|
|
甲状腺未分化癌免疫治疗的现状及未来 |
卢茜璇1,2,包黎莎1,2,潘宗富2,3,*( ),葛明华1,2,*( ) |
1.杭州医学院附属人民医院 浙江省人民医院耳鼻喉科-头颈外科中心头颈外科,浙江杭州 310014 2.浙江省内分泌腺体疾病诊治研究重点实验室,浙江 杭州 310014 3.杭州医学院附属人民医院 浙江省人民医院临床药学中心药学部,浙江 杭州 310014 |
|
Immunotherapy for anaplastic thyroid carcinoma: the present and future |
LU Xixuan1,2,BAO Lisha1,2,PAN Zongfu2,3,*( ),GE Minghua1,2,*( ) |
1. Department of Head and Neck Surgery, Center of Otolaryngology, Head and Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China; 2. Zhejiang Provincial Key Laboratory of Endocrine Gland Diseases, Hangzhou 310014, China; 3. Department of Pharmacy, Clinical Pharmacy Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China |
引用本文:
卢茜璇,包黎莎,潘宗富,葛明华. 甲状腺未分化癌免疫治疗的现状及未来[J]. 浙江大学学报(医学版), 2021, 50(6): 675-684.
LU Xixuan,BAO Lisha,PAN Zongfu,GE Minghua. Immunotherapy for anaplastic thyroid carcinoma: the present and future. J Zhejiang Univ (Med Sci), 2021, 50(6): 675-684.
链接本文:
https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0273
或
https://www.zjujournals.com/med/CN/Y2021/V50/I6/675
|
1 |
BRAYF, FERLAYJ, SOERJOMATARAMI, et al.Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]CA-Cancer J Clin, 2018, 68( 6): 394-424.
doi: 10.3322/caac.21492
|
2 |
ONODAN, SUGITANII, ITOK I, et al.Evaluation of the 8th edition TNM classification for anaplastic thyroid carcinoma[J]Cancers, 2020, 12( 3): 552.
doi: 10.3390/cancers12030552
|
3 |
CARCANGIUM L, STEEPERT, ZAMPIG, et al.Anaplastic thyroid carcinoma: a study of 70 cases[J]Am J Clin Pathol, 1985, 83( 2): 135-158.
doi: 10.1093/ajcp/83.2.135
|
4 |
DAVIESL, WELCHH G. Increasing incidence of thyroid cancer in the United States, 1973–2002[J]JAMA, 2006, 295( 18): 2164.
doi: 10.1001/jama.295.18.2164
|
5 |
KEBEBEWE, GREENSPANF S, CLARKO H, et al.Anaplastic thyroid carcinoma[J]Cancer, 2005, 103( 7): 1330-1335.
doi: 10.1002/cncr.20936
|
6 |
FAGINJ A, WELLSS A. Biologic and clinical perspectives on thyroid cancer[J]N Engl J Med, 2016, 375( 11): 1054-1067.
doi: 10.1056/NEJMra1501993
|
7 |
KUNSTMANJ W, JUHLINC C, GOHG, et al.Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing[J]Hum Mol Genet, 2015, 24( 8): 2318-2329.
doi: 10.1093/hmg/ddu749
|
8 |
AHNJ, JINM, SONGE, et al.Immune profiling of advanced thyroid cancers using fluorescent multiplex immunohistochemistry[J]Thyroid, 2021, 31( 1): 61-67.
doi: 10.1089/thy.2020.0312
|
9 |
KIMD I, KIME, KIMY A, et al.Macrophage densities correlated with CXC chemokine receptor 4 expression and related with poor survival in anaplastic thyroid cancer[J]Endocrinol Metab, 2016, 31( 3): 469-475.
doi: 10.3803/EnM.2016.31.3.469
|
10 |
Chávez-GalánL, OLLEROSM L, VESIND, et al.Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages[J]Front Immunol, 2015, 263.
