Please wait a minute...
浙江大学学报(医学版)  2022, Vol. 51 Issue (2): 251-260    DOI: 10.3724/zdxbyxb-2021-0192
综述     
甲基转移酶SET结构域家族及其在心血管发育和疾病中的作用
邢敬慈1,揭伟1,2,*()
1.广东医科大学基础医学院病理学系,广东 湛江 524023
2.海南医学院 急救与创伤研究教育部重点实验室 海南省热带心血管病研究重点实验室,海南 海口 571199
Methyltransferase SET domain family and its relationship with cardiovascular development and diseases
XING Jingci1,JIE Wei1,2,*()
1. Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China;
2. Hainan Medical University, Key Laboratory of Emergency and Trauma, Ministry of Education, Hainan Provincial Key Laboratory of Tropical Cardiovascular Diseases Research, Haikou 571199, China
 全文: PDF(2160 KB)   HTML( 7 )
摘要:

表观遗传修饰异常与心血管疾病的发生、发展密切相关。SET结构域(SETD)家族是一类含有SETD的重要表观遗传修饰酶,主要通过修饰组蛋白H3K4、H3K9、H3K36和H4K20的甲基化而影响基因表达; 也可以催化非组蛋白的甲基化而影响信号转导及转录活化因子1、Wnt/β-catenin、缺氧诱导因子1α和Hippo/YAP等重要信号途径的信号转导。SETD家族对心血管发育和疾病的作用主要体现在以下几个方面:调控冠状动脉的形成和心脏发育;保护缺血再灌注损伤的心脏组织;调控糖尿病心血管并发症中的炎症反应、氧化应激和细胞凋亡;参与肺动脉高压形成;调控血栓形成、心肌肥大和心律失常等。本文综述了SETD家族成员的组成、表达调控机制及其在心血管发育和疾病中的作用研究进展,以期为深入理解心血管疾病发生和发展的分子机制及治疗靶点提供参考。

关键词: 表观遗传学甲基转移酶SET结构域心血管发育心血管疾病综述    
Abstract:

Abnormal epigenetic modification is closely related to the occurrence and development of cardiovascular diseases. The SET domain (SETD) family is an important epigenetic modifying enzyme containing SETD. They mainly affect gene expression by methylating H3K4, H3K9, H3K36 and H4K20. Additionally, the SETD family catalyzes the methylation of non-histone proteins, thereby affects the signal transduction of signal transduction and activator of transcription (STAT) 1, Wnt/β-catenin, hypoxia-inducible factor (HIF)-1α and Hippo/YAP pathways. The SETD family has the following regulatory effects on cardiovascular development and diseases: regulating coronary artery formation and cardiac development; protecting cardiac tissue from ischemia reperfusion injury; regulating inflammation, oxidative stress and apoptosis in cardiovascular complications of diabetes; participating in the formation of pulmonary hypertension; regulating thrombosis, cardiac hypertrophy and arrhythmia. This article summarizes the basic structures, expression regulation mechanisms and the role of existing SETD family members in cardiovascular development and diseases, in order to provide a basis for understanding the molecular mechanism of cardiovascular disease and exploring the therapeutic targets.

Key words: Epigenetics    Methyltransferase    SET domain    Cardiovascular development    Cardiovascular diseases    Review
收稿日期: 2021-07-07 出版日期: 2022-08-02
CLC:  R54  
基金资助: 国家自然科学基金(82060053);广东省“扬帆计划”高层次人才项目(4YF16007G)
通讯作者: 揭伟     E-mail: wei_jie@hainmc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邢敬慈
揭伟

引用本文:

邢敬慈,揭伟. 甲基转移酶SET结构域家族及其在心血管发育和疾病中的作用[J]. 浙江大学学报(医学版), 2022, 51(2): 251-260.

XING Jingci,JIE Wei. Methyltransferase SET domain family and its relationship with cardiovascular development and diseases. J Zhejiang Univ (Med Sci), 2022, 51(2): 251-260.

