Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (3): 390-395    DOI: 10.3724/zdxbyxb-2021-0190
综述     
动脉粥样硬化过程中核因子E2相关因子2对血管平滑肌细胞的调控作用
庄文雯1(),杨咏琪1,李洪亮1,2,梁景岩1,2,*()
1.扬州大学医学院,江苏 扬州 225000
2.扬州大学转化医学研究院,江苏 扬州 225000
Research advance of Nrf2 on atherosclerosis by regulating vascular smooth muscle cell
ZHUANG Wenwen1(),YANG Yongqi1,LI Hongliang1,2,LIANG Jingyan1,2,*()
1. Medical College, Yangzhou University, Yangzhou 225000, Jiangsu Province, China;
2. Institute of Translational Medicine, Yangzhou University, Yangzhou 225000, Jiangsu Province, China
 全文: PDF(2017 KB)   HTML( 18 )
摘要:

动脉粥样硬化是心血管疾病中常见的病理改变。血管平滑肌细胞是斑块细胞和细胞外基质的主要来源,而核因子E2相关因子2(Nrf2)是调控血管平滑肌细胞功能的关键转录因子。在动脉粥样硬化过程中,Nrf2信号通路对血管平滑肌细胞具有以下调控作用:调控血管平滑肌细胞表型向有利于缓解疾病进程的方向转变,抑制血管平滑肌细胞增殖和迁移,降低血脂水平,以及缓解血管平滑肌细胞钙化、衰老和凋亡等过程。本文对现阶段Nrf2在动脉粥样硬化中调控血管平滑肌细胞表型转换、增殖和迁移、脂代谢、钙化、衰老和凋亡等过程的具体机制进行综述,以期为深入理解动脉粥样硬化发生发展的分子机制及寻找治疗靶点提供依据。

关键词: 动脉粥样硬化血管平滑肌细胞核因子E2相关因子2综述    
Abstract:

Atherosclerosis is a common pathological change in cardiovascular disease. Vascular smooth muscle cell is the main source of plaque cell and extracellular matrix, and nuclear factor-erythroid 2-related factor 2 (Nrf2) is a key transcription factor regulating the function of vascular smooth muscle cell. In the process of atherosclerosis, Nrf2 signaling pathway has the following regulatory effects on vascular smooth muscle cell: regulating the phenotype of vascular smooth muscle cell to change to the direction conducive to the alleviation of disease progression; inhibiting the proliferation and migration of vascular smooth muscle cell; mitigating the level of blood lipid; alleviating vascular smooth muscle cell calcification, aging and apoptosis process. This article reviews the specific mechanisms of Nrf2 regulating atherosclerosis, such as phenotypic transformation, proliferation and migration, lipid metabolism, calcification, aging and apoptosis in atherosclerosis, in order to provide a basis for understanding the molecular mechanism of atherosclerosis development and finding therapeutic targets.

Key words: Atherosclerosis    Vascular smooth muscle cell    Nuclear factor-erythroid 2- related factor 2    Review
收稿日期: 2020-12-20 出版日期: 2021-08-16
CLC:  R543.5  
基金资助: 国家重点研发计划(2016YFE0126000)
通讯作者: 梁景岩     E-mail: zhuangwenwen_epig@163.com;jyliang@yzu.edu.cn
作者简介: 庄文雯,硕士研究生,主要从事心血管病研究;E-mail:zhuangwenwen_epig@163.com;https://orcid.org/0000-0003-1172-6512
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
庄文雯
杨咏琪
李洪亮
梁景岩

引用本文:

庄文雯,杨咏琪,李洪亮,梁景岩. 动脉粥样硬化过程中核因子E2相关因子2对血管平滑肌细胞的调控作用[J]. 浙江大学学报(医学版), 2021, 50(3): 390-395.

ZHUANG Wenwen,YANG Yongqi,LI Hongliang,LIANG Jingyan. Research advance of Nrf2 on atherosclerosis by regulating vascular smooth muscle cell. J Zhejiang Univ (Med Sci), 2021, 50(3): 390-395.