doi: 10.3389/fimmu.2015.00263
|
11 |
CAILLOUB, TALBOTM, WEYEMIU, et al.Tumor-associated macrophages (TAMs) form an interconnected cellular supportive network in anaplastic thyroid carcinoma[J/OL]PLoS One, 2011, 6( 7): e22567.
doi: 10.1371/journal.pone.0022567
|
12 |
CHOJ W, KIMW W, LEEY M, et al.Impact of tumor-associated macrophages and BRAFV600E mutation on clinical outcomes in patients with various thyroid cancers[J]Head Neck, 2019, 41( 3): 686-691.
doi: 10.1002/hed.25469
|
13 |
NEUBERTN J, SCHMITTNAEGELM, BORDRYN, et al.T cell-induced CSF1 promotes melanoma resistance to PD1 blockade[J]Sci Transl Med, 2018, 10( 436): eaan3311.
doi: 10.1126/scitranslmed.aan3311
|
14 |
EDWARDS VD K, WATANABE-SMITHK, ROFELTYA, et al.CSF1R inhibitors exhibit antitumor activity in acute myeloid leukemia by blocking paracrine signals from support cells[J]Blood, 2019, 133( 6): 588-599.
doi: 10.1182/blood-2018-03-838946
|
15 |
LENZOJ C, TURNERA L, COOKA D, et al.Control of macrophage lineage populations by CSF‐1 receptor and GM‐CSF in homeostasis and inflammation[J]Immunol Cell Biol, 2012, 90( 4): 429-440.
doi: 10.1038/icb.2011.58
|
16 |
MINI M, SHEVLINE, VEDVYASY, et al.CAR T therapy targeting ICAM-1 eliminates advanced human thyroid tumors[J]Clin Cancer Res, 2017, 23( 24): 7569-7583.
doi: 10.1158/1078-0432.CCR-17-2008
|
17 |
U.S. National Library of Medicine. ClinicalTrials. gov.A combination clinical study of PLX3397 and pembrolizumab to treat advanced melanoma and other solid tumors[EB/OL]. (2019-10-09)[2020-03-05]. https://clinicaltrials.gov/ct2/show/NCT02452424
|
18 |
SALAJEGHEH A, VOSGHA H, RAHMAN M A, et al. Interactive role of miR-126 on VEGF-A and progression of papillary and undifferentiated thyroid carcinoma[J]. Hum Pathol, 2016, 51: 75-85
|
19 |
MONNEYL, SABATOSC A, GAGLIAJ L, et al.Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease[J]Nature, 2002, 415( 6871): 536-541.
doi: 10.1038/415536a
|
20 |
MATSUMOTOK, EMAM. Roles of VEGF-A signalling in development, regeneration, and tumours[J]J Biochem, 2014, 156( 1): 1-10.
doi: 10.1093/jb/mvu031
|
21 |
ANTONELLIA, FERRARIS M, FALLAHIP. Current and future immunotherapies for thyroid cancer[J]Expert Rev Anticancer Ther, 2018, 18( 2): 149-159.
doi: 10.1080/14737140.2018.1417845
|
22 |
TANGX, AMARS. p53 suppresses CCL2-induced subcutaneous tumor xenograft[J]Tumor Biol, 2015, 36( 4): 2801-2808.
doi: 10.1007/s13277-014-2906-9
|
23 |
LIMS Y, YUZHALINA E, GORDON-WEEKSA N, et al.Targeting the CCL2-CCR2 signaling axis in cancer metastasis[J]Oncotarget, 2016, 7( 19): 28697-28710.
doi: 10.18632/oncotarget.7376
|
24 |
LIX, YAOW, YUANY, et al.Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma[J]Gut, 2017, 66( 1): 157-167.
doi: 10.1136/gutjnl-2015-310514
|
25 |
BANERJEES, HALDERK, GHOSHS, et al.The combination of a novel immunomodulator with a regulatory T cell suppressing antibody (DTA-1) regress advanced stage B16F10 solid tumor by repolarizing tumor associated macrophages in situ[J/OL]Oncoimmunology, 2015, 4( 3): e995559.
