Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (3): 383-389    DOI: 10.3724/zdxbyxb-2021-0184
综述     
重复经颅磁刺激治疗阿尔茨海默病患者的疗效影响因素
王锦涛(),黄蕾,魏丽丽,陈炜()
浙江大学医学院附属邵逸夫医院精神卫生科,浙江 杭州 310016
Factors affecting the efficacy of repetitive transcranial magnetic stimulation for patients with Alzheimer’s disease
WANG Jintao(),HUANG Lei,WEI Lili,CHEN Wei()
Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
 全文: PDF(2045 KB)   HTML( 16 )
摘要:

重复经颅磁刺激(rTMS)是一种安全的非侵入性干预技术,在改善阿尔茨海默病(AD)患者的认知功能上取得了一定的效果,不同rTMS治疗方案之间的疗效差异可能与其刺激频率、模式、部位、维持时间、强度、聚焦能力等因素有关。研究表明,高频rTMS的疗效优于低频;间接θ爆发刺激与常规rTMS疗效相当,但每次治疗时间短,患者依从性增加;刺激AD患者受损脑区或关联网络可增加疗效;短期强化治疗与长期维持治疗结合可维持疗效;结合认知损害程度动态调整刺激强度可增加疗效;利用磁共振功能连接方法等技术可解决rTMS的聚焦能力。本综述分析了上述影响因素,为今后rTMS治疗AD的临床方案设计提供思路。

关键词: 阿尔茨海默病重复经颅磁刺激认知治疗影响因素综述    
Abstract:

Repetitive transcranial magnetic stimulation (rTMS) is a safe and non-invasive technique. In recent years, many studies have demonstrated that rTMS can improve cognitive function in Alzheimer’s disease (AD) patients and has potential as a therapeutic method for AD. However, the efficacy varies greatly with different rTMS treatment regimens, which is related to the frequency, type, location, duration, intensity and focusing power of stimulation. Recent studies have shown that high-frequency stimulation is superior to low-frequency stimulation; efficacy of intermittent theta burst stimulation (iTBS) is similar to that of conventional rTMS, but iTBS treatment session is shorter and might be more acceptable for AD patients; rTMS stimulation sites targeting AD-damaged brain regions or associated networks would be more effective; short-term intensive treatment combined with long-term maintenance treatment can gain long-term efficacy; dynamic adjustment of stimulus intensity combined with the degree of cognitive impairment can enhance the efficacy; functional connection based on functional magnetic resonance imaging may improve the focusing power of rTMS. In this article, we review the factors related to the efficacy of rTMS, to provide reference for feasible rTMS therapeutic regimens of AD.

Key words: Alzheimer’s disease    Repetitive transcranial magnetic stimulation    Cognition    Therapy    Influence factor    Review
收稿日期: 2021-02-25 出版日期: 2021-08-16
CLC:  R749.1  
基金资助: 国家重点研发计划(2017YFC1310502);国家自然科学基金(2020C03021);浙江省重点研发计划(2020C03021)
通讯作者: 陈炜     E-mail: wangjt@zju.edu.cn;srrcw@zju.edu.cn
作者简介: 王锦涛,硕士研究生,主要从事阿尔茨海默病患者的脑功能研究;E-mail:wangjt@zju.edu.cn;https://orcid.org/0000-0002-4649-7492
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王锦涛
黄蕾
魏丽丽
陈炜

引用本文:

王锦涛,黄蕾,魏丽丽,陈炜. 重复经颅磁刺激治疗阿尔茨海默病患者的疗效影响因素[J]. 浙江大学学报(医学版), 2021, 50(3): 383-389.

WANG Jintao,HUANG Lei,WEI Lili,CHEN Wei. Factors affecting the efficacy of repetitive transcranial magnetic stimulation for patients with Alzheimer’s disease. J Zhejiang Univ (Med Sci), 2021, 50(3): 383-389.

