综述 |
|
|
|
|
甲基转移酶SET结构域家族及其在心血管发育和疾病中的作用 |
邢敬慈1,揭伟1,2,*( ) |
1.广东医科大学基础医学院病理学系,广东 湛江 524023 2.海南医学院 急救与创伤研究教育部重点实验室 海南省热带心血管病研究重点实验室,海南 海口 571199 |
|
Methyltransferase SET domain family and its relationship with cardiovascular development and diseases |
XING Jingci1,JIE Wei1,2,*( ) |
1. Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China; 2. Hainan Medical University, Key Laboratory of Emergency and Trauma, Ministry of Education, Hainan Provincial Key Laboratory of Tropical Cardiovascular Diseases Research, Haikou 571199, China |
1 |
BOWENK J, SULLIVANV K, KRIS-ETHERTONP M, et al.Nutrition and cardiovascular disease—an update[J]Curr Atheroscler Rep, 2018, 20( 2): 8.
doi: 10.1007/s11883-018-0704-3
|
2 |
BARSKIA, CUDDAPAHS, CUIK, et al.High-resolution profiling of histone methylations in the human genome[J]Cell, 2007, 129( 4): 823-837.
doi: 10.1016/j.cell.2007.05.009
|
3 |
HUSMANND, GOZANIO. Histone lysine methyltransferases in biology and disease[J]Nat Struct Mol Biol, 2019, 26( 10): 880-889.
doi: 10.1038/s41594-019-0298-7
|
4 |
CLARKES G. Protein methylation at the surface and buried deep: thinking outside the histone box[J]Trends Biochem Sci, 2013, 38( 5): 243-252.
doi: 10.1016/j.tibs.2013.02.004
|
5 |
SEPAROVICHR J, WILKINSM R. Ready, set, go: post-translational regulation of the histone lysine methylation network in budding yeast[J]J Biol Chem, 2021, 297( 2): 100939.
doi: 10.1016/j.jbc.2021.100939
|
6 |
JENUWEINT, LAIBLEG, DORNR, et al.SET domain proteins modulate chromatin domains in eu- and heterochromatin[J]Cell Mol Life Sci (CMLS), 1998, 54( 1): 80-93.
doi: 10.1007/s000180050127
|
7 |
DILLONS C, ZHANGX, TRIEVELR C, et al.The SET-domain protein superfamily: protein lysine methyltransferases[J]Genome Biol, 2005, 6( 8): 227.
doi: 10.1186/gb-2005-6-8-227
|
8 |
ZHANGL, MAH. Complex evolutionary history and diverse domain organization of SET proteins suggest divergent regulatory interactions[J]New Phytol, 2012, 195( 1): 248-263.
doi: 10.1111/j.1469-8137.2012.04143.x
|
9 |
DAIL, YES, LIH W, et al.SETD4 regulates cell quiescence and catalyzes the trimethylation of H4K20 during diapause formation in artemia[J/OL]Mol Cell Biol, 2017, 37( 7): e00453-16.
doi: 10.1128/MCB.00453-16
|
10 |
HIGGSM R, SATOK, REYNOLDSJ J, et al.Histone methylation by SETD1A protects nascent DNA through the nucleosome chaperone activity of FANCD2[J]Mol Cell, 2018, 71( 1): 25-41.e6.
doi: 10.1016/j.molcel.2018.05.018
|
11 |
SHINSKYS A, MONTEITHK E, VIGGIANOS, et al.Biochemical reconstitution and phylogenetic comparison of human SET1 family core complexes involved in histone methylation[J]J Biol Chem, 2015, 290( 10): 6361-6375.
doi: 10.1074/jbc.M114.627646
|
12 |
YANGS, ZHENGX, LUC, et al.Molecular basis for oncohistone H3 recognition by SETD2 methyltransferase[J]Genes Dev, 2016, 30( 14): 1611-1616.
doi: 10.1101/gad.284323.116
|
13 |
YES, DINGY F, JIAW H, et al.SET domain-containing protein 4 epigenetically controls breast cancer stem cell quiescence[J]Cancer Res, 2019, 79( 18): 4729-4743.
