Please wait a minute...
浙江大学学报(医学版)  2022, Vol. 51 Issue (1): 1-9    DOI: 10.3724/zdxbyxb-2021-0227
专题报道     
基于长短时记忆循环神经网络的北京市糖尿病合并呼吸系统疾病患者入院预测研究
朱倩1,章萌1,胡耀余1,徐小林2,3,陶丽新1,4,张杰1,4,罗艳侠1,4,郭秀花1,4,刘相佟1,4,*()
1.首都医科大学公共卫生学院,北京 100069
2.浙江大学医学院公共卫生学院,浙江 杭州 310058
3.澳大利亚昆士兰大学,澳大利亚 布里斯班 4006
4.北京市临床流行病学重点实验室,北京 100069
Research on prediction of daily admissions of respiratory diseases with comorbid diabetes in Beijing based on long short-term memory recurrent neural network
ZHU Qian1,ZHANG Meng1,HU Yaoyu1,XU Xiaolin2,3,TAO Lixin1,4,ZHANG Jie1,4,LUO Yanxia1,4,GUO Xiuhua1,4,LIU Xiangtong1,4,*()
1. School of Public Health, Capital Medical University, Beijing 100069, China;
2. School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China;
3. The University of Queensland, Brisbane 4006, Australia;
4. Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
 全文: PDF(4907 KB)   HTML( 30 )
摘要:

目的:比较广义相加模型(GAM)和长短时记忆循环神经网络(LSTM-RNN)对糖尿病合并呼吸系统疾病患者入院频数的预测效果。方法:收集2014年1月1日至2019年12月31日北京市大气污染物、气象因素和呼吸系统疾病入院数据,基于LSTM-RNN预测糖尿病合并呼吸系统疾病患者入院频数并与GAM对比,模型评价采用五折交叉验证法。结果:与GAM相比,LSTM-RNN具有较低的预测误差[均方根误差(RMSE)分别为21.21±3.30和46.13±7.60,P<0.01;平均绝对误差(MAE)分别为14.64±1.99和36.08±6.20,P<0.01]和较高的拟合优度(R2值分别为0.79±0.06和0.57±0.12,P<0.01)。在性别分层中,预测女性入院频数时,LSTM-RNN三项指标均优于GAM(均P<0.05);预测男性入院频数时,两模型误差评价指标差异无统计学意义(均P>0.05)。在季节分层中,预测温暖季节的入院频数时,LSTM-RNN的RMSE和MAE均低于GAM(均P<0.05),R2值差异无统计学意义(P>0.05);预测寒冷季节入院频数时,两种模型的RMSE、MAE和R2值差异均无统计学意义(均P>0.05)。在功能区分层中,预测首都功能核心区入院频数时,LSTM-RNN的RMSE、MAE和R2值均优于GAM(均P<0.05)。结论:LSTM-RNN预测误差较小,拟合程度优,可作为污染天气提前精准配置医疗资源的预测手段。

关键词: 长短时记忆循环神经网络广义相加模型呼吸系统疾病糖尿病日入院频数预测    
Abstract:

Objective: To compare the performance of generalized additive model (GAM) and long short-term memory recurrent neural network (LSTM-RNN) on the prediction of daily admissions of respiratory diseases with comorbid diabetes. Methods: Daily data on air pollutants, meteorological factors and hospital admissions for respiratory diseases from Jan 1st, 2014 to Dec 31st, 2019 in Beijing were collected. LSTM-RNN was used to predict the daily admissions of respiratory diseases with comorbid diabetes, and the results were compared with those of GAM. The evaluation indexes were calculated by five-fold cross validation. Results: Compared with the GAM, the prediction errors of LSTM-RNN were significantly lower [root mean squared error (RMSE): 21.21±3.30 vs. 46.13±7.60, P<0.01; mean absolute error (MAE): 14.64±1.99 vs. 36.08±6.20,P<0.01], and theR2 value was significantly higher (0.79±0.06 vs. 0.57±0.12, P<0.01). In gender stratification, RMSE, MAE andR2 values of LSTM-RNN were better than those of GAM in predicting female admission (all P<0.05), but there were no significant difference in predicting male admission between two models (allP>0.05). In seasonal stratification, RMSE and MAE of LSTM-RNN were lower than those of GAM in predicting warm season admission (allP<0.05), but there was no significant difference inR2 value (P>0.05). There were no significant difference in RMSE, MAE andR2 between the two models in predicting cold season admission (all P>0.05). In the stratification of functional areas, the RMSE, MAE andR2 values of LSTM-RNN were better than those of GAM in predicting core area admission (all P<0.05).Conclusion: LSTM-RNN has lower prediction errors and better fitting than the GAM, which can provide scientific basis for precise allocation of medical resources in polluted weather in advance.