链接本文:

http://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0184        http://www.zjujournals.com/med/CN/Y2021/V50/I3/383

1 JIAL, DUY, CHUL, et al.Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J/OL]Lancet Public Health, 2020, 5( 12): e661-e671.
doi: 10.1016/S2468-2667(20)30185-7
2 JIAJ, WEIC, CHENS, et al.The cost of Alzheimer’s disease in China and re-estimation of costs worldwide[J]Alzheimers Dement, 2018, 14( 4): 483-491.
doi: 10.1016/j.jalz.2017.12.006
3 KRANTICS. Editorial: from current diagnostic tools and therapeutics for Alzheimer’s disease towards earlier diagnostic markers and treatment targets[J]Curr Alzheimer Res, 2017, 14( 1): 2-5.
doi: 10.2174/156720501401161201104858
4 VANDENBERGHER, RINNEJ O, BOADAM, et al.Bapineuzumab for mild to moderate Alzheimer’s disease in two global, randomized, phase 3 trials[J]Alzheimers Res Ther, 2016, 8( 1): 18.
doi: 10.1186/s13195-016-0189-7
5 KITAMURAS, NAKAMURAY, HOMMAA, et al.Tolerability and efficacy of the long-term administration of memantine hydrochloride (Memary?) in patients with moderate to severe Alzheimer’s disease[J]Nippon Ronen Igakkai Zasshi, 2014, 51( 1): 74-84.
doi: 10.3143/geriatrics.51.74
6 XIAOS, CHANP, WANGT, et al.A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia[J]Alzheimers Res Ther, 2021, 13( 1): 62.
doi: 10.1186/s13195-021-00795-7
7 CUMMINGSJ, LEEG, RITTERA, et al.Alzheimer’s disease drug development pipeline: 2019[J]Alzheimers Dement, 2019, 5( 1): 272-293.
doi: 10.1016/j.trci.2019.05.008
8 WASSERMANNE M, LISANBYS H. Therapeutic application of repetitive transcranial magnetic stimulation: a review[J]Clin NeuroPhysiol, 2001, 112( 8): 1367-1377.
doi: 10.1016/S1388-2457(01)00585-5
9 LEFAUCHEURJ P, ALEMANA, BAEKENC, et al.Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018)[J]Clin NeuroPhysiol, 2020, 131( 2): 474-528.
doi: 10.1016/j.clinph.2019.11.002
10 GONSALVEZI, BARORR, FRIEDP, et al.Therapeutic noninvasive brain stimulation in Alzheimer’s disease[J]Curr Alzheimer Res, 2017, 14( 4): 362-376.
doi: 10.2174/1567205013666160930113907
11 KLOMJAIW, KATZR, LACKMY-VALLéEA. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS)[J]Ann Phys Rehabil Med, 2015, 58( 4): 208-213.
doi: 10.1016/j.rehab.2015.05.005
12 AHMEDM A, DARWISHE S, KHEDRE M, et al.Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer’s dementia[J]J Neurol, 2012, 259( 1): 83-92.
doi: 10.1007/s00415-011-6128-4
13 LIAOX, LIG, WANGA, et al.Repetitive transcranial magnetic stimulation as an alternative therapy for cognitive impairment in Alzheimer’s disease: a meta-analysis[J]J Alzheimer Dis, 2015, 48( 2): 463-472.
doi: 10.3233/JAD-150346
14 CHENGC P W, WONGC S M, LEEK K, et al.Effects of repetitive transcranial magnetic stimulation on improvement of cognition in elderly patients with cognitive impairment: a systematic review and meta-analysis[J/OL]Int J Geriatr Psychiatry, 2018, 33( 1): e1-e13.
doi: 10.1002/gps.4726
15 WANGX, MAOZ, LINGZ, et al.Repetitive transcranial magnetic stimulation for cognitive impairment in Alzheimer’s disease: a meta-analysis of randomized controlled trials[J]J Neurol, 2020, 267( 3): 791-801.
doi: 10.1007/s00415-019-09644-y
16 ESSERS K, HUBERR, MASSIMINIM, et al.A direct demonstration of cortical LTP in humans: a combined TMS/EEG study[J]Brain Res Bull, 2006, 69( 1): 86-94.
doi: 10.1016/j.brainresbull.2005.11.003