doi: 10.1158/0008-5472.CAN-19-1084
|
14 |
ZHONGY, YEP, MEIZ, et al.The novel methyltransferase SETD4 regulates TLR agonist-induced expression of cytokines through methylation of lysine 4 at histone 3 in macrophages[J]Mol Immunol, 2019, 179-188.
doi: 10.1016/j.molimm.2019.07.011
|
15 |
SESSAA, FAGNOCCHIL, MASTROTOTAROG, et al.SETD5 regulates chromatin methylation state and preserves global transcriptional fidelity during brain development and neuronal wiring[J]Neuron, 2019, 104( 2): 271-289.e13.
doi: 10.1016/j.neuron.2019.07.013
|
16 |
WEBBW M, IRWINA B, PEPINM E, et al.The SETD6 methyltransferase plays an essential role in hippocampus-dependent memory formation[J]Biol Psychiatry, 2020, 87( 6): 577-587.
doi: 10.1016/j.biopsych.2019.05.022
|
17 |
SHENY, DINGZ, MAS, et al.SETD7 mediates spinal microgliosis and neuropathic pain in a rat model of peripheral nerve injury[J]Brain Behav Immun, 2019, 382-395.
doi: 10.1016/j.bbi.2019.09.007
|
18 |
QIJ, WUQ, CHENGQ, et al.High glucose induces endothelial COX2 and iNOS expression via inhibition of monomethyltransferase SETD8 expression[J]J Diabetes Res, 2020, 2308520.
doi: 10.1155/2020/2308520
|
19 |
CARRS M, LA THANGUEN B. Cell cycle control by a methylation-phosphorylation switch[J]Cell Cycle, 2011, 10( 5): 733-734.
doi: 10.4161/cc.10.5.14958
|
20 |
SUNX J, WEIJ, WUX Y, et al.Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase[J]J Biol Chem, 2005, 280( 42): 35261-35271.
doi: 10.1074/jbc.M504012200
|
21 |
CHENH I, SUDOLM. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules.[J]Proc Natl Acad Sci U S A, 1995, 92( 17): 7819-7823.
doi: 10.1073/pnas.92.17.7819
|
22 |
DEHÉP M, GÉLIV. The multiple faces of set1[J]Biochem Cell Biol, 2006, 84( 4): 536-548.
doi: 10.1139/o06-081
|
23 |
HERZH M, GARRUSSA, SHILATIFARDA. SET for life: biochemical activities and biological functions of SET domain-containing proteins[J]Trends Biochem Sci, 2013, 38( 12): 621-639.
doi: 10.1016/j.tibs.2013.09.004
|
24 |
QIANC, ZHOUM M. SET domain protein lysine methyltransferases: structure, specificity and catalysis[J]Cell Mol Life Sci, 2006, 63( 23): 2755-2763.
doi: 10.1007/s00018-006-6274-5
|
25 |
TRIEVELR C, BEACHB M, DIRKL M A, et al.Structure and catalytic mechanism of a SET domain protein methyltransferase[J]Cell, 2002, 111( 1): 91-103.
doi: 10.1016/S0092-8674(02)01000-0
|
26 |
REAS, EISENHABERF, O’CARROLLD, et al.Regulation of chromatin structure by site-specific histone H3 methyltransferases[J]Nature, 2000, 406( 6796): 593-599.
doi: 10.1038/35020506
|
27 |
ORPHANIDESG, REINBERGD. A unified theory of gene expression[J]Cell, 2002, 108( 4): 439-451.
doi: 10.1016/S0092-8674(02)00655-4
|
28 |
YANGL, JINM, PARKS J, et al.SETD1A promotes proliferation of castration-resistant prostate cancer cells via FOXM1 transcription[J]Cancers, 2020, 12( 7): 1736.
doi: 10.3390/cancers12071736
|
29 |
SCHMIDTK, ZHANGQ, TASDOGANA, et al.The H3K4 methyltransferase SETD1B is essential for hematopoietic stem and progenitor cell homeostasis in mice[J/OL]eLife, 2018, e27157.