链接本文:

https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0192        https://www.zjujournals.com/med/CN/Y2022/V51/I2/251

简称

全称

其他名称

染色体位置

组蛋白修饰位点

SETD1A

SET domain containing1A

KIAA0339、SET1、KMT2F

16p11.2

H3K4[10]

SETD1B

SET domain containing1B

KIAA1076、SET1B、KMT2G

12q24.31

H3K4[11]

SETD2

SET domain containing2

HYPB、HIF-1、KIAA1732、FLJ23184、KMT3A

3p21.31

H3K36[12]

SETD3

SET domain containing3

FLJ23027、C14orf154

14q32.2

SETD4

SET domain containing4

C21orf18、C21orf27

21q22.12

H4K20、H3K4[13-14]

SETD5

SET domain containing5

FLJ10707、KIAA1757

3p25.3

H3K36[15]

SETD6

SET domain containing6

FLJ21148

16q21

H3K9[16]

SETD7

SET domain containing7

KIAA1717、SET7、SET7/9、SET9、KMT7

4q31.1

H3K4[17]

SETD8

SET domain containing8

SET8、SET07、PR-SET7、KMT5A

12q24.31

H4K20[18]

SETD9

SET domain containing9

MGC33648、C5orf35

5q11.2

表 1  SETD家族成员基本信息一览
1 BOWENK J, SULLIVANV K, KRIS-ETHERTONP M, et al.Nutrition and cardiovascular disease—an update[J]Curr Atheroscler Rep, 2018, 20( 2): 8.
doi: 10.1007/s11883-018-0704-3
2 BARSKIA, CUDDAPAHS, CUIK, et al.High-resolution profiling of histone methylations in the human genome[J]Cell, 2007, 129( 4): 823-837.
doi: 10.1016/j.cell.2007.05.009
3 HUSMANND, GOZANIO. Histone lysine methyltransferases in biology and disease[J]Nat Struct Mol Biol, 2019, 26( 10): 880-889.
doi: 10.1038/s41594-019-0298-7
4 CLARKES G. Protein methylation at the surface and buried deep: thinking outside the histone box[J]Trends Biochem Sci, 2013, 38( 5): 243-252.
doi: 10.1016/j.tibs.2013.02.004
5 SEPAROVICHR J, WILKINSM R. Ready, set, go: post-translational regulation of the histone lysine methylation network in budding yeast[J]J Biol Chem, 2021, 297( 2): 100939.
doi: 10.1016/j.jbc.2021.100939
6 JENUWEINT, LAIBLEG, DORNR, et al.SET domain proteins modulate chromatin domains in eu- and heterochromatin[J]Cell Mol Life Sci (CMLS), 1998, 54( 1): 80-93.
doi: 10.1007/s000180050127
7 DILLONS C, ZHANGX, TRIEVELR C, et al.The SET-domain protein superfamily: protein lysine methyltransferases[J]Genome Biol, 2005, 6( 8): 227.
doi: 10.1186/gb-2005-6-8-227
8 ZHANGL, MAH. Complex evolutionary history and diverse domain organization of SET proteins suggest divergent regulatory interactions[J]New Phytol, 2012, 195( 1): 248-263.
doi: 10.1111/j.1469-8137.2012.04143.x
9 DAIL, YES, LIH W, et al.SETD4 regulates cell quiescence and catalyzes the trimethylation of H4K20 during diapause formation in artemia[J/OL]Mol Cell Biol, 2017, 37( 7): e00453-16.
doi: 10.1128/MCB.00453-16
10 HIGGSM R, SATOK, REYNOLDSJ J, et al.Histone methylation by SETD1A protects nascent DNA through the nucleosome chaperone activity of FANCD2[J]Mol Cell, 2018, 71( 1): 25-41.e6.
doi: 10.1016/j.molcel.2018.05.018