Key words: Long short-term memory recurrent neural network    Generalized additive model    Respiratory disease    Diabetes mellitus    Daily admission    Prediction
收稿日期: 2021-08-06 出版日期: 2022-05-17
CLC:  R197.5  
基金资助: 国家自然科学基金(82003559);北京市优秀人才培养青年骨干个人项目;首都医科大学自然培育项目(PYZ2018046)
通讯作者: 刘相佟     E-mail: xiangtongl@ccmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱倩
章萌
胡耀余
徐小林
陶丽新
张杰
罗艳侠
郭秀花
刘相佟

引用本文:

朱倩,章萌,胡耀余,徐小林,陶丽新,张杰,罗艳侠,郭秀花,刘相佟. 基于长短时记忆循环神经网络的北京市糖尿病合并呼吸系统疾病患者入院预测研究[J]. 浙江大学学报(医学版), 2022, 51(1): 1-9.

ZHU Qian,ZHANG Meng,HU Yaoyu,XU Xiaolin,TAO Lixin,ZHANG Jie,LUO Yanxia,GUO Xiuhua,LIU Xiangtong. Research on prediction of daily admissions of respiratory diseases with comorbid diabetes in Beijing based on long short-term memory recurrent neural network. J Zhejiang Univ (Med Sci), 2022, 51(1): 1-9.

链接本文:

https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0227        https://www.zjujournals.com/med/CN/Y2022/V51/I1/1

序号

变量名称

变量种类

单位

赋值

1

月份

特征变量

2

日期

特征变量

3

节假日

特征变量

d

0∶非节假日

1∶节假日

4

星期

特征变量

d

5

既往入院频数

特征变量

例次/d

6

PM2.5

特征变量

μg/m3

7

PM10

特征变量

μg/m3

8

二氧化硫

特征变量

μg/m3

9

二氧化氮

特征变量

μg/m3

10

臭氧

特征变量

μg/m3

11

一氧化碳

特征变量

mg/m3

12

空气质量指数

特征变量

13

温度

特征变量

14

比湿

特征变量

g/kg

15

气压

特征变量

hPa

16

风速

特征变量

m/s

17

预测入院频数

目标变量

例次/d

表 1  长短时记忆循环神经网络输入及输出数据的特征
图 1  2014—2019年北京16个行政区大气污染物空间分布图PM2.5: 细颗粒物. PM10: 可吸入颗粒物.

类别

总入院频数

每日入院频数

患者性别男性

146? 958(58.40)

71(37,89)

女性

104? 697(41.60)

48(29,63)

患者年龄≤60岁

34? 281(13.62)

16(9,21)

>60岁

217 ?374(86.38)

104(57,132)

季节寒冷

134 ?665(53.51)

131(69,164)

温暖

116 ?990(46.49)

114(62,141)

功能区首都功能核心区

36 ?795(14.62)

18(7,24)

城市功能拓展区

114? 049(45.32)

55(26,71)

城市发展新区

67 ?393(26.78)

30(21,39)

生态涵养区

33? 418(13.28)

14(10,20)

合计

251? 655(100.00)

121(65,151)

表 2  2014—2019年北京市糖尿病合并呼吸系统疾病患者入院频数的基本描述

变量

中位数

最小值

Q1

Q3

最大值

四分位数间距

污染物PM2.5(μg/m3

47.34

8.32

30.64

73.01

301.08

42.38

PM10(μg/m3

82.67

22.23

59.36

116.79

689.27

57.42

二氧化硫(μg/m3

9.56

3.86

6.10

15.77

109.24

9.67

二氧化氮(μg/m3

36.42

12.01

29.32

48.63

113.34

19.30

臭氧(μg/m3

87.09

10.85

56.50

128.65

246.85

72.15

一氧化碳(mg/m3

0.85

0.31

0.67

1.14

6.04

0.47

空气质量指数

74.69

15.16

49.64

111.68

431.69

62.04

气象因素温度(℃)

9.70

–16.33

–1.87

18.92

28.01

20.79

比湿(g/kg)

4.71

0.22

1.80

10.44

22.08

8.64

气压(hPa)

997.85

972.97

990.25

1005.84

1023.25

15.59

风速(m/s)