17 AUSTINB P, NAIRV A, MEIERT B, et al.Effects of hypoperfusion in Alzheimer’s disease[J]J Alzheimer Dis, 2011, 123-133.
doi: 10.3233/JAD-2011-0010
18 GUSEB, FALKAIP, WOBROCKT. Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review[J]J Neural Transm, 2010, 117( 1): 105-122.
doi: 10.1007/s00702-009-0333-7
19 LEFAUCHEURJ P, ANDRé-OBADIAN, ANTALA, et al.Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS)[J]Clin NeuroPhysiol, 2014, 125( 11): 2150-2206.
doi: 10.1016/j.clinph.2014.05.021
20 HUANGY Z, EDWARDSM J, ROUNISE, et al.Theta burst stimulation of the human motor cortex[J]Neuron, 2005, 45( 2): 201-206.
doi: 10.1016/j.neuron.2004.12.033
21 WUX, JIG J, GENGZ, et al.Strengthened theta-burst transcranial magnetic stimulation as an adjunctive treatment for Alzheimer’s disease: an open-label pilot study[J]Brain Stimulation, 2020, 13( 2): 484-486.
doi: 10.1016/j.brs.2019.12.020
22 BLUMBERGERD M, VILA-RODRIGUEZF, THORPEK E, et al.Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial[J]Lancet, 2018, 391( 10131): 1683-1692.
doi: 10.1016/S0140-6736(18)30295-2
23 MENDLOWITZA B, SHANBOURA, DOWNARJ, et al.Implementation of intermittent theta burst stimulation compared to conventional repetitive transcranial magnetic stimulation in patients with treatment resistant depression: a cost analysis[J/OL]PLoS One, 2019, 14( 9): e0222546.
doi: 10.1371/journal.pone.0222546
24 ROTENBERG A, HORVATH J C, PASCUAL‐LEONE A. Transcranial magnetic stimulation[M]. New York: Springer, 2014: 235-257
25 COTELLIM, MANENTIR, CAPPAS F, et al.Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease[J]Arch Neurol, 2006, 63( 11): 1602-1604.
doi: 10.1001/archneur.63.11.1602
26 COTELLIM, MANENTIR, CAPPAS F, et al.Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline[J]Eur J Neurol, 2008, 15( 12): 1286-1292.
doi: 10.1111/j.1468-1331.2008.02202.x
27 COTELLIM, CALABRIAM, MANENTIR, et al.Improved language performance in Alzheimer disease following brain stimulation[J]J Neurol Neurosurg Psychiatry, 2011, 82( 7): 794-797.
doi: 10.1136/jnnp.2009.197848
28 PADALAP R, BOOZERE M, LENSINGS Y, et al.Neuromodulation for apathy in Alzheimer’s disease: a double-blind, randomized, sham-controlled pilot study[J]J Alzheimer Dis, 2020, 77( 4): 1483-1493.
doi: 10.3233/JAD-200640
29 CHOUY H, TON THATV, SUNDMANM. A systematic review and meta-analysis of rTMS effects on cognitive enhancement in mild cognitive impairment and Alzheimer’s disease[J]NeuroBiol Aging, 2020, 1-10.
doi: 10.1016/j.neurobiolaging.2019.08.020
30 ELIASOVAI, ANDERKOVAL, MARECEKR, et al.Non-invasive brain stimulation of the right inferior frontal gyrus may improve attention in early Alzheimer’s disease: a pilot study[J]J Neurological Sci, 2014, 346( 1-2): 318-322.
doi: 10.1016/j.jns.2014.08.036
31 KOCHG, BONNìS, PELLICCIARIM C, et al.Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer’s disease[J]NeuroImage, 2018, 302-311.
doi: 10.1016/j.neuroimage.2017.12.048
32 ALCALá-LOZANOR, MORELOS-SANTANAE, CORTéS-SOTRESJ F, et al.Similar clinical improvement and maintenance after rTMS at 5 Hz using a simple vs. complex protocol in Alzheimer’s disease[J]Brain Stimul, 2018, 11( 3): 625-627.
doi: 10.1016/j.brs.2017.12.011
33 LINY, JIANGW J, SHANP Y, et al.The role of repetitive transcranial magnetic stimulation (rTMS) in the treatment of cognitive impairment in patients with Alzheimer’s disease: a systematic review and meta-analysis[J]J Neurol Sci, 2019, 184-191.