11 SHINSKYS A, MONTEITHK E, VIGGIANOS, et al.Biochemical reconstitution and phylogenetic comparison of human SET1 family core complexes involved in histone methylation[J]J Biol Chem, 2015, 290( 10): 6361-6375.
doi: 10.1074/jbc.M114.627646
12 YANGS, ZHENGX, LUC, et al.Molecular basis for oncohistone H3 recognition by SETD2 methyltransferase[J]Genes Dev, 2016, 30( 14): 1611-1616.
doi: 10.1101/gad.284323.116
13 YES, DINGY F, JIAW H, et al.SET domain-containing protein 4 epigenetically controls breast cancer stem cell quiescence[J]Cancer Res, 2019, 79( 18): 4729-4743.
doi: 10.1158/0008-5472.CAN-19-1084
14 ZHONGY, YEP, MEIZ, et al.The novel methyltransferase SETD4 regulates TLR agonist-induced expression of cytokines through methylation of lysine 4 at histone 3 in macrophages[J]Mol Immunol, 2019, 179-188.
doi: 10.1016/j.molimm.2019.07.011
15 SESSAA, FAGNOCCHIL, MASTROTOTAROG, et al.SETD5 regulates chromatin methylation state and preserves global transcriptional fidelity during brain development and neuronal wiring[J]Neuron, 2019, 104( 2): 271-289.e13.
doi: 10.1016/j.neuron.2019.07.013
16 WEBBW M, IRWINA B, PEPINM E, et al.The SETD6 methyltransferase plays an essential role in hippocampus-dependent memory formation[J]Biol Psychiatry, 2020, 87( 6): 577-587.
doi: 10.1016/j.biopsych.2019.05.022
17 SHENY, DINGZ, MAS, et al.SETD7 mediates spinal microgliosis and neuropathic pain in a rat model of peripheral nerve injury[J]Brain Behav Immun, 2019, 382-395.
doi: 10.1016/j.bbi.2019.09.007
18 QIJ, WUQ, CHENGQ, et al.High glucose induces endothelial COX2 and iNOS expression via inhibition of monomethyltransferase SETD8 expression[J]J Diabetes Res, 2020, 2308520.
doi: 10.1155/2020/2308520
19 CARRS M, LA THANGUEN B. Cell cycle control by a methylation-phosphorylation switch[J]Cell Cycle, 2011, 10( 5): 733-734.
doi: 10.4161/cc.10.5.14958
20 SUNX J, WEIJ, WUX Y, et al.Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase[J]J Biol Chem, 2005, 280( 42): 35261-35271.
doi: 10.1074/jbc.M504012200
21 CHENH I, SUDOLM. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules.[J]Proc Natl Acad Sci U S A, 1995, 92( 17): 7819-7823.
doi: 10.1073/pnas.92.17.7819
22 DEHÉP M, GÉLIV. The multiple faces of set1[J]Biochem Cell Biol, 2006, 84( 4): 536-548.
doi: 10.1139/o06-081
23 HERZH M, GARRUSSA, SHILATIFARDA. SET for life: biochemical activities and biological functions of SET domain-containing proteins[J]Trends Biochem Sci, 2013, 38( 12): 621-639.
doi: 10.1016/j.tibs.2013.09.004
24 QIANC, ZHOUM M. SET domain protein lysine methyltransferases: structure, specificity and catalysis[J]Cell Mol Life Sci, 2006, 63( 23): 2755-2763.
doi: 10.1007/s00018-006-6274-5
25 TRIEVELR C, BEACHB M, DIRKL M A, et al.Structure and catalytic mechanism of a SET domain protein methyltransferase[J]Cell, 2002, 111( 1): 91-103.