doi: 10.1080/2162402X.2014.995559
|
26 |
RYDERM, GILDM, HOHLT M, et al.Genetic and pharmacological targeting of CSF-1/CSF-1R inhibits tumor-associated macrophages and impairs BRAF-induced thyroid cancer progression[J/OL]PLoS One, 2013, 8( 1): e54302.
doi: 10.1371/journal.pone.0054302
|
27 |
DOWNEYC M, AGHAEIM, SCHWENDENERR A, et al.DMXAA causes tumor site-specific vascular disruption in murine non-small cell lung cancer, and like the endogenous non-canonical cyclic dinucleotide STING agonist, 2′3′-cGAMP, induces M2 macrophage repolarization[J/OL]PLoS One, 2014, 9( 6): e99988.
doi: 10.1371/journal.pone.0099988
|
28 |
LIZOTTEP H, BAIRDJ R, STEVENSC A, et al.Attenuated Listeria monocytogenes reprograms M2-polarized tumor-associated macrophages in ovarian cancer leading to iNOS-mediated tumor cell lysis[J/OL]Oncoimmunology, 2014, 3( 5): e28926.
doi: 10.4161/onci.28926
|
29 |
TRAHTEMBERGU, MEVORACHD. Apoptotic cells induced signaling for immune homeostasis in macrophages and dendritic cells[J]Front Immunol, 2017, 1356.
doi: 10.3389/fimmu.2017.01356
|
30 |
VEILLETTEA, CHENJ. SIRPα-CD47 immune checkpoint blockade in anticancer therapy[J]Trends Immunol, 2018, 39( 3): 173-184.
doi: 10.1016/j.it.2017.12.005
|
31 |
SCHüRCHC M, ROELLIM A, FORSTERS, et al.Targeting CD47 in anaplastic thyroid carcinoma enhances tumor phagocytosis by macrophages and is a promising therapeutic strategy[J]Thyroid, 2019, 29( 7): 979-992.
doi: 10.1089/thy.2018.0555
|
32 |
ADVANIR, FLINNI, POPPLEWELLL, et al.CD47 blockade by hu5F9-G4 and rituximab in non-hodgkin’s lymphoma[J]N Engl J Med, 2018, 379( 18): 1711-1721.
doi: 10.1056/NEJMoa1807315
|
33 |
CICCARESEC, IACOVELLIR, BRIAE, et al.The incidence and relative risk of pulmonary toxicity in patients treated with anti-PD1/PD-L1 therapy for solid tumors: a meta-analysis of current studies[J]Immunotherapy, 2017, 9( 7): 579-587.
doi: 10.2217/imt-2017-0018
|
34 |
TOPALIANS L, TAUBEJ M, ANDERSR A, et al.Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy[J]Nat Rev Cancer, 2016, 16( 5): 275-287.
doi: 10.1038/nrc.2016.36
|
35 |
GIANNINIR, MORETTIS, UGOLINIC, et al.Immune profiling of thyroid carcinomas suggests the existence of two major phenotypes: an ATC-Like and a PDTC-like[J]J Clin Endocrinol Metab, 2019, 104( 8): 3557.
doi: 10.1210/jc.2018-01167
|
36 |
BRAUNERE, GUNDAV, VANDEN BORREP, et al.Combining BRAF inhibitor and anti PD-L1 antibody dramatically improves tumor regression and anti tumor immunity in an immunocompetent murine model of anaplastic thyroid cancer[J]Oncotarget, 2016, 7( 13): 17194-17211.
doi: 10.18632/oncotarget.7839
|
37 |
CAPDEVILAJ, WIRTHL J, ERNSTT, et al.PD-1 blockade in anaplastic thyroid carcinoma[J]J Clin Oncol, 2020, 38( 23): 2620-2627.
doi: 10.1200/JCO.19.02727
|
38 |
CHINTAKUNTLAWARA V, YINJ, FOOTER L, et al.A phase 2 study of pembrolizumab combined with chemoradiotherapy as initial treatment for anaplastic thyroid cancer[J]Thyroid, 2019, 29( 11): 1615-1622.