doi: 10.7554/eLife.27157
|
30 |
ORTMANNB M, BURROWSN, LOBBI T, et al.The HIF complex recruits the histone methyltransferase SET1B to activate specific hypoxia-inducible genes[J]Nat Genet, 2021, 53( 7): 1022-1035.
doi: 10.1038/s41588-021-00887-y
|
31 |
CHENR, ZHAOW Q, FANGC, et al.Histone methyltransferase SETD2: a potential tumor suppressor in solid cancers[J]J Cancer, 2020, 11( 11): 3349-3356.
doi: 10.7150/jca.38391
|
32 |
WANGL, NIUN, LIL, et al.H3K36 trimethylation mediated by SETD2 regulates the fate of bone marrow mesenchymal stem cells[J/OL]LoS Biol, 2018, 16( 11): e2006522.
doi: 10.1371/journal.pbio.2006522
|
33 |
CHENK, LIUJ, LIUS, et al.Methyltransferase SETD2-mediated methylation of STAT1 is critical for interferon antiviral activity[J]Cell, 2017, 170( 3): 492-506.e14.
doi: 10.1016/j.cell.2017.06.042
|
34 |
EOMG H, KIMK B, KIMJ H, et al.Histone methyltransferase SETD3 regulates muscle differentiation[J]J Biol Chem, 2011, 286( 40): 34733-34742.
doi: 10.1074/jbc.M110.203307
|
35 |
COHNO, FELDMANM, WEILL, et al.Chromatin associated SETD3 negatively regulates VEGF expression[J]Sci Rep, 2016, 6( 1): 37115.
doi: 10.1038/srep37115
|
36 |
OSIPOVICHA B, GANGULAR, VIANNAP G, et al.Setd5 is essential for mammalian development and co-transcriptional regulation of histone acetylation[J]Development, 2016, 143( 24): 4595.
doi: 10.1242/dev.141465
|
37 |
VERSHININZ, FELDMANM, CHENA, et al.PAK4 methylation by SETD6 promotes the activation of the Wnt/β-catenin pathway[J]J Biol Chem, 2016, 291( 13): 6786-6795.
doi: 10.1074/jbc.M115.697292
|
38 |
MUKHERJEEN, CARDENASE, BEDOLLAR, et al.SETD6 regulates NF-κB signaling in urothelial cell survival: implications for bladder cancer[J]Oncotarget, 2017, 8( 9): 15114-15125.
doi: 10.18632/oncotarget.14750
|
39 |
TAKEMOTOY, ITOA, NIWAH, et al.Identification of cyproheptadine as an inhibitor of SET domain containing lysine methyltransferase 7/9 (Set7/9) that regulates estrogen-dependent transcription[J]J Med Chem, 2016, 59( 8): 3650-3660.
doi: 10.1021/acs.jmedchem.5b01732
|
40 |
LIUX, CHENZ, XUC, et al.Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation[J]Nucleic Acids Res, 2015, 43( 10): 5081-5098.
doi: 10.1093/nar/gkv379
|
41 |
LIUQ, GENGH, XUEC, et al.Functional regulation of hypoxia inducible factor-1α by SET9 lysine methyltransferase[J]Biochim Biophys Acta, 2015, 1853( 5): 881-891.
doi: 10.1016/j.bbamcr.2015.01.011
|
42 |
SHIX, KACHIRSKAIAI, YAMAGUCHIH, et al.Modulation of p53 function by SET8-mediated methylation at lysine 382[J]Mol Cell, 2007, 27( 4): 636-646.
doi: 10.1016/j.molcel.2007.07.012
|
43 |
OUDHOFFM J, FREEMANS A, COUZENSA L, et al.Control of the hippo pathway by Set7-dependent methylation of Yap[J]Dev Cell, 2013, 26( 2): 188-194.
doi: 10.1016/j.devcel.2013.05.025
|
44 |
OUDHOFFM J, BRAAMM J S, FREEMANS A, et al.SETD7 controls intestinal regeneration and tumorigenesis by regulating Wnt/β-catenin and Hippo/YAP signaling[J]Dev Cell, 2016, 37( 1): 47-57.