doi: 10.1016/S0092-8674(02)01000-0
26 REAS, EISENHABERF, O’CARROLLD, et al.Regulation of chromatin structure by site-specific histone H3 methyltransferases[J]Nature, 2000, 406( 6796): 593-599.
doi: 10.1038/35020506
27 ORPHANIDESG, REINBERGD. A unified theory of gene expression[J]Cell, 2002, 108( 4): 439-451.
doi: 10.1016/S0092-8674(02)00655-4
28 YANGL, JINM, PARKS J, et al.SETD1A promotes proliferation of castration-resistant prostate cancer cells via FOXM1 transcription[J]Cancers, 2020, 12( 7): 1736.
doi: 10.3390/cancers12071736
29 SCHMIDTK, ZHANGQ, TASDOGANA, et al.The H3K4 methyltransferase SETD1B is essential for hematopoietic stem and progenitor cell homeostasis in mice[J/OL]eLife, 2018, e27157.
doi: 10.7554/eLife.27157
30 ORTMANNB M, BURROWSN, LOBBI T, et al.The HIF complex recruits the histone methyltransferase SET1B to activate specific hypoxia-inducible genes[J]Nat Genet, 2021, 53( 7): 1022-1035.
doi: 10.1038/s41588-021-00887-y
31 CHENR, ZHAOW Q, FANGC, et al.Histone methyltransferase SETD2: a potential tumor suppressor in solid cancers[J]J Cancer, 2020, 11( 11): 3349-3356.
doi: 10.7150/jca.38391
32 WANGL, NIUN, LIL, et al.H3K36 trimethylation mediated by SETD2 regulates the fate of bone marrow mesenchymal stem cells[J/OL]LoS Biol, 2018, 16( 11): e2006522.
doi: 10.1371/journal.pbio.2006522
33 CHENK, LIUJ, LIUS, et al.Methyltransferase SETD2-mediated methylation of STAT1 is critical for interferon antiviral activity[J]Cell, 2017, 170( 3): 492-506.e14.
doi: 10.1016/j.cell.2017.06.042
34 EOMG H, KIMK B, KIMJ H, et al.Histone methyltransferase SETD3 regulates muscle differentiation[J]J Biol Chem, 2011, 286( 40): 34733-34742.
doi: 10.1074/jbc.M110.203307
35 COHNO, FELDMANM, WEILL, et al.Chromatin associated SETD3 negatively regulates VEGF expression[J]Sci Rep, 2016, 6( 1): 37115.
doi: 10.1038/srep37115
36 OSIPOVICHA B, GANGULAR, VIANNAP G, et al.Setd5 is essential for mammalian development and co-transcriptional regulation of histone acetylation[J]Development, 2016, 143( 24): 4595.
doi: 10.1242/dev.141465
37 VERSHININZ, FELDMANM, CHENA, et al.PAK4 methylation by SETD6 promotes the activation of the Wnt/β-catenin pathway[J]J Biol Chem, 2016, 291( 13): 6786-6795.
doi: 10.1074/jbc.M115.697292
38 MUKHERJEEN, CARDENASE, BEDOLLAR, et al.SETD6 regulates NF-κB signaling in urothelial cell survival: implications for bladder cancer[J]Oncotarget, 2017, 8( 9): 15114-15125.
doi: 10.18632/oncotarget.14750
39 TAKEMOTOY, ITOA, NIWAH, et al.Identification of cyproheptadine as an inhibitor of SET domain containing lysine methyltransferase 7/9 (Set7/9) that regulates estrogen-dependent transcription[J]J Med Chem, 2016, 59( 8): 3650-3660.
doi: 10.1021/acs.jmedchem.5b01732