链接本文:

http://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0190        http://www.zjujournals.com/med/CN/Y2021/V50/I3/390

1 FRISMANTIENEA, PHILIPPOVAM, ERNEP, et al.Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity[J]Cell Signal, 2018, 48-64.
doi: 10.1016/j.cellsig.2018.08.019
2 YOSHIDAT, YAMASHITAM, HORIMAIC, et al.Smooth muscle-selective inhibition of nuclear factor‐κb attenuates smooth muscle phenotypic switching and neointima formation following vascular injury[J]J Am Heart Assoc, 2013, 2( 3): 230.
doi: 10.1161/JAHA.113.000230
3 NAVAS-MADRO?ALM, CASTELBLANCOE, CAMACHOM, et al.Role of the scavenger receptor cd36 in accelerated diabetic atherosclerosis[J]Int J Mol Sci, 2020, 21( 19): 7360.
doi: 10.3390/ijms21197360
4 KATTOORA J, POTHINENIN V K, PALAGIRID, et al.Oxidative stress in atherosclerosis[J]Curr Atheroscler Rep, 2017, 19( 11): 42.
doi: 10.1007/s11883-017-0678-6
5 MAGUIREE M, XIAOQ. Noncoding RNAs in vascular smooth muscle cell function and neointimal hyperplasia[J]FEBS J, 2020, 287( 24): 5260-5283.
doi: 10.1111/febs.15357
6 POZNYAKA V, GRECHKOA V, OREKHOVAV A, et al.Oxidative stress and antioxidants in atherosclerosis development and treatment[J]Biology, 2020, 9( 3): 60.
doi: 10.3390/biology9030060
7 WOLFM P, HUNZIKERP. Atherosclerosis: insights into vascular pathobiology and outlook to novel treatments[J]J Cardiovasc Trans Res, 2020, 13( 5): 744-757.
doi: 10.1007/s12265-020-09961-y
8 DORANA C, MELLERN, MCNAMARAC A. Role of smooth muscle cells in the initiation and early progression of atherosclerosis[J]Arterioscler Thromb Vasc Biol, 2008, 28( 5): 812-819.
doi: 10.1161/ATVBAHA.107.159327
9 CHIND D, POONC, WANGJ, et al.miR-145 micelles mitigate atherosclerosis by modulating vascular smooth muscle cell phenotype[J/OL]Biomaterials, 2021, 120810.
doi: 10.1016/j.biomaterials.2021.120810
10 SEONGM, KANGH. Hypoxia-induced miR-1260b regulates vascular smooth muscle cell proliferation by targeting GDF11[J]BMB Rep, 2020, 53( 4): 206-211.
doi: 10.5483/BMBREP.2020.53.4.136
11 KUOSMANENS M, VIITALAS, LAITINENT, et al.The effects of sequence variation on genome-wide nrf2 binding—new target genes and regulatory snps[J]Nucleic Acids Res, 2016, 44( 4): 1760-1775.
doi: 10.1093/nar/gkw052
12 DA COSTAR M, RODRIGUESD, PEREIRAC A, et al.Nrf2 as a potential mediator of cardiovascular risk in metabolic diseases[J]Front Pharmacol, 2019, 382.
doi: 10.3389/fphar.2019.00382
13 UNGVARIZ, TARANTINIS, NYúL-TóTHá, et al.Nrf2 dysfunction and impaired cellular resilience to oxidative stressors in the aged vasculature: from increased cellular senescence to the pathogenesis of age-related vascular diseases[J]GeroScience, 2019, 41( 6): 727-738.
doi: 10.1007/s11357-019-00107-w
14 CAIH, LIUY, MENH, et al.Protective mechanism of humanin against oxidative stress in aging-related cardiovascular diseases[J]Front Endocrinol, 2021, 68315.
doi: 10.3389/fendo.2021.683151
15 FREIGANGS, AMPENBERGERF, SPOHNG, et al.Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis[J]Eur J Immunol, 2011, 41( 7): 2040-2051.
doi: 10.1002/eji.201041316
16 NIEDZIELSKIM, BRONCELM, GORZELAK-PABI?P, et al.New possible pharmacological targets for statins and ezetimibe[J]Biomed PharmacoTher, 2020, 110388.