0.72

0.27

0.57

0.99

5.25

0.41

表 3  2014—2019年北京市大气污染物及气象因素的描述性统计分析结果
图 2  长短时记忆循环神经网络的损失曲线
图 3  不同迭代次数下长短时记忆循环神经网络的均方根误差

训练超参数

设置

训练超参数

设置

原始数据集/条

2191

随机断开连接比例

0.2

记录时间间隔/d

1

预测时长

7

训练集大小/d

1753

参数优化方式

AdaMax

测试集大小/d

438

模型损失评价

MSE

LSTM-RNN层数

1

训练迭代次数

50

连接的神经元个数

90

每次批次大小

40

输出层层数

1

?

表 4  长短时记忆循环神经网络(LSTM-RNN)超参数设置
图 4  长短时记忆循环神经网络(LSTM-RNN)与广义相加模型(GAM)预测糖尿病合并呼吸系统疾病患者入院频数比较

类别

RMSE

MAE

调整后R2

GAM

LSTM-RNN

GAM

LSTM-RNN

GAM

LSTM-RNN

患者性别 男性

40.28 ± 24.63

13.36 ± 2.03

30.95 ± 18.89

9.68 ± 1.40

0.52 ± 0.08

0.75 ± 0.06**

女性

34.30 ± 16.85

10.95 ± 1.27*

26.69 ± 13.13

8.12 ± 0.83*

0.31 ± 0.05

0.73 ± 0.06**

季节温暖

30.26 ± 8.38

19.62 ± 4.84*

24.88 ± 7.72

13.87 ± 3.19*

0.77 ± 0.06

0.76 ± 0.07

寒冷

38.26 ± 19.18

22.60 ± 4.50

29.51 ± 16.09

16.11 ± 3.36

0.67 ± 0.15

0.78 ± 0.11

功能区首都功能核心区

9.25 ± 2.72

5.58 ± 0.62*

6.99 ± 2.24

4.13 ± 0.47*

0.54 ± 0.02

0.65 ± 0.09*

城市功能拓展区

38.09 ± 22.52

11.96 ± 2.01

29.01 ± 16.88

8.56 ± 1.12

0.48 ± 0.08

0.74 ± 0.07**

城市发展新区

8.23 ± 1.50

6.80 ± 0.88

6.31 ± 1.16

5.26 ± 0.69

0.58 ± 0.05

0.66 ±0.03*

生态涵养区

5.51 ± 0.81

4.58 ± 0.69

4.25 ± 0.43

3.59 ± 0.48

0.32 ± 0.12

0.41 ± 0.11

合计

46.13 ± 7.60

21.21 ± 3.30**

36.08 ± 6.20

14.64 ± 1.99**

0.57 ± 0.12

0.79 ± 0.06**

表 5  长短时记忆循环神经网络(LSTM-RNN)与广义相加模型(GAM)预测效果评价
1 SAEEDIP, PETERSOHNI, SALPEAP, et al.Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]Diabetes Res Clin Pract, 2019, 107843.
doi: 10.1016/j.diabres.2019.107843
2 KYUH H, ABATED, ABATEK H, et al.Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990—2017: a systematic analysis for the Global Burden of Disease Study 2017[J]Lancet, 2018, 392( 10159): 1859-1922.
doi: 10.1016/S0140-6736(18)32335-3
3 GUANW J, LIANGW H, ZHAOY, et al.Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis[J]Eur Respir J, 2020, 55( 5): 2000547.
doi: 10.1183/13993003.00547-2020
4 SHIQ, ZHANGX, JIANGF, et al.Diabetic patients with COVID-19, characteristics and outcome: a two-centre, retrospective, case control study[J]SSRN J, 2020. DOI: 10.2139/SSN.3551369,
doi: 10.2139/ssrn.3551369
5 SILVERD, HUANGA, MADDISONC J, et al.Mastering the game of Go with deep neural networks and tree search[J]Nature, 2016, 529( 7587): 484-489.
doi: 10.1038/nature16961
6 张军阳, 王慧丽, 郭 阳, 等. 深度学习相关研究综述[J]. 计算机应用研究, 2018, 35(7): 1921-1928, 1936
ZHANG Junyang, WANG Huili, GUO Yang, et al. Review of deep learning[J]. Application Reasearch of Computer, 2018, 35(7): 1921-1928, 1936. (in Chinese)
7 王志远, 王守相, 陈海文, 等. 考虑空间相关性采用LSTM神经网络的光伏出力短期预测方法[J]. 电力系统及其自动化学报, 2020, 32(5): 78-85
WANG Zhiyuan, WANG Shouxiang, CHEN Haiwen, et al. Short-term photovoltaic output forecasting method using LSTM neural network with consideration of spatial correlation[J]. Proceedings of the CSU-EPSA, 2020, 32(5): 78-85. (in Chinese)
