrying out various immunotherapy studies including biological, immune and cellular therapies and exploring the therapeutic potential of the next generation of immune checkpoint inhibitors. This article reviews the potential immunotherapeutic targets of ATC and the progress of immunotherapy.

Key words: Anaplastic thyroid carcinoma    Immune escape    Clinical study    Immunotherapy    Review
收稿日期: 2021-08-10 出版日期: 2022-03-22
CLC:  R736.1  
基金资助: 国家自然科学基金(U20A20382,81872170,82173157,81802673);浙江省医药卫生科技计划(2021KY056)
通讯作者: 潘宗富,葛明华     E-mail: geminghua@hmc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
卢茜璇
包黎莎
潘宗富
葛明华

引用本文:

卢茜璇,包黎莎,潘宗富,葛明华. 甲状腺未分化癌免疫治疗的现状及未来[J]. 浙江大学学报(医学版), 2021, 50(6): 675-684.

LU Xixuan,BAO Lisha,PAN Zongfu,GE Minghua. Immunotherapy for anaplastic thyroid carcinoma: the present and future. J Zhejiang Univ (Med Sci), 2021, 50(6): 675-684.

链接本文:

https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0273        https://www.zjujournals.com/med/CN/Y2021/V50/I6/675

图 1  甲状腺未分化癌免疫治疗潜在靶点及干预策略ATC细胞通过重塑肿瘤免疫微环境逃避免疫监视,目前的干预策略主要包括:①阻断TAM招募、诱导TAM重编码以及恢复TAM肿瘤吞噬能力;②靶向T淋巴细胞及自然杀伤细胞的相关免疫逃逸检查点;③基于溶瘤病毒和树突状细胞的肿瘤疫苗以及以CAR-T为主的过继免疫疗法. ATC:甲状腺未分化癌;TAM:肿瘤相关巨噬细胞;SIRP:信号调节蛋白;CSF:集落刺激因子;CSF-1R:集落刺激因子1受体;CCL:趋化因子CC亚家族配体;CCR:趋化因子CC亚家族受体;CAR-T:嵌合抗原受体T细胞;ULBP:UL16结合蛋白;ICAM:细胞间黏附分子;NKG2D:自然杀伤细胞2族成员D;CXCR:趋化因子CXC亚家族受体;CXCL:趋化因子CXC亚家族配体.
1 BRAYF, FERLAYJ, SOERJOMATARAMI, et al.Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]CA-Cancer J Clin, 2018, 68( 6): 394-424.
doi: 10.3322/caac.21492
2 ONODAN, SUGITANII, ITOK I, et al.Evaluation of the 8th edition TNM classification for anaplastic thyroid carcinoma[J]Cancers, 2020, 12( 3): 552.
doi: 10.3390/cancers12030552
3 CARCANGIUM L, STEEPERT, ZAMPIG, et al.Anaplastic thyroid carcinoma: a study of 70 cases[J]Am J Clin Pathol, 1985, 83( 2): 135-158.
doi: 10.1093/ajcp/83.2.135
4 DAVIESL, WELCHH G. Increasing incidence of thyroid cancer in the United States, 1973–2002[J]JAMA, 2006, 295( 18): 2164.
doi: 10.1001/jama.295.18.2164
5 KEBEBEWE, GREENSPANF S, CLARKO H, et al.Anaplastic thyroid carcinoma[J]Cancer, 2005, 103( 7): 1330-1335.
doi: 10.1002/cncr.20936
6 FAGINJ A, WELLSS A. Biologic and clinical perspectives on thyroid cancer[J]N Engl J Med, 2016, 375( 11): 1054-1067.
doi: 10.1056/NEJMra1501993
7 KUNSTMANJ W, JUHLINC C, GOHG, et al.Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing[J]Hum Mol Genet, 2015, 24( 8): 2318-2329.
doi: 10.1093/hmg/ddu749
8 AHNJ, JINM, SONGE, et al.Immune profiling of advanced thyroid cancers using fluorescent multiplex immunohistochemistry[J]Thyroid, 2021, 31( 1): 61-67.
doi: 10.1089/thy.2020.0312
9 KIMD I, KIME, KIMY A, et al.Macrophage densities correlated with CXC chemokine receptor 4 expression and related with poor survival in anaplastic thyroid cancer[J]Endocrinol Metab, 2016, 31( 3): 469-475.
doi: 10.3803/EnM.2016.31.3.469
10 Chávez-GalánL, OLLEROSM L, VESIND, et al.Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages[J]Front Immunol, 2015, 263.
