Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (4): 444-453    DOI: 10.3724/zdxbyxb-2021-0256
专题报道     
苯丙氨酸羟化酶基因c.158G>A(p.Arg53His)突变患儿随访及突变位点功能评估
王杰1,2(),朱博1,张丽春1,赵一桐3,王晓华1,*,贾跃旗1,*
1.内蒙古自治区妇幼保健院遗传优生科,内蒙古 呼和浩特 010020
2.内蒙古大学省部共建草原家畜生殖调控与繁育国家重点实验室,内蒙古 呼和浩特010021
3.四川省妇幼保健院医学遗传与产前诊断科,四川 成都 610041
Follow-up of two newborns with c.158G>A (p.Arg53His) mutation inPAH gene and assessment of the site function
WANG Jie1,2(),ZHU Bo1,ZHANG Lichun1,ZHAO Yitong3,WANG Xiaohua1,*,JIA Yueqi1,*
1. Genetic Eugenic Department of Inner Mongolia Maternity and Child Health Care Hospital, Hohhot 010020, China;
2. State Key Laboratory of Reproductive Regulation & Breeding of Grass Land Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China;
3. Medical Genetics and Prenatal Diagnosis of Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610041, China
 全文: PDF(5388 KB)   HTML( 6 )
摘要:

目的:评价苯丙氨酸羟化酶(PAH)基因c.158G>A(p.Arg53His)突变的临床意义。方法:持续监测2例携带PAH基因p.Arg53His突变的疑似高苯丙氨酸血症患儿血液中苯丙氨酸(Phe)浓度,分析患儿的临床生化特征,应用T-Coffee系统分析PAH蛋白的跨种属保守性,应用Swiss-Model对正常结构及变异结构的PAH进行蛋白质三维结构建模及比对分析突变所致蛋白质空间结构的改变。检索现有数据库及文献统计p.Arg53His突变的人群携带率,应用等位基因表型值(APV)与基因型表型值(GPV)预测系统对该突变相关表型进行预测。结果:2例新生儿在PAH基因上分别检出两个突变:c.611A>G(p.Tyr204Cys)、c.158G>A(p.Arg53His)和c.1238G>C(p.Arg413Pro)、c.158G>A(p.Arg53His)。2例新生儿能耐受正常饮食,在随访期间血Phe水平在正常范围内。例2的母亲为p.Arg53His纯合突变,长期未进行低蛋白质、低Phe饮食干预,血Phe浓度、Phe/酪氨酸比值均在正常范围。突变的氨基酸在13个不同物种间并非高度保守。三维结构建模结果显示,p.Arg53His突变使得PAH第53位和第49位氨基酸之间的氢键由2个减少为1个,降低了二聚体的稳定性。p.Arg53His在高苯丙氨酸血症患者中的等位基因频率为0.015?08,在健康人群中的等位基因频率为0.001?621,其中东亚人群中的携带率最高,为0.013?73。APV与GPV系统预测结果显示,该突变与轻度高苯丙氨酸血症型别相关。结论PAH基因p.Arg53His突变与不同突变组合为复合杂合状态可引起临床表型差异。p.Arg53His突变引起体内酶活性的降低不足以出现苯丙酮尿症临床症状,分类为“可能良性”。

关键词: 高苯丙氨酸血症苯丙氨酸羟化酶缺乏症p.Arg53His突变表型苯丙氨酸随访研究    
Abstract:

