Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (6): 755-761    DOI: 10.3724/zdxbyxb-2021-0178
广西医科大学第一附属医院内分泌科,广西 南宁 530021
Changes of LRP6/β-catenin pathway in adipose tissue of rats with intrauterine growth restriction with catch-up growth
CAO Qiuli,LI Xiaowei,XUAN Xiuping,HUANG Song,XIE Xuemei()
Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
 全文: PDF(5278 KB)   HTML( 16 )


关键词: 宫内发育迟缓追赶生长脂肪组织胰岛素抵抗LRP6/β-catenin通路大鼠    

Objective: To investigate the expression of low-density lipoprotein receptor-related protein 6 (LRP6)/β-catenin pathway related proteins in adipose tissue of rats with intrauterine growth restriction with catch-up growth (CG-IUGR). Methods: SD rats were randomly divided into nutrition-restriction rats and normal feed rats during pregnancy. CG-IUGR model was established by reducing the number of offspring in the nutrition-restriction rats (CG-IUGR group); while the rats in the control group were offspring of the normal feed pregnant rats. In order to exclude the interference of gender, male offspring mice were selected in both the CG-IUGR group and the control group in the following studies. The CG-IUGR group and the control group were subjected to glucose tolerance test at 12 weeks of age, and the perirenal adipose tissue samples were taken to observe the adipose structure by HE staining. Expression of LRP6, β-catenin and insulin receptor substrate 1 (IRS-1) in adipocytes were examined by confocal microscopy. Protein expression of LRP6, β-catenin and IRS-1 were measured by Western blotting. Results: Blood glucose level and the area under the cure of CG-IUGR group were significantly higher than that of control group (both P<0.05). Adipocyte size in the CG-IUGR group was significantly larger than that of control group, and the expression of LRP6, β-catenin and IRS-1 protein in adipose tissue of the CG-IUGR group was significantly lower than that of control group (allP<0.05).Conclusion: The expression of LRP6/β-catenin pathway related proteins is reduced in the adipose tissue in CG-IUGR rats, probably contributing to the insulin resistance in these rats.

Key words: Intrauterine growth restriction    Catch-up growth    Adipose tissue    Insulin resistance    LRP6/β-catenin pathway    Rats
收稿日期: 2021-06-27 出版日期: 2022-03-22
CLC:  R589.2  
基金资助: 国家自然科学基金(81660268)
通讯作者: 谢雪梅     E-mail:
E-mail Alert


曹秋丽,黎小炜,禤秀萍,黄松,谢雪梅. 宫内发育迟缓出生后追赶生长大鼠脂肪组织LRP6/β-catenin通路表达变化[J]. 浙江大学学报(医学版), 2021, 50(6): 755-761.

CAO Qiuli,LI Xiaowei,XUAN Xiuping,HUANG Song,XIE Xuemei. Changes of LRP6/β-catenin pathway in adipose tissue of rats with intrauterine growth restriction with catch-up growth. J Zhejiang Univ (Med Sci), 2021, 50(6): 755-761.