doi: 10.3389/fimmu.2015.00263
11 CAILLOUB, TALBOTM, WEYEMIU, et al.Tumor-associated macrophages (TAMs) form an interconnected cellular supportive network in anaplastic thyroid carcinoma[J/OL]PLoS One, 2011, 6( 7): e22567.
doi: 10.1371/journal.pone.0022567
12 CHOJ W, KIMW W, LEEY M, et al.Impact of tumor-associated macrophages and BRAFV600E mutation on clinical outcomes in patients with various thyroid cancers[J]Head Neck, 2019, 41( 3): 686-691.
doi: 10.1002/hed.25469
13 NEUBERTN J, SCHMITTNAEGELM, BORDRYN, et al.T cell-induced CSF1 promotes melanoma resistance to PD1 blockade[J]Sci Transl Med, 2018, 10( 436): eaan3311.
doi: 10.1126/scitranslmed.aan3311
14 EDWARDS VD K, WATANABE-SMITHK, ROFELTYA, et al.CSF1R inhibitors exhibit antitumor activity in acute myeloid leukemia by blocking paracrine signals from support cells[J]Blood, 2019, 133( 6): 588-599.
doi: 10.1182/blood-2018-03-838946
15 LENZOJ C, TURNERA L, COOKA D, et al.Control of macrophage lineage populations by CSF‐1 receptor and GM‐CSF in homeostasis and inflammation[J]Immunol Cell Biol, 2012, 90( 4): 429-440.
doi: 10.1038/icb.2011.58
16 MINI M, SHEVLINE, VEDVYASY, et al.CAR T therapy targeting ICAM-1 eliminates advanced human thyroid tumors[J]Clin Cancer Res, 2017, 23( 24): 7569-7583.
doi: 10.1158/1078-0432.CCR-17-2008
17 U.S. National Library of Medicine. ClinicalTrials. gov.A combination clinical study of PLX3397 and pembrolizumab to treat advanced melanoma and other solid tumors[EB/OL]. (2019-10-09)[2020-03-05]. https://clinicaltrials.gov/ct2/show/NCT02452424
18 SALAJEGHEH A, VOSGHA H, RAHMAN M A, et al. Interactive role of miR-126 on VEGF-A and progression of papillary and undifferentiated thyroid carcinoma[J]. Hum Pathol, 2016, 51: 75-85
19 MONNEYL, SABATOSC A, GAGLIAJ L, et al.Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease[J]Nature, 2002, 415( 6871): 536-541.
doi: 10.1038/415536a
20 MATSUMOTOK, EMAM. Roles of VEGF-A signalling in development, regeneration, and tumours[J]J Biochem, 2014, 156( 1): 1-10.
doi: 10.1093/jb/mvu031
21 ANTONELLIA, FERRARIS M, FALLAHIP. Current and future immunotherapies for thyroid cancer[J]Expert Rev Anticancer Ther, 2018, 18( 2): 149-159.
doi: 10.1080/14737140.2018.1417845
22 TANGX, AMARS. p53 suppresses CCL2-induced subcutaneous tumor xenograft[J]Tumor Biol, 2015, 36( 4): 2801-2808.
doi: 10.1007/s13277-014-2906-9
23 LIMS Y, YUZHALINA E, GORDON-WEEKSA N, et al.Targeting the CCL2-CCR2 signaling axis in cancer metastasis[J]Oncotarget, 2016, 7( 19): 28697-28710.
doi: 10.18632/oncotarget.7376
24 LIX, YAOW, YUANY, et al.Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma[J]Gut, 2017, 66( 1): 157-167.
doi: 10.1136/gutjnl-2015-310514
25 BANERJEES, HALDERK, GHOSHS, et al.The combination of a novel immunomodulator with a regulatory T cell suppressing antibody (DTA-1) regress advanced stage B16F10 solid tumor by repolarizing tumor associated macrophages in situ[J/OL]Oncoimmunology, 2015, 4( 3): e995559.
doi: 10.1080/2162402X.2014.995559
26 RYDERM, GILDM, HOHLT M, et al.Genetic and pharmacological targeting of CSF-1/CSF-1R inhibits tumor-associated macrophages and impairs BRAF-induced thyroid cancer progression[J/OL]PLoS One, 2013, 8( 1): e54302.
doi: 10.1371/journal.pone.0054302
27 DOWNEYC M, AGHAEIM, SCHWENDENERR A, et al.DMXAA causes tumor site-specific vascular disruption in murine non-small cell lung cancer, and like the endogenous non-canonical cyclic dinucleotide STING agonist, 2′3′-cGAMP, induces M2 macrophage repolarization[J/OL]PLoS One, 2014, 9( 6): e99988.