doi: 10.1016/j.jns.2019.01.038
34 NARDONER, SEBASTIANELLIL, VERSACEV, et al.TMS-EEG co-registration in patients with mild cognitive impairment, Alzheimer’s disease and other dementias: a systematic review[J]Brain Sci, 2021, 11( 3): 303.
doi: 10.3390/brainsci11030303
35 IIMORIT, NAKAJIMAS, MIYAZAKIT, et al.Effectiveness of the prefrontal repetitive transcranial magnetic stimulation on cognitive profiles in depression, schizophrenia, and Alzheimer’s disease: a systematic review[J]Prog Neuro-PsychoPharmacol Biol Psychiatry, 2019, 31-40.
doi: 10.1016/j.pnpbp.2018.06.014
36 ZHOUJ, SEELEYW W. Network dysfunction in Alzheimer’s disease and frontotemporal dementia: implications for psychiatry[J]Biol Psychiatry, 2014, 75( 7): 565-573.
doi: 10.1016/j.biopsych.2014.01.020
37 LIX, QIG, YUC, et al.Cortical plasticity is correlated with cognitive improvement in Alzheimer’s disease patients after rTMS treatment[J]Brain Stimul, 2021, 14( 3): 503-510.
doi: 10.1016/j.brs.2021.01.012
38 BENTWICHJ, DOBRONEVSKYE, AICHENBAUMS, et al.Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer’s disease: a proof of concept study[J]J Neural Transm, 2011, 118( 3): 463-471.
doi: 10.1007/s00702-010-0578-1
39 RABEYJ M, DOBRONEVSKYE, AICHENBAUMS, et al.Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer’s disease: a randomized, double-blind study[J]J Neural Transm, 2013, 120( 5): 813-819.
doi: 10.1007/s00702-012-0902-z
40 LUBERB, LISANBYS H. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS)[J]NeuroImage, 2014, 961-970.
doi: 10.1016/j.neuroimage.2013.06.007
41 CHUNGS W, ROGASCHN C, HOYK E, et al.Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS‐EEG and working memory performance[J]Hum Brain Mapp, 2018, 39( 2): 783-802.
doi: 10.1002/hbm.23882
42 K?HK?NENS, KOMSSIS, WILENIUSJ, et al.Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans[J]NeuroImage, 2005, 24( 4): 955-960.
doi: 10.1016/j.neuroimage.2004.09.048
43 BONNìS, LUPOF, LO GERFOE, et al.Altered parietal-motor connections in Alzheimer’s disease patients[J]J Alzheimer Dis, 2012, 33( 2): 525-533.
doi: 10.3233/JAD-2012-121144
44 PRESTONA R, EICHENBAUMH. Interplay of hippocampus and prefrontal cortex in memory[J]Curr Biol, 2013, 23( 17): R764-R773.
doi: 10.1016/j.cub.2013.05.041
45 OLSENR K, MOSESS N, RIGGSL, et al.The hippocampus supports multiple cognitive processes through relational binding and comparison[J]Front Hum Neurosci, 2012, 146.
doi: 10.3389/fnhum.2012.00146
46 BALLARD C, GAUTHIER S, CORBETT A et al. Alzheimer’s disease[J]. Lancet, 2011, 377: 1019-1031
47 SUTHANAN, HANEEFZ, STERNJ, et al.Memory enhancement and deep-brain stimulation of the entorhinal area[J]N Engl J Med, 2012, 366( 6): 502-510.
doi: 10.1056/NEJMoa1107212
48 JUNS, KIMJ S, CHUNGC K. Direct stimulation of human hippocampus during verbal associative encoding enhances subsequent memory recollection[J]Front Hum Neurosci, 2019, 23.
doi: 10.3389/fnhum.2019.00023
49 ROTHY, AMIRA, LEVKOVITZY, et al.Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils[J]J Clin NeuroPhysiol, 2007, 24( 1): 31-38.
doi: 10.1097/WNP.0b013e31802fa393
50 ROTHY, PELLG S, CHISTYAKOVA V, et al.Motor cortex activation by H-coil and figure-8 coil at different depths. Combined motor threshold and electric field distribution study[J]Clin NeuroPhysiol, 2014, 125( 2): 336-343.
doi: 10.1016/j.clinph.2013.07.013