Objective: To investigate the clinical significance of PAHc.158G>A (p.Arg53His) mutation.Methods: The blood phenylalanine (Phe) was continuously monitored in 2 unrelated newborns with suspected hyperphenylalaninimia (HPA) carrying PAH c.158G>A mutation. The cross-species conservation of the mutant amino acid was analyzed using T-Coffee. Swiss-Model software was used to construct a 3D protein structure and the impact of candidate mutations on the secondary structure of the protein product was analyzed. The population carrying rate of the p.Arg53His mutation was analyzed by literature searching. Allelic phenotype values (APV) and genotypic phenotype values (GPV) were used to predict the phenotype associated with the mutation.Results:Two mutations of PAHgene were detected in each newborn: c.611A>G(p.Tyr204Cys), c.158G>A(p.Arg53His) and c.1238G>C(p.Arg413Pro), c.158G>A(p.Arg53His). Two children tolerated normal diet and plasma Phe levels were within the normal range during follow-up. The mother of case 2 was homozygous with p.Arg53His mutation under the condition of long-term normal diet, and the blood Phe concentration and Phe/Tyr were all within the normal range. The mutant amino acids were not highly conserved among the 13 different species. The 3D structural model showed that p.Arg53His mutation reduced the hydrogen bond from 2 to 1 between the 53rd and 49th amino acids of PAH. The allele frequency of p.Arg53His was 0.015?08 in HPA patients and 0.001?621 in normal population, while the prevalence of p.Arg53His allele was highest in the East Asian normal population (0.013?73). The APV and GPV system predicted that the mutation was related to mild HPA(MHP) type.Conclusion: The different compound heterozygous mutations of p.Arg53His lead to clinical phenotype varieties. The reduction of enzyme activity caused by the mutation of p.Arg53His is not sufficient to cause symptoms of phenylketonuria, so the mutation may be “likely benign”.

Key words: Hyperphenylalaninimia    Phenylalanine hydroxylase deficiency    p.Arg53His mutation    Phenotype    Phenylalanine    Follow-up studies
收稿日期: 2021-05-03 出版日期: 2021-11-01
CLC:  R722.1  
基金资助: 国家自然科学基金(81860168)
通讯作者: 王晓华,贾跃旗     E-mail: wangjie8867@163.com
作者简介: 王杰,主管技师,主要从事遗传病分子诊断工作;E-mail:wangjie8867@163.com;https://orcid.org/0000-0001-5010-2521
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王杰
朱博
张丽春
赵一桐
王晓华
贾跃旗

引用本文:

王杰,朱博,张丽春,赵一桐,王晓华,贾跃旗. 苯丙氨酸羟化酶基因c.158G>A(p.Arg53His)突变患儿随访及突变位点功能评估[J]. 浙江大学学报(医学版), 2021, 50(4): 444-453.

WANG Jie,ZHU Bo,ZHANG Lichun,ZHAO Yitong,WANG Xiaohua,JIA Yueqi. Follow-up of two newborns with c.158G>A (p.Arg53His) mutation inPAH gene and assessment of the site function. J Zhejiang Univ (Med Sci), 2021, 50(4): 444-453.

链接本文:

http://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0256        http://www.zjujournals.com/med/CN/Y2021/V50/I4/444

序号

性别

随访时间(月)

互补DNA 改变

氨基酸改变

初筛时Phe浓度(μmol/L)

Phe/Tyr比值

随访期间平均Phe浓度(xˉ±s,μmol/L)

临床表现

干预措施

例1

10

c.[158G>A];[ 611A>G]

p.[R53H];[Y204C]

94.8

1.47

88±19

例2

12

c.[158G>A];[1238 G>C]

p.[R53H];[R413P]

122.4

1.70

110±20

例2母亲

c.[158G>A];[ 158G>A]

p.[R53H];[R53H]

69.6

1.56

表 1  p.Arg53His(p.R53H)突变携带者的特征及随访期间的血Phe水平
图 1  不同物种基因p.Arg53His位点氨基酸进化保守性分析结果PAH红色箭头指示苯丙氨酸羟化酶(PAH)第53号氨基酸位置.
图 2  PAH野生型和p.Arg53His突变的三维结构预测示意图A:野生型苯丙氨酸羟化酶(PAH)53位精氨酸区域蛋白质结构图;B:p.Arg53His突变PAH的结构预测图. 绿色方框标示氨基酸之间氢键改变.