doi: 10.1371/journal.pone.0099988
28 LIZOTTEP H, BAIRDJ R, STEVENSC A, et al.Attenuated Listeria monocytogenes reprograms M2-polarized tumor-associated macrophages in ovarian cancer leading to iNOS-mediated tumor cell lysis[J/OL]Oncoimmunology, 2014, 3( 5): e28926.
doi: 10.4161/onci.28926
29 TRAHTEMBERGU, MEVORACHD. Apoptotic cells induced signaling for immune homeostasis in macrophages and dendritic cells[J]Front Immunol, 2017, 1356.
doi: 10.3389/fimmu.2017.01356
30 VEILLETTEA, CHENJ. SIRPα-CD47 immune checkpoint blockade in anticancer therapy[J]Trends Immunol, 2018, 39( 3): 173-184.
doi: 10.1016/j.it.2017.12.005
31 SCHüRCHC M, ROELLIM A, FORSTERS, et al.Targeting CD47 in anaplastic thyroid carcinoma enhances tumor phagocytosis by macrophages and is a promising therapeutic strategy[J]Thyroid, 2019, 29( 7): 979-992.
doi: 10.1089/thy.2018.0555
32 ADVANIR, FLINNI, POPPLEWELLL, et al.CD47 blockade by hu5F9-G4 and rituximab in non-hodgkin’s lymphoma[J]N Engl J Med, 2018, 379( 18): 1711-1721.
doi: 10.1056/NEJMoa1807315
33 CICCARESEC, IACOVELLIR, BRIAE, et al.The incidence and relative risk of pulmonary toxicity in patients treated with anti-PD1/PD-L1 therapy for solid tumors: a meta-analysis of current studies[J]Immunotherapy, 2017, 9( 7): 579-587.
doi: 10.2217/imt-2017-0018
34 TOPALIANS L, TAUBEJ M, ANDERSR A, et al.Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy[J]Nat Rev Cancer, 2016, 16( 5): 275-287.
doi: 10.1038/nrc.2016.36
35 GIANNINIR, MORETTIS, UGOLINIC, et al.Immune profiling of thyroid carcinomas suggests the existence of two major phenotypes: an ATC-Like and a PDTC-like[J]J Clin Endocrinol Metab, 2019, 104( 8): 3557.
doi: 10.1210/jc.2018-01167
36 BRAUNERE, GUNDAV, VANDEN BORREP, et al.Combining BRAF inhibitor and anti PD-L1 antibody dramatically improves tumor regression and anti tumor immunity in an immunocompetent murine model of anaplastic thyroid cancer[J]Oncotarget, 2016, 7( 13): 17194-17211.
doi: 10.18632/oncotarget.7839
37 CAPDEVILAJ, WIRTHL J, ERNSTT, et al.PD-1 blockade in anaplastic thyroid carcinoma[J]J Clin Oncol, 2020, 38( 23): 2620-2627.
doi: 10.1200/JCO.19.02727
38 CHINTAKUNTLAWARA V, YINJ, FOOTER L, et al.A phase 2 study of pembrolizumab combined with chemoradiotherapy as initial treatment for anaplastic thyroid cancer[J]Thyroid, 2019, 29( 11): 1615-1622.
doi: 10.1089/thy.2019.0086
39 CAROSELLAE D, PLOUSSARDG, LEMAOULTJ, et al.A systematic review of immunotherapy in urologic cancer: evolving roles for targeting of CTLA-4, PD-1/PD-L1, and HLA-G[J]Eur Urology, 2015, 68( 2): 267-279.
doi: 10.1016/j.eururo.2015.02.032
40 DIERKSC, SEUFERTJ, AUMANNK, et al.Combination of lenvatinib and pembrolizumab is an effective treatment option for anaplastic and poorly differentiated thyroid carcinoma[J]Thyroid, 2021, 31( 7): 1076-1085.
doi: 10.1089/thy.2020.0322
41 IYERP C, DADUR, GULE-MONROEM, et al.Salvage pembrolizumab added to kinase inhibitor therapy for the treatment of anaplastic thyroid carcinoma[J]J Immunother Cancer, 2018, 6( 1): 68.
doi: 10.1186/s40425-018-0378-y
42 TUCCILLIC, BALDINIE, SORRENTIS, et al.CTLA-4 and PD-1 ligand gene expression in epithelial thyroid cancers[J]Int J Endocrinol, 2018, 1742951.