8 黄钰姝, 宋和佳, 张 睿, 等. ARIMAX与多变量LSTM模型在盐城市总死亡人数预测中的比较研究[J]. 公共卫生与预防医学, 2021, 32(5): 6-10
HUANG Yushu, SONG Hejia, ZHANG Rui, et al. Comparison of ARIMAX and multivariate LSTM model in predicting daily death toll in Yancheng city[J]. Journal of Public Health and Preventive Medicine, 2021, 32(5): 6-10. (in Chinese)
9 PENGR D, DOMINICIF, LOUIST A. Model choice in time series studies of air pollution and mortality[J]J R Statistical Soc A, 2006, 169( 2): 179-203.
doi: 10.1111/j.1467-985X.2006.00410.x
10 ZEGERS L, IRIZARRYR, PENGR D. On time series analysis of public health and biomedical data[J]Annu Rev Public Health, 2006, 27( 1): 57-79.
doi: 10.1146/annurev.publhealth.26.021304.144517
11 DOMINICIF, MCDERMOTTA, ZEGERS L, et al.On the use of generalized additive models in time-series studies of air pollution and health[J]Am J Epidemiol, 2002, 156( 3): 193-203.
doi: 10.1093/aje/kwf062
12 PENGZ, WANGQ, KANH, et al.Effects of ambient temperature on daily hospital admissions for mental disorders in Shanghai, China: a time-series analysis[J]Sci Total Environ, 2017, 281-286.
doi: 10.1016/j.scitotenv.2017.02.237
13 孙锦峰, 耿云亮, 郭奕瑞, 等. Elman神经网络与ARIMA模型对流感发病率预测效果的比较[J]. 郑州大学学报(医学版), 2013, 48(5): 584-587
SUN Jinfeng, GENG Yunliang, GUO Yirui, et al. Application and comparison of Elman neural network model and ARIMA model to predict the incidence of influenza[J]. Journal of Zhengzhou University (Medical Sciences), 2013, 48(5): 584-587. (in Chinese)
14 侯伟涛, 姬东鸿. 基于Bi-LSTM的医疗事件识别研究[J]. 计算机应用研究, 2018, 35(7): 1974-1977
HOU Weitao, JI Donghong. Research on clinic event recognition based Bi-LSTM[J]. Application Reasearch of Computer, 2018, 35(7): 1974-1977. (in Chinese)
15 李艳芳, 王 钰, 李济洪. 几种交叉验证检验的可重复性[J]. 太原师范学院学报(自然科学版), 2013, 12(4): 46-49
LI Yanfang, WANG Yu, LI Jihong. The replicability of several cross-validated tests[J]. Journal of Taiyuan Normal University (Natural Science Edition), 2013, 12(4): 46-49. (in Chinese)
16 刘相佟, 伍梦秋, 孙 玥, 等. 2013—2014年北京市脑卒中日入院人数的两种预测模型比较研究[J]. 健康体检与管理, 2021, 2(4): 295-301
LIU Xiangtong, WU Mengqiu, SUN Yue, et al. Comparison of two prediction models for daily admission of stroke in Beijing from 2013 to 2014[J]. Journal of Health Examination and Management, 2021, 2(4): 295-301. (in Chinese)
17 欧阳红兵, 黄 亢, 闫洪举. 基于LSTM神经网络的金融时间序列预测[J]. 中国管理科学, 2020, 28(4): 27-35
OUYANG Hongbing, HUANG Kang, YAN Hongju. Prediction of financial time series based on LSTM neural network[J]. Chinese Journal of Management Science, 2020, 28(4): 27-35. (in Chinese)
18 李 冰, 张 妍, 刘 石. 基于LSTM的短期风速预测研究[J]. 计算机仿真, 2018, 35(11): 456-461
LI Bing, ZHANG Yan, LIU Shi. Wind speed short term prediction study based on LSTM[J]. Computer Simulation, 2018, 35(11): 456-461. (in Chinese)