doi: 10.1016/j.biopha.2020.110388
17 PANH, XUEC, AUERBACHB J, et al.Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human[J]Circulation, 2020, 142( 21): 2060-2075.
doi: 10.1161/circulationaha.120.048378
18 BENTZONJ F, MAJESKYM W. Lineage tracking of origin and fate of smooth muscle cells in atherosclerosis[J]Cardiovascular Res, 2018, 114( 4): 492-500.
doi: 10.1093/cvr/cvx251
19 HEX, DENGJ, YUX J, et al.Activation of m3achr (type 3 muscarinic acetylcholine receptor) and Nrf2 (nuclear factor erythroid 2-related factor 2) signaling by choline alleviates vascular smooth muscle cell phenotypic switching and vascular remodeling[J]Arterioscler Thromb Vasc Biol, 2020, 40( 11): 2649-2664.
doi: 10.1161/ATVBAHA.120.315146
20 BUGLAKN E, JIANGW, BAHNSONE S M. Cinnamic aldehyde inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia in Zucker diabetic fatty rats[J]Redox Biol, 2018, 166-178.
doi: 10.1016/j.redox.2018.08.013
21 ASHINOT, YAMAMOTOM, YOSHIDAT, et al.Redox-sensitive transcription factor Nrf2 regulates vascular smooth muscle cell migration and neointimal hyperplasia[J]Arterioscler Thromb Vasc Biol, 2013, 33( 4): 760-768.
doi: 10.1161/ATVBAHA.112.300614
22 HWANGA R, HANJ H, LIMJ H, et al.Fluvastatin inhibits AGE-induced cell proliferation and migration via an ERK5-dependent Nrf2 pathway in vascular smooth muscle cells[J/OL]PLoS One, 2017, 12( 5): e0178278.
doi: 10.1371/journal.pone.0178278
23 KOW C, SHIEHJ M, WUW B. P38 mapk and nrf2 activation mediated naked gold nanoparticle induced heme oxygenase-1 expression in rat aortic vascular smooth muscle cells[J]Archives Med Res, 2020, 51( 5): 388-396.
doi: 10.1016/j.arcmed.2020.04.015
24 SHAWKYN M, SEGARL. Sulforaphane inhibits platelet-derived growth factor-induced vascular smooth muscle cell proliferation by targeting mTOR/p70S6kinase signaling independent of Nrf2 activation[J]Pharmacological Res, 2017, 251-264.
doi: 10.1016/j.phrs.2017.02.010
25 HWANGS M, LEEY J, LEEY P, et al.Anti-proliferative effect of an aqueous extract of Prunella vulgaris in vascular smooth muscle cells[J]Evid Based Complement Alternat Med, 2013, 936463.
doi: 10.1155/2013/936463
26 SEOY, PARKJ, CHOIW, et al.Antiatherogenic effect of resveratrol attributed to decreased expression of icam-1 (intercellular adhesion molecule-1)[J]Arterioscler Thromb Vasc Biol, 2019, 39( 4): 675-684.
doi: 10.1161/ATVBAHA.118.312201
27 YUEH, FEBBRAIOM, KLENOTICP A, et al.Cd36 enhances vascular smooth muscle cell proliferation and development of neointimal hyperplasia[J]Arterioscler Thromb Vasc Biol, 2019, 39( 2): 263-275.
doi: 10.1161/ATVBAHA.118.312186
28 DURHAMA L, SPEERM Y, SCATENAM, et al.Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness[J]Cardiovasc Res, 2018, 114( 4): 590-600.
doi: 10.1093/cvr/cvy010
29 WEIR, ENAKAM, MURAGAKIY. Activation of KEAP1/NRF2/P62 signaling alleviates high phosphate-induced calcification of vascular smooth muscle cells by suppressing reactive oxygen species production[J]Sci Rep, 2019, 9( 1): 10366.
doi: 10.1038/s41598-019-46824-2
30 OKSANENM, HY?TYL?INENI, TRONTTIK, et al.NF‐E2‐related factor 2 activation boosts antioxidant defenses and ameliorates inflammatory and amyloid properties in human Presenilin‐1 mutated Alzheimer’s disease astrocytes[J]Glia, 2020, 68( 3): 589-599.
