|
|
基于长短时记忆循环神经网络的北京市糖尿病合并呼吸系统疾病患者入院预测研究 |
朱倩1,章萌1,胡耀余1,徐小林2,3,陶丽新1,4,张杰1,4,罗艳侠1,4,郭秀花1,4,刘相佟1,4,*( ) |
1.首都医科大学公共卫生学院,北京 100069 2.浙江大学医学院公共卫生学院,浙江 杭州 310058 3.澳大利亚昆士兰大学,澳大利亚 布里斯班 4006 4.北京市临床流行病学重点实验室,北京 100069 |
|
Research on prediction of daily admissions of respiratory diseases with comorbid diabetes in Beijing based on long short-term memory recurrent neural network |
ZHU Qian1,ZHANG Meng1,HU Yaoyu1,XU Xiaolin2,3,TAO Lixin1,4,ZHANG Jie1,4,LUO Yanxia1,4,GUO Xiuhua1,4,LIU Xiangtong1,4,*( ) |
1. School of Public Health, Capital Medical University, Beijing 100069, China; 2. School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; 3. The University of Queensland, Brisbane 4006, Australia; 4. Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China |
引用本文:
朱倩,章萌,胡耀余,徐小林,陶丽新,张杰,罗艳侠,郭秀花,刘相佟. 基于长短时记忆循环神经网络的北京市糖尿病合并呼吸系统疾病患者入院预测研究[J]. 浙江大学学报(医学版), 2022, 51(1): 1-9.
ZHU Qian,ZHANG Meng,HU Yaoyu,XU Xiaolin,TAO Lixin,ZHANG Jie,LUO Yanxia,GUO Xiuhua,LIU Xiangtong. Research on prediction of daily admissions of respiratory diseases with comorbid diabetes in Beijing based on long short-term memory recurrent neural network. J Zhejiang Univ (Med Sci), 2022, 51(1): 1-9.
链接本文:
https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0227
或
https://www.zjujournals.com/med/CN/Y2022/V51/I1/1
|
1 |
SAEEDIP, PETERSOHNI, SALPEAP, et al.Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]Diabetes Res Clin Pract, 2019, 107843.
doi: 10.1016/j.diabres.2019.107843
|
2 |
KYUH H, ABATED, ABATEK H, et al.Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990—2017: a systematic analysis for the Global Burden of Disease Study 2017[J]Lancet, 2018, 392( 10159): 1859-1922.
doi: 10.1016/S0140-6736(18)32335-3
|
3 |
GUANW J, LIANGW H, ZHAOY, et al.Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis[J]Eur Respir J, 2020, 55( 5): 2000547.
doi: 10.1183/13993003.00547-2020
|
4 |
SHIQ, ZHANGX, JIANGF, et al.Diabetic patients with COVID-19, characteristics and outcome: a two-centre, retrospective, case control study[J]SSRN J, 2020. DOI: 10.2139/SSN.3551369,
doi: 10.2139/ssrn.3551369
|
5 |
SILVERD, HUANGA, MADDISONC J, et al.Mastering the game of Go with deep neural networks and tree search[J]Nature, 2016, 529( 7587): 484-489.
doi: 10.1038/nature16961
|
6 |
张军阳, 王慧丽, 郭 阳, 等. 深度学习相关研究综述[J]. 计算机应用研究, 2018, 35(7): 1921-1928, 1936 ZHANG Junyang, WANG Huili, GUO Yang, et al. Review of deep learning[J]. Application Reasearch of Computer, 2018, 35(7): 1921-1928, 1936. (in Chinese)
|
7 |
王志远, 王守相, 陈海文, 等. 考虑空间相关性采用LSTM神经网络的光伏出力短期预测方法[J]. 电力系统及其自动化学报, 2020, 32(5): 78-85 WANG Zhiyuan, WANG Shouxiang, CHEN Haiwen, et al. Short-term photovoltaic output forecasting method using LSTM neural network with consideration of spatial correlation[J]. Proceedings of the CSU-EPSA, 2020, 32(5): 78-85. (in Chinese)
|
8 |
黄钰姝, 宋和佳, 张 睿, 等. ARIMAX与多变量LSTM模型在盐城市总死亡人数预测中的比较研究[J]. 公共卫生与预防医学, 2021, 32(5): 6-10 HUANG Yushu, SONG Hejia, ZHANG Rui, et al. Comparison of ARIMAX and multivariate LSTM model in predicting daily death toll in Yancheng city[J]. Journal of Public Health and Preventive Medicine, 2021, 32(5): 6-10. (in Chinese)
|
9 |
PENGR D, DOMINICIF, LOUIST A. Model choice in time series studies of air pollution and mortality[J]J R Statistical Soc A, 2006, 169( 2): 179-203.