40 LIUX, CHENZ, XUC, et al.Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation[J]Nucleic Acids Res, 2015, 43( 10): 5081-5098.
doi: 10.1093/nar/gkv379
41 LIUQ, GENGH, XUEC, et al.Functional regulation of hypoxia inducible factor-1α by SET9 lysine methyltransferase[J]Biochim Biophys Acta, 2015, 1853( 5): 881-891.
doi: 10.1016/j.bbamcr.2015.01.011
42 SHIX, KACHIRSKAIAI, YAMAGUCHIH, et al.Modulation of p53 function by SET8-mediated methylation at lysine 382[J]Mol Cell, 2007, 27( 4): 636-646.
doi: 10.1016/j.molcel.2007.07.012
43 OUDHOFFM J, FREEMANS A, COUZENSA L, et al.Control of the hippo pathway by Set7-dependent methylation of Yap[J]Dev Cell, 2013, 26( 2): 188-194.
doi: 10.1016/j.devcel.2013.05.025
44 OUDHOFFM J, BRAAMM J S, FREEMANS A, et al.SETD7 controls intestinal regeneration and tumorigenesis by regulating Wnt/β-catenin and Hippo/YAP signaling[J]Dev Cell, 2016, 37( 1): 47-57.
doi: 10.1016/j.devcel.2016.03.002
45 HUM, SUNX J, ZHANGY L, et al.Histone H3 lysine 36 methyltransferase Hypb/Setd2 is required for embryonic vascular remodeling[J]Proc Natl Acad Sci U S A, 2010, 107( 7): 2956-2961.
doi: 10.1073/pnas.0915033107
46 CHENF, CHENJ, WANGH, et al.Histone lysine methyltransferase SETD2 regulates coronary vascular development in embryonic mouse hearts[J]Front Cell Dev Biol, 2021, 651655.
doi: 10.3389/fcell.2021.651655
47 CHEUNGM Y Q, ROBERTSC, SCAMBLERP, et al.Setd5 is required in cardiopharyngeal mesoderm for heart development and its haploinsufficiency is associated with outflow tract defects in mouse[J/OL]Genesis, 2021, 59( 7-8): e23421.
doi: 10.1002/dvg.23421
48 LEEJ, SHAON Y, PAIKD T, et al.SETD7 drives cardiac lineage commitment through stage-specific transcriptional activation[J]Cell Stem Cell, 2018, 22( 3): 428-444.e5.
doi: 10.1016/j.stem.2018.02.005
49 KIMJ D, KIME, KOUNS, et al.Proper activity of histone H3 lysine 4 (H3K4) methyltransferase is required for morphogenesis during zebrafish cardiogenesis[J]Molecules Cells, 2015, 38( 6): 580-586.
doi: 10.14348/molcells.2015.0053
50 XINGS, TIANJ Z, YANGS H, et al.Setd4 controlled quiescent c-Kit+ cells contribute to cardiac neovascularization of capillaries beyond activation[J]Sci Rep, 2021, 11( 1): 11603.
doi: 10.1038/s41598-021-91105-6
51 LIAOX, WUC, SHAOZ, et al.SETD4 in the proliferation, migration, angiogenesis, myogenic differentiation and genomic methylation of bone marrow mesenchymal stem cells[J]Stem Cell Rev Rep, 2021, 17( 4): 1374-1389.
doi: 10.1007/s12015-021-10121-1
52 DANGY, MAX, LIY, et al.Inhibition of SETD7 protects cardiomyocytes against hypoxia/reoxygenation-induced injury through regulating Keap1/Nrf2 signaling[J]Biomed pharmacother, 2018, 842-849.
doi: 10.1016/j.biopha.2018.07.007
53 于 辉, 赵 阳, 费家玥, 等. 异甘草素抑制SETD7表达可保护缺氧/复氧诱导心肌细胞的氧化损伤[J]. 中国组织工程研究, 2020, 24(35): 5613-5618