doi: 10.1016/j.devcel.2016.03.002
|
45 |
HUM, SUNX J, ZHANGY L, et al.Histone H3 lysine 36 methyltransferase Hypb/Setd2 is required for embryonic vascular remodeling[J]Proc Natl Acad Sci U S A, 2010, 107( 7): 2956-2961.
doi: 10.1073/pnas.0915033107
|
46 |
CHENF, CHENJ, WANGH, et al.Histone lysine methyltransferase SETD2 regulates coronary vascular development in embryonic mouse hearts[J]Front Cell Dev Biol, 2021, 651655.
doi: 10.3389/fcell.2021.651655
|
47 |
CHEUNGM Y Q, ROBERTSC, SCAMBLERP, et al.Setd5 is required in cardiopharyngeal mesoderm for heart development and its haploinsufficiency is associated with outflow tract defects in mouse[J/OL]Genesis, 2021, 59( 7-8): e23421.
doi: 10.1002/dvg.23421
|
48 |
LEEJ, SHAON Y, PAIKD T, et al.SETD7 drives cardiac lineage commitment through stage-specific transcriptional activation[J]Cell Stem Cell, 2018, 22( 3): 428-444.e5.
doi: 10.1016/j.stem.2018.02.005
|
49 |
KIMJ D, KIME, KOUNS, et al.Proper activity of histone H3 lysine 4 (H3K4) methyltransferase is required for morphogenesis during zebrafish cardiogenesis[J]Molecules Cells, 2015, 38( 6): 580-586.
doi: 10.14348/molcells.2015.0053
|
50 |
XINGS, TIANJ Z, YANGS H, et al.Setd4 controlled quiescent c-Kit+ cells contribute to cardiac neovascularization of capillaries beyond activation[J]Sci Rep, 2021, 11( 1): 11603.
doi: 10.1038/s41598-021-91105-6
|
51 |
LIAOX, WUC, SHAOZ, et al.SETD4 in the proliferation, migration, angiogenesis, myogenic differentiation and genomic methylation of bone marrow mesenchymal stem cells[J]Stem Cell Rev Rep, 2021, 17( 4): 1374-1389.
doi: 10.1007/s12015-021-10121-1
|
52 |
DANGY, MAX, LIY, et al.Inhibition of SETD7 protects cardiomyocytes against hypoxia/reoxygenation-induced injury through regulating Keap1/Nrf2 signaling[J]Biomed pharmacother, 2018, 842-849.
doi: 10.1016/j.biopha.2018.07.007
|
53 |
于 辉, 赵 阳, 费家玥, 等. 异甘草素抑制SETD7表达可保护缺氧/复氧诱导心肌细胞的氧化损伤[J]. 中国组织工程研究, 2020, 24(35): 5613-5618 YU Hui, ZHAO Yang, FEI Jiayue, et al. Isoliquiritigenin inhibits SETD7 expression against oxidative damage in cardiomyocytes induced by hypoxia/reoxygenation[J]. Chinese Journal of Tissue Engineering Research, 2020, 24(35): 5613-5618. (in Chinese)
|
54 |
王彦利, 李纪明, 罗进光. miR-137靶向下调SETD7表达对缺氧复氧诱导的心肌细胞氧化应激的影响研究[J]. 分子诊断与治疗杂志, 2019, 11(6): 462-467 WANG Yanli, LI Jiming, LUO Jinguang. Effect of miR-137 targeting down-regulation of SETD7 expression on oxidativestress induced by hypoxia-reoxygenation in cardiomyocytes[J]. Journal of Molecular Diagnostics and Therapy, 2019, 11(6): 462-467. (in Chinese)
|
55 |
王耀文. 丁酸钠上调SETD-4负调控SMAD3抑制血管紧张素Ⅱ诱导的心脏纤维化作用及表观遗传学机制研究[D]. 重庆: 重庆医科大学, 2020 WANG Yaowen. Epigenetic mechanism of sodium butyrate upregulates SETD-4 negatively regulates SMAD3 to inhibit angiotensin Ⅱ-induced cardiac fibrosis[D]. ChongQing: ChongQing Medical University, 2020. (in Chinese)
|
56 |
KEATINGS T, EL-OSTAA. Chromatin modifications associated with diabetes[J]J Cardiovasc Trans Res, 2012, 5( 4): 399-412.