51 LUM, UENOS. Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation[J/OL]PLoS One, 2017, 12( 6): e0178422.
doi: 10.1371/journal.pone.0178422
52 WANGJ X, ROGERSL M, GROSSE Z, et al.Targeted enhancement of cortical-hippocampal brain networks and associative memory[J]Science, 2014, 345( 6200): 1054-1057.
doi: 10.1126/science.1252900
53 WANGH, JINJ, CUID, et al.Cortico-hippocampal brain connectivity-guided repetitive transcranial magnetic stimulation enhances face-cued word-based associative memory in the short term[J]Front Hum Neurosci, 2020, 541791.
doi: 10.3389/fnhum.2020.541791
54 CUIX, RENW, ZHENGZ, et al.Repetitive transcranial magnetic stimulation improved source memory and modulated recollection-based retrieval in healthy older adults[J]Front Psychol, 2020, 1137.
doi: 10.3389/fpsyg.2020.01137
55 FREEDBERGM, REEVESJ A, TOADERA C, et al.Optimizing hippocampal-cortical network modulation via repetitive transcranial magnetic stimulation: a dose-finding study using the continual reassessment method[J]Neuromodulation, 2020, 23( 3): 366-372.
doi: 10.1111/ner.13052
56 FREEDBERGM, REEVESJ A, TOADERA C, et al.Persistent enhancement of hippocampal network connectivity by parietal rtms is reproducible[J]eNeuro, 2019, 6( 5): ENEURO.0129-19.2019.
57 HERMILLERM S, KARPE, NILAKANTANA S, et al.Episodic memory improvements due to noninvasive stimulation targeting the cortical-hippocampal network: a replication and extension experiment[J/OL]Brain Behav, 2019, 9( 12): e01393.
doi: 10.1002/brb3.1393
58 TAYLORJ L, HAMBROB C, STROSSMANN D, et al.The effects of repetitive transcranial magnetic stimulation in older adults with mild cognitive impairment: a protocol for a randomized, controlled three-arm trial[J]BMC Neurol, 2019, 19( 1): 326.
doi: 10.1186/s12883-019-1552-7
59 VELIOGLUH A, HANOGLUL, BAYRAKTAROGLUZ, et al.Left lateral parietal rTMS improves cognition and modulates resting brain connectivity in patients with Alzheimer’s disease: possible role of BDNF and oxidative stress[J]NeuroBiol Learn Mem, 2021, 107410.
doi: 10.1016/j.nlm.2021.107410
[1] 李扬,李伟光,冯泽国,宋杰,张成岗,黄连军,宋燕平. 手术创伤及多次丙泊酚麻醉对发育期大鼠神经发育和认知功能的影响[J]. 浙江大学学报(医学版), 2021, 50(3): 290-297.
[2] 胡靖依,王青青,刘杨. 蛋白酶体亚基对肝细胞癌发生发展的调控作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 396-402.
[3] 葛瀛洲,刘欣梅,黄荷凤. 沉默信息调节因子家族参与病理妊娠的研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 335-344.
[4] 施锦波,励夏炜,吴育连. 基于SEER数据库分析早期胰腺导管腺癌患者能否从常用术后化疗方案中获益[J]. 浙江大学学报(医学版), 2021, 50(3): 375-382.
[5] 旷文静,罗小波,王冏珂,曾昕. 梅–罗综合征患者的表征及其诊治[J]. 浙江大学学报(医学版), 2021, 50(2): 148-154.
[6] 王晨宇,王英男,汪存艺,施洁珺,王慧明. 组织工程修复颞下颌关节的关键因素研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 212-221.
[7] 任超杰,钟丹妮,周民. 微藻在生物医学领域的研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 261-266.
[8] 应颖超,江佩芳. 瞬时受体电位 M2 型离子通道在神经系统疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 267-276.
[9] 韩恒毅,冯帆,李海涛. 表观遗传与肿瘤代谢研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 1-16.
[10] 陈菲,虞敏,钟永红,华雯,黄华琼. 中性粒细胞在哮喘中的地位和作用[J]. 浙江大学学报(医学版), 2021, 50(1): 123-130.
[11] 颜京,张婷婷,赵葵. 核医学分子影像探针应用于神经内分泌肿瘤的研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 131-137.
[12] 张明佺,潘俊辰,黄蓬. RAS基因与脂代谢在恶性肿瘤中的相互调控[J]. 浙江大学学报(医学版), 2021, 50(1): 17-22.
[13] 胡鑫暘,金洪传,朱丽媛. 谷氨酰胺代谢途径在肿瘤化疗耐药中的功能机制[J]. 浙江大学学报(医学版), 2021, 50(1): 32-40.
[14] 孟颖,王启扉,吕志民. 胆固醇代谢与肿瘤[J]. 浙江大学学报(医学版), 2021, 50(1): 23-31.
[15] 邵一鸣,苏力德,郝睿,王茜茜,那仁满都拉. 乙型肝炎病毒诱发肝细胞癌分子机制研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 113-122.