人种/群

受试者数

等位基因数

p.R53H等位基因数

等位基因频率

韩国[22]

79

158

2

0.0127

日本[6]

203

406

9

0.0222

中国[7]

165

330

8

0.0242

中国[22]

796

1592

40

0.0251

中国北方[23]

185

370

9

0.0243

中国北方[22]

557

1114

33

0.0296

中国南方[22]

239

478

7

0.0146

中国汉族[8]

338

676

3

0.0044

中国北方汉族[24]

285

570

10

0.0175

中国南方汉族[24]

112

224

0

0.0000

中国台湾[25]

71

142

3

0.0211

斯洛伐克[9]

207

414

1

0.0024

以色列(犹太人和阿拉伯人)[10]

180

360

2

0.0056

意大利[11]

107

214

1

0.0047

法国[26]

364

728

1

0.0014

德国[27]

226

452

1

0.0022

中国维吾尔族[12]

111

222

12

0.0541

伊朗[28]

81

162

1

0.0062

中国上海[18]

1020

2040

11

0.000?05

中国青岛[29]

44

88

8

0.0009

合计

5370

10?740

162

0.015?08

表 2  p.Arg53His (p.R53H)突变在高苯丙氨酸血症患者中的等位基因频率

人种/群

受试者数

等位基因数

p.R53H等位基因数

等位基因频率

东亚*

9976

19?952

274

0.013?73

南亚*

15?306

30?612

45

0.001?470

拉丁美洲*

17?719

35?438

33

0.000?931?2

欧洲(除芬兰人)*

64?561

129?122

86

0.000?666?0

非洲*

12?483

24?966

5

0.000?200?3

欧洲(芬兰人)*

12?551

25?102

3

0.000?119?5

犹太人群*

5184

10?368

1

0.000?096?45

浙江省金华市[30]

742

1484

6

0.004

合计

142?134

284?268

461

0.001?621

表 3  p.Arg53His (p.R53H)突变在健康人群中的等位基因频率

编号

生化分型

互补DNA改变

氨基酸改变

参考文献

1

cPKU

c. [331C>T];[158G>A;842+2T>A]

p.[R111*];[R53H;a]

[7]

2

cPKU

c.[728G>A];[158 G>A;842+2 T>A]

p.[R243Q];[R53H;a]

[7]

3

mPKU

c.[650 G>A];[158 G>A;842+2 T>A]

p.[C217Y];[ R53H;a]

[7]

4

mPKU

c.[1197 G>A];[158 G>A;842+2 T>A]

p.[V399V];[ R53H;a]

[7]

5

cPKU

c.[1197 G>A];[158 G>A;842+2 T>A]

p.[V399V];[ R53H;a]

[7]

6

mPKU

c. [158 G>A;842+2 T>A]; [158 G>A;842+2 T>A]

p. [ R53H;a]; [ R53H;a]

[7]

7

MHP

c. [158 G>A]; [208_210delTCT]

p.[ R53H];[S70del]

[6]

8

MHP

c. [158 G>A]; [498C>G]

p.[R53H];[T166*]

[5]

9

MHP

c. [158 G>A]; [721C>T]

p.[R53H];[R241C]

[5]

10

MHP

c. [158 G>A]; [728G>A]

p.[R53H];[R243Q]

[6]

11

MHP

c. [158 G>A]; [728G>A]

p.[R53H];[R243Q]

[7]

12

mPKU

c. [158 G>A]; [728G>A]

p.[R53H];[R243Q]

[13]

13

MHP

c. [158 G>A]; [755G>A]

p.[R53H];[R252Q]

[6]

14

MHP

c. [158 G>A]; [975C>G]

p.[R53H];[Y325*]

[5]

15

MHP

c. [158 G>A]; [1068C>A]

p.[R53H];[Y356*]

[5]

16

MHP

c. [158 G>A]; [1162G>A]

p.[R53H];[V388M]

[13]

17

MHP

c. [158 G>A]; [1238G>C]

p.[R53H];[R413P]

[5]