doi: 10.1155/2018/1742951
43 CALVO TARDóNM, ALLARDM, DUTOITV, et al.Peptides as cancer vaccines[J]Curr Opin Pharmacol, 2019, 20-26.
doi: 10.1016/j.coph.2019.01.007
44 U.S. National Library of Medicine. ClinicalTrials. gov. Nivolumab plus ipilimumab in thyroid cancer[EB/OL]. (2017-08-11)[2021-07-19]. https://clinicaltrials.gov/ct2/show/NCT03246958
45 HARJUNP??H, GUILLEREYC. TIGIT as an emerging immune checkpoint[J]Clin Exp Immunol, 2020, 200( 2): 108-119.
doi: 10.1111/cei.13407
46 U.S. National Library of Medicine. ClinicalTrials. gov. COM902 (a tigit inhibitor) in subjects with advanced malignancies[EB/OL]. (2020-04-21)[2021-10-05]. https://clinicaltrials.gov/ct2/show/results/NCT04354246
47 U.S. National Library of Medicine. ClinicalTrials. gov. COM701 in combination with BMS-986207 and nivolumab in subjects with advanced solid tumors[EB/OL]. (2020-09-30)[2021-12-10]. https://clinicaltrials.gov/ct2/show/NCT04570839
48 GAGLIANIN, MAGNANIC F, HUBERS, et al.Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells[J]Nat Med, 2013, 19( 6): 739-746.
doi: 10.1038/nm.3179
49 HUANGC T, WORKMANC J, FLIESD, et al.Role of LAG-3 in regulatory T cells[J]Immunity, 2004, 21( 4): 503-513.
doi: 10.1016/j.immuni.2004.08.010
50 WOOS R, TURNISM E, GOLDBERGM V, et al.Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape[J]Cancer Res, 2012, 72( 4): 917-927.
doi: 10.1158/0008-5472.CAN-11-1620
51 U.S. National Library of Medicine. ClinicalTrials. gov. Immuno-oncology drugs elotuzumab, anti-LAG-3 and anti-TIGIT[EB/OL]. (2019-11-05)[2021-09-10]. https://clinicaltrials.gov/ct2/show/NCT04150965
52 YINM, DIG, BIANM. Dysfunction of natural killer cells mediated by PD-1 and Tim-3 pathway in anaplastic thyroid cancer[J]Int Immunopharmacol, 2018, 333-339.
doi: 10.1016/j.intimp.2018.09.016
53 LANDAI, IBRAHIMPASICT, BOUCAIL, et al.Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers[J]J Clin Investigation, 2016, 126( 3): 1052-1066.
doi: 10.1172/JCI85271
54 BANCHEREAUJ, STEINMANR M. Dendritic cells and the control of immunity[J]Nature, 1998, 392( 6673): 245-252.
doi: 10.1038/32588
55 RUSSELLS J, PENGK W, BELLJ C. Oncolytic virotherapy[J]Nat Biotechnol, 2012, 30( 7): 658-670.
doi: 10.1038/nbt.2287
56 PASSAROC, BORRIELLOF, VASTOLOV, et al.The oncolytic virus dl 922-947 reduces IL-8/CXCL8 and MCP-1/CCL2 expression and impairs angiogenesis and macrophage infiltration in anaplastic thyroid carcinoma[J]Oncotarget, 2016, 7( 2): 1500-1515.
doi: 10.18632/oncotarget.6430
57 MONDALM, GUOJ, HEP, et al.Recent advances of oncolytic virus in cancer therapy[J]Hum Vaccines Immunother, 2020, 16( 10): 2389-2402.
doi: 10.1080/21645515.2020.1723363
58 JIANGK, SONGC, KONGL, et al.Recombinant oncolytic newcastle disease virus displays antitumor activities in anaplastic thyroid cancer cells[J]BMC Cancer, 2018, 18( 1): 746.
doi: 10.1186/s12885-018-4522-3
59 PRESTWICHR J, ERRINGTONF, DIAZR M, et al.The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon[J]Hum Gene Ther, 2009, 20( 10): 1119-1132.
doi: 10.1089/hum.2009.135
60 KAUFMANH L, KOHLHAPPF J, ZLOZAA. Oncolytic viruses: a new class of immunotherapy drugs[J]Nat Rev Drug Discov, 2015, 14( 9): 642-662.