doi: 10.1002/glia.23741
31 CUADRADOA, ROJOA I, WELLSG, et al.Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases[J]Nat Rev Drug Discov, 2019, 18( 4): 295-317.
doi: 10.1038/s41573-018-0008-x
32 CUADRADOA, MANDAG, HASSANA, et al.Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach[J]Pharmacol Rev, 2018, 70( 2): 348-383.
doi: 10.1124/pr.117.014753
33 PANIERIE, SASOL. Potential applications of NRF2 inhibitors in cancer therapy[J]Oxid Med Cell Longev, 2019, 8592348.
doi: 10.1155/2019/8592348
34 XUT H, DUY, SHENGZ, et al.OGT-mediated keap1 glycosylation accelerates Nrf2 degradation leading to high phosphate-induced vascular calcification in chronic kidney disease[J]Front Physiol, 2020, 1092.
doi: 10.3389/fphys.2020.01092
35 PENNINGTONS M, KLUTHOP R, XIEL, et al.Defective protein repair under methionine sulfoxide A deletion drives autophagy and ARE-dependent gene transcription[J]Redox Biol, 2018, 401-413.
doi: 10.1016/j.redox.2018.04.001
36 AGHAGOLZADEHP, RADPOURR, BACHTLERM, et al.Hydrogen sulfide attenuates calcification of vascular smooth muscle cells via KEAP1/NRF2/NQO1 activation[J]Atherosclerosis, 2017, 78-86.
doi: 10.1016/j.atherosclerosis.2017.08.012
37 GIANNOTTIK C, WEINERTS, VIANAM N, et al.A secreted phospholipase A2 induces formation of smooth muscle foam cells which transdifferentiate to macrophage-like state[J]Molecules, 2019, 24( 18): 3244.
doi: 10.3390/molecules24183244
38 HEL H, GAOJ H, YUX H, et al.Artesunate inhibits atherosclerosis by upregulating vascular smooth muscle cells-derived LPL expression via the KLF2/NRF2/TCF7L2 pathway[J]Eur J Pharmacol, 2020, 173408.
doi: 10.1016/j.ejphar.2020.173408
39 MALTESEG, PSEFTELIP M, RIZZOB, et al.The anti-ageing hormone klotho induces Nrf2-mediated antioxidant defences in human aortic smooth muscle cells[J]J Cell Mol Med, 2017, 21( 3): 621-627.
doi: 10.1111/jcmm.12996
[1] 胡靖依,王青青,刘杨. 蛋白酶体亚基对肝细胞癌发生发展的调控作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 396-402.
[2] 葛瀛洲,刘欣梅,黄荷凤. 沉默信息调节因子家族参与病理妊娠的研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 335-344.
[3] 王锦涛,黄蕾,魏丽丽,陈炜. 重复经颅磁刺激治疗阿尔茨海默病患者的疗效影响因素[J]. 浙江大学学报(医学版), 2021, 50(3): 383-389.
[4] 旷文静,罗小波,王冏珂,曾昕. 梅–罗综合征患者的表征及其诊治[J]. 浙江大学学报(医学版), 2021, 50(2): 148-154.
[5] 王晨宇,王英男,汪存艺,施洁珺,王慧明. 组织工程修复颞下颌关节的关键因素研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 212-221.
[6] 任超杰,钟丹妮,周民. 微藻在生物医学领域的研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 261-266.
[7] 应颖超,江佩芳. 瞬时受体电位 M2 型离子通道在神经系统疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 267-276.
[8] 韩恒毅,冯帆,李海涛. 表观遗传与肿瘤代谢研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 1-16.
[9] 陈菲,虞敏,钟永红,华雯,黄华琼. 中性粒细胞在哮喘中的地位和作用[J]. 浙江大学学报(医学版), 2021, 50(1): 123-130.
[10] 颜京,张婷婷,赵葵. 核医学分子影像探针应用于神经内分泌肿瘤的研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 131-137.
[11] 张明佺,潘俊辰,黄蓬. RAS基因与脂代谢在恶性肿瘤中的相互调控[J]. 浙江大学学报(医学版), 2021, 50(1): 17-22.
[12] 胡鑫暘,金洪传,朱丽媛. 谷氨酰胺代谢途径在肿瘤化疗耐药中的功能机制[J]. 浙江大学学报(医学版), 2021, 50(1): 32-40.
[13] 孟颖,王启扉,吕志民. 胆固醇代谢与肿瘤[J]. 浙江大学学报(医学版), 2021, 50(1): 23-31.
[14] 邵一鸣,苏力德,郝睿,王茜茜,那仁满都拉. 乙型肝炎病毒诱发肝细胞癌分子机制研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 113-122.
[15] 朱慧琦,应可净. 组织因子与肿瘤患者静脉血栓栓塞[J]. 浙江大学学报(医学版), 2020, 49(6): 772-778.