19 TAJT, MALMQVISTE, STROHE, et al.Short-term associations between air pollution concentrations and respiratory health——comparing primary health care visits, hospital admissions, and emergency department visits in a multi-municipality study[J]Int J Environ Res Public Health, 2017, 14( 6): 587.
doi: 10.3390/ijerph14060587
20 LAIH K, TSANGH, WONGC M. Meta-analysis of adverse health effects due to air pollution in Chinese populations[J]BMC Public Health, 2013, 13( 1): 360.
doi: 10.1186/1471-2458-13-360
21 THIERINGE, HEINRICHJ. Epidemiology of air pollution and diabetes[J]Trends Endocrinol Metab, 2015, 26( 7): 384-394.
doi: 10.1016/j.tem.2015.05.002
22 PAULL A, BURNETTR T, KWONGJ C, et al.The impact of air pollution on the incidence of diabetes and survival among prevalent diabetes cases[J]Environ Int, 2020, 105333.
doi: 10.1016/j.envint.2019.105333
23 GURUNGA, SONJ Y, BELLM L. Particulate matter and risk of hospital admission in the kathmandu valley, nepal: a case-crossover study[J]Am J Epidemiol, 2017, 186( 5): 573-580.
doi: 10.1093/aje/kwx135
24 YAOC, WANGY, WILLIAMSC, et al.The association between high particulate matter pollution and daily cause-specific hospital admissions: a time-series study in Yichang, China[J]Environ Sci Pollut Res, 2020, 27( 5): 5240-5250.
doi: 10.1007/s11356-019-06734-2
25 YANGB Y, GUOY, MARKEVYCHI, et al.Association of long-term exposure to ambient air pollutants with risk factors for cardiovascular disease in China[J/OL]JAMA Netw Open, 2019, 2( 3): e190318.
doi: 10.1001/jamanetworkopen.2019.0318
26 SONGX, WANGS, LIT, et al.The impact of heat waves and cold spells on respiratory emergency department visits in Beijing, China[J]Sci Total Environ, 2018, 1499-1505.
doi: 10.1016/j.scitotenv.2017.09.108
27 BLAUWL L, AZIZN A, TANNEMAATM R, et al.Diabetes incidence and glucose intolerance prevalence increase with higher outdoor temperature[J/OL]BMJ Open Diab Res Care, 2017, 5( 1): e000317.
doi: 10.1136/bmjdrc-2016-000317
28 SONGW M, LIUY, LIUJ Y, et al.The burden of air pollution and weather condition on daily respiratory deaths among older adults in China, Jinan from 2011 to 2017[J/OL]Medicine, 2019, 98( 10): e14694.
doi: 10.1097/MD.0000000000014694
29 顾 晨, 王佳欣, 吕沛诚, 等. 兰州市3种主要污染物大气环境容量季节差异及排放总量控制[J]. 兰州大学学报(自然科学版), 2021, 57(3): 302-310, 317
GU Chen, WANG Jiaxin, LYU Peicheng, et al. Seasonal variations in atmospheric environmental capacity and total quantity control for three criteria pollutants in Lanzhou[J]. Journal of Lanzhou University (Natural Sciences), 2021, 57(3): 302-310, 317. (in Chinese)
30 张 玉, 兰 剑, 乔利平, 等. 气象参数和节假日对上海市区大气污染物浓度的影响[J]. 广州化工, 2021, 49(18): 85-87, 108