doi: 10.1007/s12265-012-9380-9
|
57 |
PANENIF, COSTANTINOS, BATTISTAR, et al.Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus[J]Circ Cardiovasc Genet, 2015, 8( 1): 150-158.
doi: 10.1161/CIRCGENETICS.114.000671
|
58 |
OKABEJ, ORLOWSKIC, BALCERCZYKA, et al.Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells[J]Circ Res, 2012, 110( 8): 1067-1076.
doi: 10.1161/CIRCRESAHA.112.266171
|
59 |
WUX, HUANGL, LIUJ. Relationship between oxidative stress and nuclear factor‑erythroid‑2‑related factor 2 signaling in diabetic cardiomyopathy (Review)[J]Exp Ther Med, 2021, 22( 1): 678.
doi: 10.3892/etm.2021.10110
|
60 |
WANGX, LIUQ, KONGD, et al.Down-regulation of SETD6 protects podocyte against high glucose and palmitic acid-induced apoptosis, and mitochondrial dysfunction via activating Nrf2-Keap1 signaling pathway in diabetic nephropathy[J]J Mol Hist, 2020, 51( 5): 549-558.
doi: 10.1007/s10735-020-09904-6
|
61 |
CHENX, WUQ, JIANGH, et al.SET8 is involved in the regulation of hyperglycemic memory in human umbilical endothelial cells[J]Acta Biochim Biophys Sin, 2018, 50( 7): 635-642.
doi: 10.1093/abbs/gmy051
|
62 |
SHENX, CHENX, WANGJ, et al.SET8 suppression mediates high glucose-induced vascular endothelial inflammation via the upregulation of PTEN[J]Exp Mol Med, 2020, 52( 10): 1715-1729.
doi: 10.1038/s12276-020-00509-3
|
63 |
CHENX, QIJ, WUQ, et al.High glucose inhibits vascular endothelial Keap1/Nrf2/ARE signal pathway via downregulation of monomethyltransferase SET8 expression[J]Acta Biochim Biophys Sin, 2020, 52( 5): 506-516.
doi: 10.1093/abbs/gmaa023
|
64 |
DUGAB, CZAKOM, KOMLOSIK, et al.Deletion of 4q28.3-31.23 in the background of multiple malformations with pulmonary hypertension[J]Mol Cytogenet, 2014, 7( 1): 36.
doi: 10.1186/1755-8166-7-36
|
65 |
UGAIK, MATSUDAS, MIKAMIH, et al.Inhibition of the SET8 pathway ameliorates lung fibrosis even through fibroblast dedifferentiation[J]Front Mol Biosci, 2020, 192.
doi: 10.3389/fmolb.2020.00192
|
66 |
ELKOURISM, KONTAKIH, STAVROPOULOSA, et al.SET9-mediated regulation of TGF-β signaling links protein methylation to pulmonary fibrosis[J]Cell Rep, 2016, 15( 12): 2733-2744.
doi: 10.1016/j.celrep.2016.05.051
|
67 |
JIANGX, LIT, SUNJ, et al.SETD3 negatively regulates VEGF expression during hypoxic pulmonary hypertension in rats[J]Hypertens Res, 2018, 41( 9): 691-698.
doi: 10.1038/s41440-018-0068-7
|
68 |
ZHOUX L, HUANGF J, LIY, et al.SEDT2/METTL14-mediated m6A methylation awakening contributes to hypoxia-induced pulmonary arterial hypertension in mice[J]Aging, 2021, 13( 5): 7538-7548.
doi: 10.18632/aging.202616
|
69 |
LIZ, CHENB, WENGX, et al.The histone methyltransferase SETD1A regulates thrombomodulin transcription in vascular endothelial cells[J]Biochim Biophys Acta Gene Regul Mech, 2018, 1861( 8): 752-761.
doi: 10.1016/j.bbagrm.2018.06.004
|
70 |
YUL, YANGG, WENGX, et al.Histone methyltransferase SET1 mediates angiotensin Ⅱ-induced endothelin-1 transcription and cardiac hypertrophy in mice[J]Arterioscler Thromb Vasc Biol, 2015, 35( 5): 1207-1217.