18

mPKU

c. [158 G>A;311 C>A]; [311 C>A]

p. [R53H; A104D];[ A104D]

[12]

19

mPKU

c. [158 G>A]; [158 G>A]

p.[R53H]; [R53H]

[12]

20

mPKU

c. [158 G>A; 1289T>C]; [1289T>C]

p.[R53H; L430P]; [L430P]

[12]

21

MHP

c. [158 G>A; 1262 T>C]; [158 G>A; 1262 T>C]

p.[R53H; I421T]; [R53H; I421T]

[12]

22

mPKU

c. [158 G>A]; [590 T>A]

p.[R53H]; [L197*]

[12]

23

MHP

c. [158 G>A]; [898G>T]

p.[R53H]; [A300S]

[12]

24

MHP

c. [158 G>A]; [728G>A]

p.[R53H]; [R243Q]

[12]

25

MHP

c. [158 G>A]; [749C>T]

p.[R53H]; [S250F]

[14]

表 4  文献报道携带p.Arg53His (p.R53H)突变的苯丙氨酸羟化酶缺乏症患者(复合杂合)生化表型一览

编号

生化分型

互补DNA改变

氨基酸改变

参考文献

26

MHP

c. [158 G>A(;)331C>T]

p.[ R53H(;)R111*]

[15]

27

MHP

c. [158 G>A(;)331C>T]

p.[ R53H(;)R111*]

[15]

28

MHP

c. [158 G>A(;)521T>A]

p.[ R53H(;)I174N]

[15]

29

mPKU

c. [158 G>A(;)728G>A]

p.[ R53H(;)R243Q]

[8]

30

MHP

c. [158 G>A(;)782G>A]

p.[ R53H(;)R261Q]

[11]

31

MHP

c. [158 G>A(;)842C>T]

p.[ R53H(;)P281L]

[15]

32

MHP

c. [158 G>A(;)975C>G]

p.[ R53H(;)Y325*]

[5]

33

cPKU

c. [158 G>A(;)1162G>C]

p.[ R53H(;)V388L]

[4]

34

MHP

c. [158 G>A(;)1222C>T]

p.[ R53H(;)R408W]

[9]

35

cPKU

c. [158 G>A(;)1222C>T]

p.[ R53H(;)R408W]

[8]

36

mPKU

c. [158 G>A(;)842+2T>A]

p.[ R53H(;)a]

[8]

37

mPKU

c. [158 G>A];[?]

p.[ R53H(;)a]

[26]

38

MHP

c. [158 G>A];[?]

p.[ R53H(;)a]

[10]

39

MHP

c. [158 G>A];[?]

p.[ R53H(;)a]

[10]

40

MHP

c. [158 G>A(;)1066-14C>G]

p.[ R53H(;)a]

[5]

41

mPKU

c.[158 G>A(;)1238G>C (;)842+2T>A(;)IVS7+2T>A]

p.[R53H(;)R413P(;)a]

[12]

42

cPKU

c.[158 G>A(;)308G>A (;)1066-11G>A(;)IVS10-11G>A]

p.[R53H(;)G103D(;)a]

[12]

43

MHP

c.[158 G>A(;)688G>A (;)842+2T>A(;)IVS7+2T>A]

p.[R53H(;)V230I(;)a]

[12]