doi: 10.1111/j.1467-985X.2006.00410.x
|
10 |
ZEGERS L, IRIZARRYR, PENGR D. On time series analysis of public health and biomedical data[J]Annu Rev Public Health, 2006, 27( 1): 57-79.
doi: 10.1146/annurev.publhealth.26.021304.144517
|
11 |
DOMINICIF, MCDERMOTTA, ZEGERS L, et al.On the use of generalized additive models in time-series studies of air pollution and health[J]Am J Epidemiol, 2002, 156( 3): 193-203.
doi: 10.1093/aje/kwf062
|
12 |
PENGZ, WANGQ, KANH, et al.Effects of ambient temperature on daily hospital admissions for mental disorders in Shanghai, China: a time-series analysis[J]Sci Total Environ, 2017, 281-286.
doi: 10.1016/j.scitotenv.2017.02.237
|
13 |
孙锦峰, 耿云亮, 郭奕瑞, 等. Elman神经网络与ARIMA模型对流感发病率预测效果的比较[J]. 郑州大学学报(医学版), 2013, 48(5): 584-587 SUN Jinfeng, GENG Yunliang, GUO Yirui, et al. Application and comparison of Elman neural network model and ARIMA model to predict the incidence of influenza[J]. Journal of Zhengzhou University (Medical Sciences), 2013, 48(5): 584-587. (in Chinese)
|
14 |
侯伟涛, 姬东鸿. 基于Bi-LSTM的医疗事件识别研究[J]. 计算机应用研究, 2018, 35(7): 1974-1977 HOU Weitao, JI Donghong. Research on clinic event recognition based Bi-LSTM[J]. Application Reasearch of Computer, 2018, 35(7): 1974-1977. (in Chinese)
|
15 |
李艳芳, 王 钰, 李济洪. 几种交叉验证检验的可重复性[J]. 太原师范学院学报(自然科学版), 2013, 12(4): 46-49 LI Yanfang, WANG Yu, LI Jihong. The replicability of several cross-validated tests[J]. Journal of Taiyuan Normal University (Natural Science Edition), 2013, 12(4): 46-49. (in Chinese)
|
16 |
刘相佟, 伍梦秋, 孙 玥, 等. 2013—2014年北京市脑卒中日入院人数的两种预测模型比较研究[J]. 健康体检与管理, 2021, 2(4): 295-301 LIU Xiangtong, WU Mengqiu, SUN Yue, et al. Comparison of two prediction models for daily admission of stroke in Beijing from 2013 to 2014[J]. Journal of Health Examination and Management, 2021, 2(4): 295-301. (in Chinese)
|
17 |
欧阳红兵, 黄 亢, 闫洪举. 基于LSTM神经网络的金融时间序列预测[J]. 中国管理科学, 2020, 28(4): 27-35 OUYANG Hongbing, HUANG Kang, YAN Hongju. Prediction of financial time series based on LSTM neural network[J]. Chinese Journal of Management Science, 2020, 28(4): 27-35. (in Chinese)
|
18 |
李 冰, 张 妍, 刘 石. 基于LSTM的短期风速预测研究[J]. 计算机仿真, 2018, 35(11): 456-461 LI Bing, ZHANG Yan, LIU Shi. Wind speed short term prediction study based on LSTM[J]. Computer Simulation, 2018, 35(11): 456-461. (in Chinese)
|
19 |
TAJT, MALMQVISTE, STROHE, et al.Short-term associations between air pollution concentrations and respiratory health——comparing primary health care visits, hospital admissions, and emergency department visits in a multi-municipality study[J]Int J Environ Res Public Health, 2017, 14( 6): 587.
doi: 10.3390/ijerph14060587
|
20 |
LAIH K, TSANGH, WONGC M. Meta-analysis of adverse health effects due to air pollution in Chinese populations[J]BMC Public Health, 2013, 13( 1): 360.
doi: 10.1186/1471-2458-13-360
|
21 |
THIERINGE, HEINRICHJ. Epidemiology of air pollution and diabetes[J]Trends Endocrinol Metab, 2015, 26( 7): 384-394.
doi: 10.1016/j.tem.2015.05.002
|
22 |
PAULL A, BURNETTR T, KWONGJ C, et al.The impact of air pollution on the incidence of diabetes and survival among prevalent diabetes cases[J]Environ Int, 2020, 105333.