YU Hui, ZHAO Yang, FEI Jiayue, et al. Isoliquiritigenin inhibits SETD7 expression against oxidative damage in cardiomyocytes induced by hypoxia/reoxygenation[J]. Chinese Journal of Tissue Engineering Research, 2020, 24(35): 5613-5618. (in Chinese)
54 王彦利, 李纪明, 罗进光. miR-137靶向下调SETD7表达对缺氧复氧诱导的心肌细胞氧化应激的影响研究[J]. 分子诊断与治疗杂志, 2019, 11(6): 462-467
WANG Yanli, LI Jiming, LUO Jinguang. Effect of miR-137 targeting down-regulation of SETD7 expression on oxidativestress induced by hypoxia-reoxygenation in cardiomyocytes[J]. Journal of Molecular Diagnostics and Therapy, 2019, 11(6): 462-467. (in Chinese)
55 王耀文. 丁酸钠上调SETD-4负调控SMAD3抑制血管紧张素Ⅱ诱导的心脏纤维化作用及表观遗传学机制研究[D]. 重庆: 重庆医科大学, 2020
WANG Yaowen. Epigenetic mechanism of sodium butyrate upregulates SETD-4 negatively regulates SMAD3 to inhibit angiotensin Ⅱ-induced cardiac fibrosis[D]. ChongQing: ChongQing Medical University, 2020. (in Chinese)
56 KEATINGS T, EL-OSTAA. Chromatin modifications associated with diabetes[J]J Cardiovasc Trans Res, 2012, 5( 4): 399-412.
doi: 10.1007/s12265-012-9380-9
57 PANENIF, COSTANTINOS, BATTISTAR, et al.Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus[J]Circ Cardiovasc Genet, 2015, 8( 1): 150-158.
doi: 10.1161/CIRCGENETICS.114.000671
58 OKABEJ, ORLOWSKIC, BALCERCZYKA, et al.Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells[J]Circ Res, 2012, 110( 8): 1067-1076.
doi: 10.1161/CIRCRESAHA.112.266171
59 WUX, HUANGL, LIUJ. Relationship between oxidative stress and nuclear factor‑erythroid‑2‑related factor 2 signaling in diabetic cardiomyopathy (Review)[J]Exp Ther Med, 2021, 22( 1): 678.
doi: 10.3892/etm.2021.10110
60 WANGX, LIUQ, KONGD, et al.Down-regulation of SETD6 protects podocyte against high glucose and palmitic acid-induced apoptosis, and mitochondrial dysfunction via activating Nrf2-Keap1 signaling pathway in diabetic nephropathy[J]J Mol Hist, 2020, 51( 5): 549-558.
doi: 10.1007/s10735-020-09904-6
61 CHENX, WUQ, JIANGH, et al.SET8 is involved in the regulation of hyperglycemic memory in human umbilical endothelial cells[J]Acta Biochim Biophys Sin, 2018, 50( 7): 635-642.
doi: 10.1093/abbs/gmy051
62 SHENX, CHENX, WANGJ, et al.SET8 suppression mediates high glucose-induced vascular endothelial inflammation via the upregulation of PTEN[J]Exp Mol Med, 2020, 52( 10): 1715-1729.
doi: 10.1038/s12276-020-00509-3
63 CHENX, QIJ, WUQ, et al.High glucose inhibits vascular endothelial Keap1/Nrf2/ARE signal pathway via downregulation of monomethyltransferase SET8 expression[J]Acta Biochim Biophys Sin, 2020, 52( 5): 506-516.
doi: 10.1093/abbs/gmaa023
64 DUGAB, CZAKOM, KOMLOSIK, et al.Deletion of 4q28.3-31.23 in the background of multiple malformations with pulmonary hypertension[J]Mol Cytogenet, 2014, 7( 1): 36.