doi: 10.1089/thy.2019.0086
|
39 |
CAROSELLAE D, PLOUSSARDG, LEMAOULTJ, et al.A systematic review of immunotherapy in urologic cancer: evolving roles for targeting of CTLA-4, PD-1/PD-L1, and HLA-G[J]Eur Urology, 2015, 68( 2): 267-279.
doi: 10.1016/j.eururo.2015.02.032
|
40 |
DIERKSC, SEUFERTJ, AUMANNK, et al.Combination of lenvatinib and pembrolizumab is an effective treatment option for anaplastic and poorly differentiated thyroid carcinoma[J]Thyroid, 2021, 31( 7): 1076-1085.
doi: 10.1089/thy.2020.0322
|
41 |
IYERP C, DADUR, GULE-MONROEM, et al.Salvage pembrolizumab added to kinase inhibitor therapy for the treatment of anaplastic thyroid carcinoma[J]J Immunother Cancer, 2018, 6( 1): 68.
doi: 10.1186/s40425-018-0378-y
|
42 |
TUCCILLIC, BALDINIE, SORRENTIS, et al.CTLA-4 and PD-1 ligand gene expression in epithelial thyroid cancers[J]Int J Endocrinol, 2018, 1742951.
doi: 10.1155/2018/1742951
|
43 |
CALVO TARDóNM, ALLARDM, DUTOITV, et al.Peptides as cancer vaccines[J]Curr Opin Pharmacol, 2019, 20-26.
doi: 10.1016/j.coph.2019.01.007
|
44 |
U.S. National Library of Medicine. ClinicalTrials. gov. Nivolumab plus ipilimumab in thyroid cancer[EB/OL]. (2017-08-11)[2021-07-19]. https://clinicaltrials.gov/ct2/show/NCT03246958
|
45 |
HARJUNP??H, GUILLEREYC. TIGIT as an emerging immune checkpoint[J]Clin Exp Immunol, 2020, 200( 2): 108-119.
doi: 10.1111/cei.13407
|
46 |
U.S. National Library of Medicine. ClinicalTrials. gov. COM902 (a tigit inhibitor) in subjects with advanced malignancies[EB/OL]. (2020-04-21)[2021-10-05]. https://clinicaltrials.gov/ct2/show/results/NCT04354246
|
47 |
U.S. National Library of Medicine. ClinicalTrials. gov. COM701 in combination with BMS-986207 and nivolumab in subjects with advanced solid tumors[EB/OL]. (2020-09-30)[2021-12-10]. https://clinicaltrials.gov/ct2/show/NCT04570839
|
48 |
GAGLIANIN, MAGNANIC F, HUBERS, et al.Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells[J]Nat Med, 2013, 19( 6): 739-746.
doi: 10.1038/nm.3179
|
49 |
HUANGC T, WORKMANC J, FLIESD, et al.Role of LAG-3 in regulatory T cells[J]Immunity, 2004, 21( 4): 503-513.
doi: 10.1016/j.immuni.2004.08.010
|
50 |
WOOS R, TURNISM E, GOLDBERGM V, et al.Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape[J]Cancer Res, 2012, 72( 4): 917-927.
doi: 10.1158/0008-5472.CAN-11-1620
|
51 |
U.S. National Library of Medicine. ClinicalTrials. gov. Immuno-oncology drugs elotuzumab, anti-LAG-3 and anti-TIGIT[EB/OL]. (2019-11-05)[2021-09-10]. https://clinicaltrials.gov/ct2/show/NCT04150965
|
52 |
YINM, DIG, BIANM. Dysfunction of natural killer cells mediated by PD-1 and Tim-3 pathway in anaplastic thyroid cancer[J]Int Immunopharmacol, 2018, 333-339.
doi: 10.1016/j.intimp.2018.09.016
|
53 |
LANDAI, IBRAHIMPASICT, BOUCAIL, et al.Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers[J]J Clin Investigation, 2016, 126( 3): 1052-1066.