表 5  文献报道携带p.Arg53His(p.R53H)突变的苯丙氨酸羟化酶缺乏症患者(合子信息不明)生化表型一览
1 BERCOVICHD, ELIMELECHA, YARDENIT, et al.A mutation analysis of the phenylalanine hydroxylase (PAH) gene in the Israeli population[J]Ann Hum Genet, 2008, 72( 3): 305-309.
doi: 10.1111/j.1469-1809.2007.00425.x
2 中华医学会医学遗传学分会遗传病临床实践指南撰写组, 黄尚志, 宋昉. 苯丙酮尿症的临床实践指南[J]. 中华医学遗传学杂志, 2020, 37(3): 226-234
Writing Group for Practice Guidelines for Diagnosis and Treatment of Genetic Diseases, Medical Genetics Branch of Chinese Medical Association, HUANG Shangzhi, SONG Fang. Clinical practice guidelines for phenylketonuria[J]. Chinese Journal of Medical Genetics, 2020, 37(3): 226-234. (in Chinese)
3 REGIER D S, GREENE C L. Phenylalanine hydroxylase deficiency[J/OL]. (2017-01-05)[2021-04-12]. https://www.ncbi.nlm.nih.gov/books/NBK1504/
4 PARKY S, SEOUNGC S, LEES W, et al.Identification of three novel mutations in Korean phenylketonuria patients: R53H, N207D, and Y325X[J]Hum Mutat, 1998, 11( S1): S121-S122.
doi: 10.1002/humu.1380110140
5 CHOIR, LEEJ, PARKH D, et al.Reassessing the significance of the PAH C.158g>a (P.Arg53His) variant in patients with hyperphenylalaninemia[J]J Pediatr Endocrinol Metab, 2017, 30( 11): 1211-1218.
doi: 10.1515/jpem-2017-0158
6 OKANOY, KUDOS, NISHIY, et al.Molecular characterization of phenylketonuria and tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency in Japan[J]J Hum Genet, 2011, 56( 4): 306-312.
doi: 10.1038/jhg.2011.10
7 TAOJ, LIN, JIAH, et al.Correlation between genotype and the tetrahydrobiopterin-responsive phenotype in Chinese patients with phenylketonuria[J]Pediatr Res, 2015, 78( 6): 691-699..
doi: 10.1038/pr.2015.167
8 ZHUT, YEJ, HANL, et al.Variations in genotype-phenotype correlations in phenylalanine hydroxylase deficiency in Chinese Han population[J]Gene, 2013, 529( 1): 80-87..
doi: 10.1016/j.gene.2013.07.079
9 POLAKE, FICEKA, RADVANSZKYJ, et al.Phenylalanine hydroxylase deficiency in the Slovak population: genotype-phenotype correlations and genotype-based predictions of BH4-responsiveness[J]Gene, 2013, 526( 2): 347-355.
doi: 10.1016/j.gene.2013.05.057
10 BERCOVICHD, ELIMELECHA, ZLOTOGORAJ, et al.Genotype-phenotype correlations analysis of mutations in the phenylalanine hydroxylase (PAH) gene[J]J Hum Genet, 2008, 53( 5): 407-418.
doi: 10.1007/s10038-008-0264-4
11 FIORIL, FIEGEB, RIVAE, et al.Incidence of Bh4-responsiveness in phenylalanine-hydroxylase-deficient Italian patients[J]Mol Genet Metab, 2005, 67-74.
doi: 10.1016/j.ymgme.2005.06.017
12 SUY, WANGH, REJIAFUN, et al.The molecular epidemiology of hyperphenylalaninemia in uygur population: incidence from newborn screening and mutationalspectra[J]Ann Transl Med, 2019, 7( 12): 258.
doi: 10.21037/atm.2019.05.16