doi: 10.1038/nrd4663
61 郭晓玲, 朱平, 恶性肿瘤细胞过继免疫治疗研究进展[J]. 国外医学(肿瘤学分册), 2004, 31(6): 418-421
GUO Xiaoling, ZHU Ping. Progress on adoptive immunotherapy in the treatment of tumors[J]. Foreign Medical Sciences (Cancer Section), 2004, 31(6): 418-421. (in Chinese)
62 LEED A. Cellular therapy: adoptive immunotherapy with expanded natural killer cells[J]Immunol Rev, 2019, 290( 1): 85-99.
doi: 10.1111/imr.12793
63 SINGHA K, MCGUIRKJ P. CAR T cells: continuation in a revolution of immunotherapy[J/OL]Lancet Oncol, 2020, 21( 3): e168-e178.
doi: 10.1016/S1470-2045(19)30823-X
64 SUTLUT, ALICIE. Ex vivo expansion of natural killer cells: a question of function[J]Cytotherapy, 2011, 13( 6): 767-768.
doi: 10.3109/14653249.2011.563295
65 TERRéNI, ORRANTIAA, VITALLéJ, et al.NK cell metabolism and tumor microenvironment[J]Front Immunol, 2019, 2278.
doi: 10.3389/fimmu.2019.02278
66 ANGELLT E, LECHNERM G, JANGJ K, et al.MHC class i loss is a frequent mechanism of immune escape in papillary thyroid cancer that is reversed by interferon and selumetinib treatment in vitro[J]Clin Cancer Res, 2014, 20( 23): 6034-6044.
doi: 10.1158/1078-0432.CCR-14-0879
67 WENNERBERGE, PFEFFERLEA, EKBLADL, et al.Human anaplastic thyroid carcinoma cells are sensitive to NK cell-mediated lysis via ULBP2/5/6 and chemoattract NK cells[J]Clin Cancer Res, 2014, 20( 22): 5733-5744.
doi: 10.1158/1078-0432.CCR-14-0291
[1] 马丽娟,吴爽,张凯,田梅,张宏. 大麻素1型受体正电子发射断层显像在神经精神疾病中的应用进展[J]. 浙江大学学报(医学版), 2021, 50(5): 666-673.
[2] 宣自学,张轶雯,潘宗富,郑小卫,黄萍. 天然药物成分干预铁死亡抑制肿瘤的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(5): 601-606.
[3] 曲文政,庄英粮,李学坤. 表观遗传修饰在神经退行性变性疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(5): 642-650.
[4] 孙琦,曹蔚,罗建红. GluN3亚基的N-甲基-D-天冬氨酸受体及其在中枢神经系统的功能[J]. 浙江大学学报(医学版), 2021, 50(5): 651-658.
[5] 史建蓉,马望前,汤慧芳. 磷酸二酯酶抑制剂治疗炎性肠病的研究进展[J]. 浙江大学学报(医学版), 2021, 50(5): 659-665.
[6] 唐玥,孔元原. 遗传性酪氨酸血症Ⅰ型及其筛查和诊治进展[J]. 浙江大学学报(医学版), 2021, 50(4): 514-523.
[7] 刘飞,冯春月,毛建华,傅海东. 2019冠状病毒病疫苗接种相关新发及复发肾小球病研究进展[J]. 浙江大学学报(医学版), 2021, 50(4): 524-528.
[8] 韩连书. 新生儿遗传病基因筛查技术及相关疾病[J]. 浙江大学学报(医学版), 2021, 50(4): 429-435.
[9] 胡茫莎,韦树丽,周武源,王苹莉. 新生儿Fc受体基础研究和临床应用进展[J]. 浙江大学学报(医学版), 2021, 50(4): 537-544.
[10] 胡靖依,王青青,刘杨. 蛋白酶体亚基对肝细胞癌发生发展的调控作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 396-402.
[11] 葛瀛洲,刘欣梅,黄荷凤. 沉默信息调节因子家族参与病理妊娠的研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 335-344.
[12] 王锦涛,黄蕾,魏丽丽,陈炜. 重复经颅磁刺激治疗阿尔茨海默病患者的疗效影响因素[J]. 浙江大学学报(医学版), 2021, 50(3): 383-389.
[13] 庄文雯,杨咏琪,李洪亮,梁景岩. 动脉粥样硬化过程中核因子E2相关因子2对血管平滑肌细胞的调控作用[J]. 浙江大学学报(医学版), 2021, 50(3): 390-395.
[14] 朱锋,项迎春,曾玲晖. 线粒体沉默信息调节因子家族在癫痫发生发展中的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 403-408.
[15] 任超杰,钟丹妮,周民. 微藻在生物医学领域的研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 261-266.