doi: 10.1016/j.envint.2019.105333
|
23 |
GURUNGA, SONJ Y, BELLM L. Particulate matter and risk of hospital admission in the kathmandu valley, nepal: a case-crossover study[J]Am J Epidemiol, 2017, 186( 5): 573-580.
doi: 10.1093/aje/kwx135
|
24 |
YAOC, WANGY, WILLIAMSC, et al.The association between high particulate matter pollution and daily cause-specific hospital admissions: a time-series study in Yichang, China[J]Environ Sci Pollut Res, 2020, 27( 5): 5240-5250.
doi: 10.1007/s11356-019-06734-2
|
25 |
YANGB Y, GUOY, MARKEVYCHI, et al.Association of long-term exposure to ambient air pollutants with risk factors for cardiovascular disease in China[J/OL]JAMA Netw Open, 2019, 2( 3): e190318.
doi: 10.1001/jamanetworkopen.2019.0318
|
26 |
SONGX, WANGS, LIT, et al.The impact of heat waves and cold spells on respiratory emergency department visits in Beijing, China[J]Sci Total Environ, 2018, 1499-1505.
doi: 10.1016/j.scitotenv.2017.09.108
|
27 |
BLAUWL L, AZIZN A, TANNEMAATM R, et al.Diabetes incidence and glucose intolerance prevalence increase with higher outdoor temperature[J/OL]BMJ Open Diab Res Care, 2017, 5( 1): e000317.
doi: 10.1136/bmjdrc-2016-000317
|
28 |
SONGW M, LIUY, LIUJ Y, et al.The burden of air pollution and weather condition on daily respiratory deaths among older adults in China, Jinan from 2011 to 2017[J/OL]Medicine, 2019, 98( 10): e14694.
doi: 10.1097/MD.0000000000014694
|
29 |
顾 晨, 王佳欣, 吕沛诚, 等. 兰州市3种主要污染物大气环境容量季节差异及排放总量控制[J]. 兰州大学学报(自然科学版), 2021, 57(3): 302-310, 317 GU Chen, WANG Jiaxin, LYU Peicheng, et al. Seasonal variations in atmospheric environmental capacity and total quantity control for three criteria pollutants in Lanzhou[J]. Journal of Lanzhou University (Natural Sciences), 2021, 57(3): 302-310, 317. (in Chinese)
|
30 |
张 玉, 兰 剑, 乔利平, 等. 气象参数和节假日对上海市区大气污染物浓度的影响[J]. 广州化工, 2021, 49(18): 85-87, 108 ZHANG Yu, LAN Jian, QIAO Liping, et al. Influence of meteorological parameters and holidays on air pollutant concentration in Shanghai[J]. Guangzhou Chemical Industry, 2021, 49(18): 85-87, 108. (in Chinese)
|
31 |
臧星华, 鲁垠涛, 姚 宏, 等. 中国主要大气污染物的时空分布特征研究[J]. 生态环境学报, 2015, 24(8): 1322-1329 ZANG Xinghua, LU Yintao, YAO Hong, et al. The temporal and spatial distribution characteristics of main air pollutants in China[J]. Ecology and Environment Sciences, 2015, 24(8): 1322-1329. (in Chinese)
|
32 |
王嫣然, 张学霞, 赵静瑶, 等. 2013—2014年北京地区PM2.5时空分布规律及其与植被覆盖度关系的研究[J]. 生态环境学报, 2016, 25: 103-111 WANG Yanran, ZHANG Xuexia, ZHAO Jingyao, et al. Temporal and spatial distribution of PM2.5 and its relationship with vegetation coverage in Beijing during the period of 2013—2014[J]. Ecology and Environment Sciences, 2016, 25: 103-111. (in Chinese)
|
33 |
朱晓娟. 基于机器学习的健康风险评估与预测[D]. 成都: 电子科技大学, 2020 ZHU Xiaojuan. Health risk assessment and prediction based on machine learning[D]. Chengdu: University of Electronic Science and Technology of China, 2020. (in Chinese)
|
34 |
洪 也, 张 莹, 马雁军, 等. 沈阳大气污染物与气象因素对呼吸疾病门诊数的影响[J]. 中国环境科学, 2020, 40: 4077-4090 HONG Ye, ZHANG Ying, MA Yanjun, et al. Effects of air pollutants and meteorological factors on outpatient visitors for respiratory diseases in Shenyang[J]. China Environmental Science, 2020, 40: 4077-4090. (in Chinese)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|