13 LEED H, KOOS K, LEEK S, et al.The molecular basis of phenylketonuria in Koreans[J]J Hum Genet, 2004, 49( 11): 617-621.
doi: 10.1007/s10038-004-0197-5
14 WETTSTEINS, UNDERHAUGJ, PEREZB, et al.Linking genotypes database with locus-specific database and genotype-phenotype correlation in phenylketonuria[J]Eur J Hum Genet, 2015, 23( 3): 302-309.
doi: 10.1038/ejhg.2014.114
15 DATEKIS, WATANABES, NAKATOMIA, et al.Genetic background of hyperphenylalaninemia in Nagasaki, Japan[J]Pediatr Int, 2016, 58( 5): 431-433.
doi: 10.1111/ped.12924
16 中华人民共和国卫生部. 新生儿疾病筛查技术规范(2010年版) [A/OL]. (2010-11-10)[2020-06-11]. http://www.nhc.gov.cn/cmsresources/mohfybjysqwss/cmsrsdocument/doc10798.doc
Ministry of Health of the People’s Republic of China. Technical guide of newborn screening in China(2010)[A/OL]. (2010-11-10)[2020-06-11]. http://www.nhc.gov.cn/cmsresources/mohfybjysqwss/cmsrsdocument/doc10798.doc. (in Chinese)
17 RICHARDSS, AZIZN, BALES, et al.Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the american college of medical genetics and genomics and the association for molecular pathology[J]Genet Med, 2015, 17( 5): 405-423.
doi: 10.1038/gim.2015.30
18 WANGR, SHENN, YEJ, et al.Mutation spectrum of hyperphenylalaninemia candidate genes and the genotype-phenotype correlation in the Chinese population[J]Clin Chim Acta, 2018, 132-138.
doi: 10.1016/j.cca.2018.02.035
19 KIMS W, JUNGJ, OHH J, et al.Structural and functional analyses of mutations of the human phenylalanine hydroxylase gene[J]Clin Chim Acta, 2006, 365( 1-2): 279-287.
doi: 10.1016/j.cca.2005.09.019
20 PEYA L, STRICHERF, SERRANOL, et al.Predicted effects of missense mutations on native-state stability account for phenotypic outcome in phenylketonuria, a paradigm of misfolding diseases[J]Am J Hum Genet, 2007, 81( 5): 1006-1024.
doi: 10.1086/521879
21 GULDBERGP, REYF, ZSCHOCKEJ, et al.A european multicenter study of phenylalanine hydroxylase deficiency: classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype[J]Am J Hum Genet, 1998, 63( 1): 71-79.
doi: 10.1086/301920
22 LIN, JIAH, LIUZ, et al.Molecular characterisation of phenylketonuria in a Chinese mainland population using next-generation sequencing[J]Sci Rep, 2015, 5( 1): 15769.
doi: 10.1038/srep15769
23 SONGF, QUY J, ZHANGT, et al.Phenylketonuria mutations in northern China[J]Mol Genet Metab, 2005, 107-118.
doi: 10.1016/j.ymgme.2005.09.001
24 ZHUT, QINS, YEJ, et al.Mutational spectrum of phenylketonuria in the Chinese Han population: a novel insight into the geographic distribution of the common mutations[J]Pediatr Res, 2010, 67( 3): 280-285.
doi: 10.1203/PDR.0b013e3181c9fb85