doi: 10.1186/1755-8166-7-36
65 UGAIK, MATSUDAS, MIKAMIH, et al.Inhibition of the SET8 pathway ameliorates lung fibrosis even through fibroblast dedifferentiation[J]Front Mol Biosci, 2020, 192.
doi: 10.3389/fmolb.2020.00192
66 ELKOURISM, KONTAKIH, STAVROPOULOSA, et al.SET9-mediated regulation of TGF-β signaling links protein methylation to pulmonary fibrosis[J]Cell Rep, 2016, 15( 12): 2733-2744.
doi: 10.1016/j.celrep.2016.05.051
67 JIANGX, LIT, SUNJ, et al.SETD3 negatively regulates VEGF expression during hypoxic pulmonary hypertension in rats[J]Hypertens Res, 2018, 41( 9): 691-698.
doi: 10.1038/s41440-018-0068-7
68 ZHOUX L, HUANGF J, LIY, et al.SEDT2/METTL14-mediated m6A methylation awakening contributes to hypoxia-induced pulmonary arterial hypertension in mice[J]Aging, 2021, 13( 5): 7538-7548.
doi: 10.18632/aging.202616
69 LIZ, CHENB, WENGX, et al.The histone methyltransferase SETD1A regulates thrombomodulin transcription in vascular endothelial cells[J]Biochim Biophys Acta Gene Regul Mech, 2018, 1861( 8): 752-761.
doi: 10.1016/j.bbagrm.2018.06.004
70 YUL, YANGG, WENGX, et al.Histone methyltransferase SET1 mediates angiotensin Ⅱ-induced endothelin-1 transcription and cardiac hypertrophy in mice[J]Arterioscler Thromb Vasc Biol, 2015, 35( 5): 1207-1217.
doi: 10.1161/ATVBAHA.115.305230
71 KATAKIAY T, THAKKARN P, THAKARS, et al.Dynamic alterations of H3K4me3 and H3K27me3 at ADAM17 and Jagged‐1 gene promoters cause an inflammatory switch of endothelial cells[J]J Cell Physiol, 2022, 237( 1): 992-1012.
doi: 10.1002/jcp.30579
72 BASUROYT, DE LA SERNAI L. SETD7 in cardiomyocyte differentiation and cardiac function[J]Stem Cell Investig, 2019, 29.
doi: 10.21037/sci.2019.08.01
73 QIAOY, LIPOVSKYC, HICKSS, et al.Transient notch activation induces long-term gene expression changes leading to sick sinus syndrome in mice[J]Circ Res, 2017, 121( 5): 549-563.
doi: 10.1161/CIRCRESAHA.116.310396
74 马会军. SET7对Ang Ⅱ介导的心肌成纤维细胞增殖和胶原合成的影响及其机制[J]. 中南大学学报(医学版), 2021, 46(2): 135-141
MA Huijun. Effects of SET7 on angiotensin Ⅱ-mediated proliferationand collagen synthesis of myocardial fibroblastsand its mechanisms[J]. Journal of Central South University (Medical Science), 2021, 46(2): 135-141. (in Chinese)
75 WUY S, CHENY T, BAOY T, et al.Identification and verification of potential therapeutic target genes in berberine-treated zucker diabetic fatty rats through bioinformatics analysis[J/OL]PLoS One, 2016, 11( 11): e0166378.
doi: 10.1371/journal.pone.0166378
76 CHOKPAISARNJ, URAON, VORAVUTHIKUNCHAIS P, et al.Quercus infectoria inhibits Set7/NF-κB inflammatory pathway in macrophages exposed to a diabetic environment[J]Cytokine, 2017, 29-36.
doi: 10.1016/j.cyto.2017.04.005