doi: 10.1161/ATVBAHA.115.305230
|
71 |
KATAKIAY T, THAKKARN P, THAKARS, et al.Dynamic alterations of H3K4me3 and H3K27me3 at ADAM17 and Jagged‐1 gene promoters cause an inflammatory switch of endothelial cells[J]J Cell Physiol, 2022, 237( 1): 992-1012.
doi: 10.1002/jcp.30579
|
72 |
BASUROYT, DE LA SERNAI L. SETD7 in cardiomyocyte differentiation and cardiac function[J]Stem Cell Investig, 2019, 29.
doi: 10.21037/sci.2019.08.01
|
73 |
QIAOY, LIPOVSKYC, HICKSS, et al.Transient notch activation induces long-term gene expression changes leading to sick sinus syndrome in mice[J]Circ Res, 2017, 121( 5): 549-563.
doi: 10.1161/CIRCRESAHA.116.310396
|
74 |
马会军. SET7对Ang Ⅱ介导的心肌成纤维细胞增殖和胶原合成的影响及其机制[J]. 中南大学学报(医学版), 2021, 46(2): 135-141 MA Huijun. Effects of SET7 on angiotensin Ⅱ-mediated proliferationand collagen synthesis of myocardial fibroblastsand its mechanisms[J]. Journal of Central South University (Medical Science), 2021, 46(2): 135-141. (in Chinese)
|
75 |
WUY S, CHENY T, BAOY T, et al.Identification and verification of potential therapeutic target genes in berberine-treated zucker diabetic fatty rats through bioinformatics analysis[J/OL]PLoS One, 2016, 11( 11): e0166378.
doi: 10.1371/journal.pone.0166378
|
76 |
CHOKPAISARNJ, URAON, VORAVUTHIKUNCHAIS P, et al.Quercus infectoria inhibits Set7/NF-κB inflammatory pathway in macrophages exposed to a diabetic environment[J]Cytokine, 2017, 29-36.
doi: 10.1016/j.cyto.2017.04.005
|
77 |
DINGH, LUW C, HUJ C, et al.Identification and characterizations of novel, selective histone methyltransferase SET7 inhibitors by scaffold hopping- and 2D-molecular fingerprint-based similarity search[J]Molecules, 2018, 23( 3): 567.
doi: 10.3390/molecules23030567
|
78 |
HOUZ, MINW, ZHANGR, et al.Lead discovery, chemical optimization, and biological evaluation studies of novel histone methyltransferase SET7 small-molecule inhibitors[J]BioOrg Medicinal Chem Lett, 2020, 30( 9): 127061.
doi: 10.1016/j.bmcl.2020.127061
|
79 |
JUDSONR N, QUARTAM, OUDHOFFM J, et al.Inhibition of methyltransferase setd7 allows the in vitro expansion of myogenic stem cells with improved therapeutic potential[J]Cell Stem Cell, 2018, 22( 2): 177-190.e7.
doi: 10.1016/j.stem.2017.12.010
|
80 |
WILLIAMSD E, IZARDF, ARNOULDS, et al.Structures of nahuoic acids B-E produced in culture by a streptomyces sp. isolated from a marine sediment and evidence for the inhibition of the histone methyl transferase SETD8 in human cancer cells by nahuoic acid A[J]J Org Chem, 2016, 81( 4): 1324-1332.
doi: 10.1021/acs.joc.5b02569
|
81 |
VESCHIV, LIUZ, VOSST C, et al.Epigenetic siRNA and chemical screens identify SETD8 inhibition as a therapeutic strategy for p53 activation in high-risk neuroblastoma[J]Cancer Cell, 2017, 31( 1): 50-63.
doi: 10.1016/j.ccell.2016.12.002
|
82 |
BLUMG, IBÁÑEZG, RAOX, et al.Small-molecule inhibitors of SETD8 with cellular activity[J]ACS Chem Biol, 2014, 9( 11): 2471-2478.
doi: 10.1021/cb500515r
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|