25 LIANGY, HUANGM Z, CHENGC Y, et al.The mutation spectrum of the phenylalanine hydroxylase (PAH) gene and associated haplotypes reveal ethnic heterogeneity in the Taiwanese population[J]J Hum Genet, 2014, 59( 3): 145-152.
doi: 10.1038/jhg.2013.136
26 JEANNESSON-THIVISOLE, FEILLETF, CHéRYC, et al.Genotype-phenotype associations in French patients with phenylketonuria and importance of genotype for full assessment of tetrahydrobiopterin responsiveness[J]Orphanet J Rare Dis, 2015, 10( 1): 158.
doi: 10.1186/s13023-015-0375-x
27 AULEHLA-SCHOLZC, HEILBRONNERH. Mutational spectrum in german patients with phenylalanine hydroxylase deficiency[J]Hum Mutat, 2003, 21( 4): 399-400.
doi: 10.1002/humu.9116
28 RAZIPOURM, ALAVINEJADE, SAJEDIS Z, et al.Genetic study of the PAH locus in the Iranian population: familial gene mutations and minihaplotypes[J]Metab Brain Dis, 2017, 32( 5): 1685-1691.
doi: 10.1007/s11011-017-0048-7
29 杜玮, 杨桂芸, 陆薇冰, 等. 青岛市苯丙氨酸羟化酶缺乏症患儿基因突变分析[J]. 发育医学电子杂志, 2020, 8(1):30-34
DU Wei, YANG Guiyun, LU Weibing, et al. Study on mutations of gene in children with phenylalanine hydroxylase deficiency in Qingdao[J]. Journal of Developmental Medicine, 2020, 8(1): 30-34. (in Chinese)
30 金克勤, 胡苑. 742例育龄妇女PAH基因突变筛查结果分析[J]. 中国优生与遗传杂志, 2020, 28(7): 15-17
JIN Keqin, HU Yuan. Analysis of screening results of mutation of PAH gene in 742 fertile woman[J]. Chinese Journal of Birth Health & Heredity, 2020, 28(7): 15-17. (in Chinese)
[1] 胡真真,杨建滨,胡凌微,赵云飞,张超,杨茹莱,黄新文. 浙江省新生儿异戊酸血症筛查及临床分析[J]. 浙江大学学报(医学版), 2020, 49(5): 556-564.
[2] 徐春彩,包盈颖,朱佳骏,滕燕萍,何源远,程柯,纪凤娟,吴明远. 新生儿溶血症患者居家黄疸监测远程随访研究[J]. 浙江大学学报(医学版), 2020, 49(5): 651-655.
[3] 李占鲁,黄翯,张文斌,王敏,傅国胜. 冠状动脉CT血管造影提示临界病变有易损斑块患者预后分析[J]. 浙江大学学报(医学版), 2020, 49(1): 76-81.
[4] 张军浩,金静华,杨巍. 自噬调控血管平滑肌细胞功能在颅内动脉瘤形成和破裂中的作用[J]. 浙江大学学报(医学版), 2019, 48(5): 552-559.
[5] 叶青,张莹莹,王晶晶,毛建华. Ⅳ型胶原α5链基因突变致奥尔波特综合征两家系遗传学分析[J]. 浙江大学学报(医学版), 2019, 48(4): 384-389.
[6] 童凡,杨茹莱,刘畅,吴鼎文,张婷,黄新文,洪芳,钱古柃,黄晓磊,周雪莲,舒强,赵正言. 新生儿酪氨酸血症筛查及基因谱分析[J]. 浙江大学学报(医学版), 2019, 48(4): 459-464.
[7] 肖梨,佟晓永. 肺动脉高压形成中的血管重构分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 102-110.
[8] 陈挺,赵正言,蒋萍萍,舒强. 高苯丙氨酸血症表型与基因型研究进展[J]. 浙江大学学报(医学版), 2018, 47(3): 219-226.
[9] 黄冰雪,桑国耀,妥小青,田恬,阿比旦·艾尼瓦尔,戴江红. 轨迹分析模型在男男性行为人群人乳头瘤病毒感染状态变化趋势研究中的应用[J]. 浙江大学学报(医学版), 2018, 47(2): 150-155.
[10] 陆薇,林梦娜,赵士芳,王慧明,何福明. 改良侧壁开窗式上颌窦底提升术治疗上颌后牙区缺牙伴重度骨萎缩患者临床观察[J]. 浙江大学学报(医学版), 2017, 46(6): 630-636.
[11] 丁元,孙忠权,章文燕,章向英,姜源聪,严盛,王伟林. 腹腔镜胰体尾切除术患者围手术期加速康复管理及效果评估[J]. 浙江大学学报(医学版), 2017, 46(6): 625-629.
[12] 黄新文 等. 浙江省新生儿氨基酸代谢疾病筛查及随访分析[J]. 浙江大学学报(医学版), 2017, 46(3): 233-239.
[13] 洪芳 等. 浙江省新生儿有机酸尿症筛查及随访分析[J]. 浙江大学学报(医学版), 2017, 46(3): 240-247.
[14] 郑静 等. 浙江省新生儿脂肪酸氧化代谢疾病筛查及随访分析[J]. 浙江大学学报(医学版), 2017, 46(3): 248-255.
[15] 高秋明 等. Ⅰ期植骨联合非接触钢板技术治疗股骨创伤后感染性骨缺损八例[J]. 浙江大学学报(医学版), 2016, 45(6): 631-635.