ZHANG Yu, LAN Jian, QIAO Liping, et al. Influence of meteorological parameters and holidays on air pollutant concentration in Shanghai[J]. Guangzhou Chemical Industry, 2021, 49(18): 85-87, 108. (in Chinese)
31 臧星华, 鲁垠涛, 姚 宏, 等. 中国主要大气污染物的时空分布特征研究[J]. 生态环境学报, 2015, 24(8): 1322-1329
ZANG Xinghua, LU Yintao, YAO Hong, et al. The temporal and spatial distribution characteristics of main air pollutants in China[J]. Ecology and Environment Sciences, 2015, 24(8): 1322-1329. (in Chinese)
32 王嫣然, 张学霞, 赵静瑶, 等. 2013—2014年北京地区PM2.5时空分布规律及其与植被覆盖度关系的研究[J]. 生态环境学报, 2016, 25: 103-111
WANG Yanran, ZHANG Xuexia, ZHAO Jingyao, et al. Temporal and spatial distribution of PM2.5 and its relationship with vegetation coverage in Beijing during the period of 2013—2014[J]. Ecology and Environment Sciences, 2016, 25: 103-111. (in Chinese)
33 朱晓娟. 基于机器学习的健康风险评估与预测[D]. 成都: 电子科技大学, 2020
ZHU Xiaojuan. Health risk assessment and prediction based on machine learning[D]. Chengdu: University of Electronic Science and Technology of China, 2020. (in Chinese)
34 洪 也, 张 莹, 马雁军, 等. 沈阳大气污染物与气象因素对呼吸疾病门诊数的影响[J]. 中国环境科学, 2020, 40: 4077-4090
HONG Ye, ZHANG Ying, MA Yanjun, et al. Effects of air pollutants and meteorological factors on outpatient visitors for respiratory diseases in Shenyang[J]. China Environmental Science, 2020, 40: 4077-4090. (in Chinese)
[1] 陈云燕,吴琪,张丽霞,陈丹青,梁朝霞. 妊娠糖尿病孕妇孕中期口服葡萄糖耐量试验异常项数及孕期增重与不良妊娠结局的关系[J]. 浙江大学学报(医学版), 2021, 50(3): 313-319.
[2] 徐恒,马燕,张丽霞,梁朝霞,陈丹青. 妊娠糖尿病患者孕前身体质量指数、孕期增重及血脂水平对妊娠结局的影响[J]. 浙江大学学报(医学版), 2021, 50(3): 320-328.
[3] 周雨梅,谢妮,张丽霞,陈丹青. 糖尿病家族史对妊娠糖尿病孕妇血糖、血脂及妊娠结局的影响[J]. 浙江大学学报(医学版), 2021, 50(3): 329-334.
[4] 葛瀛洲,刘欣梅,黄荷凤. 沉默信息调节因子家族参与病理妊娠的研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 335-344.
[5] 陈小斌,郭婷婷. 基于SEER数据库建立预测卵巢浆液性囊腺癌术后患者生存时间列线图[J]. 浙江大学学报(医学版), 2021, 50(3): 369-374.
[6] 张壮威,李君琴,胡甜甜,徐春景,谢妮,陈丹青. 高纤复合膳食纤维摄入对妊娠糖尿病患者血糖控制及妊娠结局的影响[J]. 浙江大学学报(医学版), 2021, 50(3): 305-312.
[7] 吴懿,蒋巍亮,杨晓军,黎文华,万荣,陆伦根,樊军卫,卢战军. 肝移植受者术后早期血清甘油三酯变化规律及其对术后糖尿病的预测价值[J]. 浙江大学学报(医学版), 2021, 50(2): 239-244.
[8] 叶元庆,雷浩,陈辰,胡可嘉,徐小林,袁长征,曹淑殷,王思思,王思聪,李舒,应智峻,贾君麟,王秦川,Sten H.VERMUND,许正平,吴息凤. 利用人口流动数据以及两阶段模型预测2019冠状病毒病流行趋势[J]. 浙江大学学报(医学版), 2021, 50(1): 68-73.
[9] 付媛媛,姜晶鑫,陈述政,邱福铭. T1期乳腺癌患者发生同侧腋窝淋巴结转移风险列线图的建立[J]. 浙江大学学报(医学版), 2021, 50(1): 81-89.
[10] 朱慧琦,应可净. 组织因子与肿瘤患者静脉血栓栓塞[J]. 浙江大学学报(医学版), 2020, 49(6): 772-778.
[11] 韩雪,蒋国军,石巧娟. 降血糖药对内皮祖细胞作用的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 629-636.
[12] 王晓波,张兆辉,吴章强,孙跃宗,章义利,龚鸣,季峰. 基于白蛋白胆红素指数的肝细胞癌根治性手术患者中期死亡风险预测模型评估[J]. 浙江大学学报(医学版), 2020, 49(3): 375-382.
[13] 曹盛力,冯沛华,时朋朋. 修正SEIR传染病动力学模型应用于湖北省2019冠状病毒病(COVID-19)疫情预测和评估[J]. 浙江大学学报(医学版), 2020, 49(2): 178-184.
[14] 张圣,胡振杰,叶璐,郑亚如. 决策树分析在急性心肌梗死事件预测中的应用[J]. 浙江大学学报(医学版), 2019, 48(6): 594-602.
[15] 郭丹玲,胡红杰,赵振华,吕桑英,黄亚男,蒋汝红,蒲彩玲,倪虹霞. 心肌瘢痕对慢性心肌梗死后恶性室性心律失常发生的预测价值[J]. 浙江大学学报(医学版), 2019, 48(5): 511-516.