77 DINGH, LUW C, HUJ C, et al.Identification and characterizations of novel, selective histone methyltransferase SET7 inhibitors by scaffold hopping- and 2D-molecular fingerprint-based similarity search[J]Molecules, 2018, 23( 3): 567.
doi: 10.3390/molecules23030567
78 HOUZ, MINW, ZHANGR, et al.Lead discovery, chemical optimization, and biological evaluation studies of novel histone methyltransferase SET7 small-molecule inhibitors[J]BioOrg Medicinal Chem Lett, 2020, 30( 9): 127061.
doi: 10.1016/j.bmcl.2020.127061
79 JUDSONR N, QUARTAM, OUDHOFFM J, et al.Inhibition of methyltransferase setd7 allows the in vitro expansion of myogenic stem cells with improved therapeutic potential[J]Cell Stem Cell, 2018, 22( 2): 177-190.e7.
doi: 10.1016/j.stem.2017.12.010
80 WILLIAMSD E, IZARDF, ARNOULDS, et al.Structures of nahuoic acids B-E produced in culture by a streptomyces sp. isolated from a marine sediment and evidence for the inhibition of the histone methyl transferase SETD8 in human cancer cells by nahuoic acid A[J]J Org Chem, 2016, 81( 4): 1324-1332.
doi: 10.1021/acs.joc.5b02569
81 VESCHIV, LIUZ, VOSST C, et al.Epigenetic siRNA and chemical screens identify SETD8 inhibition as a therapeutic strategy for p53 activation in high-risk neuroblastoma[J]Cancer Cell, 2017, 31( 1): 50-63.
doi: 10.1016/j.ccell.2016.12.002
82 BLUMG, IBÁÑEZG, RAOX, et al.Small-molecule inhibitors of SETD8 with cellular activity[J]ACS Chem Biol, 2014, 9( 11): 2471-2478.
doi: 10.1021/cb500515r
[1] 李健宜,佟丹丹,林俊生. 恶性肿瘤饥饿疗法研究现状[J]. 浙江大学学报(医学版), 2022, 51(2): 241-250.
[2] 叶柏新,胡永仙,张明明,黄河. 脂质纳米粒-mRNA递送系统及其在嵌合抗原受体T细胞治疗中的应用[J]. 浙江大学学报(医学版), 2022, 51(2): 185-191.
[3] 刘娇,涂晓璇,刘璐璐,方维佳. 嵌合抗原受体T细胞治疗恶性实体瘤新进展[J]. 浙江大学学报(医学版), 2022, 51(2): 175-184.
[4] 胡珂嘉,黄玥,胡永仙,黄河. 嵌合抗原受体T细胞治疗血液系统恶性肿瘤研究进展[J]. 浙江大学学报(医学版), 2022, 51(2): 192-203.
[5] 张少琪,孙洁. 纳米药物递送系统在急性髓细胞性白血病治疗中的应用[J]. 浙江大学学报(医学版), 2022, 51(2): 233-240.
[6] 刘德坤,刘佳丽,张丹,杨雯晴. 细胞衰老与动脉粥样硬化的相关研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 95-101.
[7] 汪文妮,陈超群,顾新华. 磁性纳米粒子复合支架及外加磁场影响成骨作用的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 102-107.
[8] 边梦瑶,陈莉丽,雷利红. 慢性牙周炎与帕金森病相关性的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 108-114.
[9] 金群,黄丽华. 神经认知障碍患者多成分运动干预的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 38-46.
[10] 卢茜璇,包黎莎,潘宗富,葛明华. 甲状腺未分化癌免疫治疗的现状及未来[J]. 浙江大学学报(医学版), 2021, 50(6): 675-684.
[11] 钱晨宏,蒋烈浩,许世莹,王佳峰,谭卓,忻莹,葛明华. 甲状腺未分化癌靶向治疗研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 685-693.
[12] 周靖,王艳,徐恩萍. 微单倍型在法医遗传学中的研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 777-782.
[13] 任渊,崔戈丹,高永翔. 原发性干燥综合征患者颌下腺炎症反应机制研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 783-794.
[14] 马丽娟,吴爽,张凯,田梅,张宏. 大麻素1型受体正电子发射断层显像在神经精神疾病中的应用进展[J]. 浙江大学学报(医学版), 2021, 50(5): 666-673.
[15] 宣自学,张轶雯,潘宗富,郑小卫,黄萍. 天然药物成分干预铁死亡抑制肿瘤的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(5): 601-606.