doi: 10.1172/JCI85271
|
54 |
BANCHEREAUJ, STEINMANR M. Dendritic cells and the control of immunity[J]Nature, 1998, 392( 6673): 245-252.
doi: 10.1038/32588
|
55 |
RUSSELLS J, PENGK W, BELLJ C. Oncolytic virotherapy[J]Nat Biotechnol, 2012, 30( 7): 658-670.
doi: 10.1038/nbt.2287
|
56 |
PASSAROC, BORRIELLOF, VASTOLOV, et al.The oncolytic virus dl 922-947 reduces IL-8/CXCL8 and MCP-1/CCL2 expression and impairs angiogenesis and macrophage infiltration in anaplastic thyroid carcinoma[J]Oncotarget, 2016, 7( 2): 1500-1515.
doi: 10.18632/oncotarget.6430
|
57 |
MONDALM, GUOJ, HEP, et al.Recent advances of oncolytic virus in cancer therapy[J]Hum Vaccines Immunother, 2020, 16( 10): 2389-2402.
doi: 10.1080/21645515.2020.1723363
|
58 |
JIANGK, SONGC, KONGL, et al.Recombinant oncolytic newcastle disease virus displays antitumor activities in anaplastic thyroid cancer cells[J]BMC Cancer, 2018, 18( 1): 746.
doi: 10.1186/s12885-018-4522-3
|
59 |
PRESTWICHR J, ERRINGTONF, DIAZR M, et al.The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon[J]Hum Gene Ther, 2009, 20( 10): 1119-1132.
doi: 10.1089/hum.2009.135
|
60 |
KAUFMANH L, KOHLHAPPF J, ZLOZAA. Oncolytic viruses: a new class of immunotherapy drugs[J]Nat Rev Drug Discov, 2015, 14( 9): 642-662.
doi: 10.1038/nrd4663
|
61 |
郭晓玲, 朱平, 恶性肿瘤细胞过继免疫治疗研究进展[J]. 国外医学(肿瘤学分册), 2004, 31(6): 418-421 GUO Xiaoling, ZHU Ping. Progress on adoptive immunotherapy in the treatment of tumors[J]. Foreign Medical Sciences (Cancer Section), 2004, 31(6): 418-421. (in Chinese)
|
62 |
LEED A. Cellular therapy: adoptive immunotherapy with expanded natural killer cells[J]Immunol Rev, 2019, 290( 1): 85-99.
doi: 10.1111/imr.12793
|
63 |
SINGHA K, MCGUIRKJ P. CAR T cells: continuation in a revolution of immunotherapy[J/OL]Lancet Oncol, 2020, 21( 3): e168-e178.
doi: 10.1016/S1470-2045(19)30823-X
|
64 |
SUTLUT, ALICIE. Ex vivo expansion of natural killer cells: a question of function[J]Cytotherapy, 2011, 13( 6): 767-768.
doi: 10.3109/14653249.2011.563295
|
65 |
TERRéNI, ORRANTIAA, VITALLéJ, et al.NK cell metabolism and tumor microenvironment[J]Front Immunol, 2019, 2278.
doi: 10.3389/fimmu.2019.02278
|
66 |
ANGELLT E, LECHNERM G, JANGJ K, et al.MHC class i loss is a frequent mechanism of immune escape in papillary thyroid cancer that is reversed by interferon and selumetinib treatment in vitro[J]Clin Cancer Res, 2014, 20( 23): 6034-6044.
doi: 10.1158/1078-0432.CCR-14-0879
|
67 |
WENNERBERGE, PFEFFERLEA, EKBLADL, et al.Human anaplastic thyroid carcinoma cells are sensitive to NK cell-mediated lysis via ULBP2/5/6 and chemoattract NK cells[J]Clin Cancer Res, 2014, 20( 22): 5733-5744.
doi: 10.1158/1078-0432.CCR-14-0291
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|