图1  两组出生后体重变化与对照组比较,<0.05. CG-IUGR:宫内发育迟缓出生后追赶生长.
图2  两组12周龄时糖耐量试验结果与对照组比较,<0.05. CG-IUGR:宫内发育迟缓出生后追赶生长.
图3  两组12周龄时肾周脂肪组织HE染色结果CG-IUGR组雄性大鼠肾周脂肪组织较对照组显著增大.CG-IUGR:宫内发育迟缓出生后追赶生长. 标尺=100 μm.
图4  两组12周龄时肾周脂肪组织LRP6、β-catenin、IRS-1免疫荧光检测结果LRP6主要在细胞膜上表达,β-catenin主要在细胞质及细胞核表达,IRS-1在细胞质表达,均呈红色. 对照组LRP6、β-catenin、IRS-1表达高于CG-IUGR组. CG-IUGR:宫内发育迟缓出生后追赶生长;IRS-1:胰岛素受体底物1;LRP6:低密度脂蛋白受体相关蛋白6. 标尺=75 μm.
图5  两组12周龄时肾周脂肪组织LRP6、β-catenin、IRS-1蛋白表达电泳图A1、A2、A3为对照组;I1、I2、I3为CG-IUGR组. CG-IUGR:宫内发育迟缓出生后追赶生长;IRS-1:胰岛素受体底物1;LRP6:低密度脂蛋白受体相关蛋白6.
1 LEVINE T A, GRUNAU R E, MCAULIFFE F M, et al.Early childhood neurodevelopment after intrauterine growth restriction: a systematic review[J]Pediatrics, 2015, 135( 1): 126-141.
doi: 10.1542/peds.2014-1143
2 SHARMA D, SHASTRI S, FARAHBAKHSH N, et al.Intrauterine growth restriction – part 1[J]J Matern-Fetal Neonatal Med, 2016, 29( 24): 3977-3987.
doi: 10.3109/14767058.2016.1152249
3 MARCELINO H, VEYRAT-DUREBEX C, SUMMERMATTER S, et al.A role for adipose tissue de novo lipogenesis in glucose homeostasis during catch-up growth[J]Diabetes, 2013, 62( 2): 362-372.
doi: 10.2337/db12-0255
4 CHEN L L, HU X, ZHENG J, et al.Lipid overaccumulation and drastic insulin resistance in adult catch-up growth rats induced by nutrition promotion after undernutrition[J]Metabolism, 2011, 60( 4): 569-578.
doi: 10.1016/j.metabol.2010.05.014
5 ABOU ZIKI M D, MANI A. The interplay of canonical and noncanonical Wnt signaling in metabolic syndrome[J]Nutr Res, 2019, 18-25.
doi: 10.1016/j.nutres.2018.06.009
6 AU D T, MIGLIORINI M, STRICKLAND D K, et al.Macrophage LRP1 promotes diet-induced hepatic inflammation and metabolic dysfunction by modulating wnt signaling[J]Mediators Inflamm, 2018, 7902841.
doi: 10.1155/2018/7902841
7 WANG Z M, LUO J Q, XU L Y, et al.Harnessing low-density lipoprotein receptor protein 6 (LRP6) genetic variation and Wnt signaling for innovative diagnostics in complex diseases[J]Pharmacogenomics J, 2018, 18( 3): 351-358.
doi: 10.1038/tpj.2017.28
8 SINGH R, SMITH E, FATHZADEH M, et al.Rare nonconservative LRP6 mutations are associated with metabolic syndrome[J]Hum Mutat, 2013, 34( 9): 1221-1225.
doi: 10.1002/humu.22360
9 SINGH R, DE AGUIAR R B, NAIK S, et al.LRP6 enhances glucose metabolism by promoting TCF7L2-dependent insulin receptor expression and IGF receptor stabilization in humans[J]Cell Metab, 2013, 17( 2): 197-209.
doi: 10.1016/j.cmet.2013.01.009
10 LIU W, SINGH R, CHOI C S, et al.Low density lipoprotein (LDL) receptor-related protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure[J]J Biol Chem, 2012, 287( 10): 7213-7223.
doi: 10.1074/jbc.M111.286724
11 KAHN C R, WANG G, LEE K Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome[J]J Clin Invest, 2019, 129( 10): 3990-4000.
doi: 10.1172/JCI129187
12 YE J, ZHENG R, WANG Q, et al.Downregulating SOCS3 with siRNA ameliorates insulin signaling and glucose metabolism in hepatocytes of IUGR rats with catch-up growth[J]Pediatr Res, 2012, 72( 6): 550-559.
doi: 10.1038/pr.2012.123
13 ZHENG R D, LIAO L H, YE J, et al.Effects of SOCS 1/3 gene silencing on the expression of C/EBPα and PPARγ during differentiation and maturation of rat preadipocytes[J]Pediatr Res, 2013, 73( 3): 263-267.
doi: 10.1038/pr.2012.190
14 ZHOU H, WANG H, YU M, et al.IL-1 induces mitochondrial translocation of IRAK2 to suppress oxidative metabolism in adipocytes[J]Nat Immunol, 2020, 21( 10): 1219-1231.
doi: 10.1038/s41590-020-0750-1
15 ZHANG Y, XIE L, GUNASEKAR S K, et al.SWELL1 is a regulator of adipocyte size, insulin signalling and glucose homeostasis[J]Nat Cell Biol, 2017, 19( 5): 504-517.
doi: 10.1038/ncb3514
16 BERENDS L M, DEARDEN L, TUNG Y C L, et al.Programming of central and peripheral insulin resistance by low birthweight and postnatal catch-up growth in male mice[J]Diabetologia, 2018, 61( 10): 2225-2234.
doi: 10.1007/s00125-018-4694-z
17 LIAO L, ZHENG R, WANG C, et al.The influence of down-regulation of suppressor of cellular signaling proteins by RNAi on glucose transport of intrauterine growth retardation rats[J]Pediatr Res, 2011, 69( 6): 497-503.
doi: 10.1203/PDR.0b013e31821769bd
18 郑锐丹, 汪无尽, 应艳琴, 等. 生长追赶宫内发育迟缓大鼠早期糖脂代谢及脂肪细胞功能的改变[J]. 中国当代儿科杂志, 2012, 14(7): 543-547
ZHENG Ruidan, WANG Wujin, YING Yanqin, et al. Effects of intrauterine growth retardation with catch-up growth on sugar-lipid metabolism and adipocyte function in young rats[J]. Chinese Journal of Contemporary Pediatrics, 2012, 14(7): 543-547. (in Chinese)
19 ALLISTER-PRICE C, CRAIG C M, SPIELMAN D, et al.Metabolic markers, regional adiposity, and adipose cell size: relationship to insulin resistance in African-American as compared with Caucasian women[J]Int J Obes, 2019, 43( 6): 1164-1173.
doi: 10.1038/s41366-018-0191-1
20 ANDERSSON D P, ERIKSSON HOGLING D, THORELL A, et al.Changes in subcutaneous fat cell volume and insulin sensitivity after weight loss[J]Diabetes Care, 2014, 37( 7): 1831-1836.
doi: 10.2337/dc13-2395
21 GUMBILAI V, EBIHARA K, AIZAWA-ABE M, et al. Fat mass reduction with adipocyte hypertrophy and insulin resistance in heterozygous PPARγ mutant rats[J]. Diabetes, 2016, 65(10): 2954-2965
22 HIRASHIMA Y, TSURUZOE K, KODAMA S, et al.Insulin down-regulates insulin receptor substrate-2 expression through the phosphatidylinositol 3-kinase/Akt pathway[J]J Endocrinol, 2003, 179( 2): 253-266.
doi: 10.1677/joe.0.1790253
23 SHIMOMURA I, MATSUDA M, HAMMER R E, et al.Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice[J]Mol Cell, 2000, 6( 1): 77-86.
doi: 10.1016/S1097-2765(05)00010-9
24 TANIGUCHI C M, EMANUELLI B, KAHN C R. Critical nodes in signalling pathways: insights into insulin action[J]Nat Rev Mol Cell Biol, 2006, 7( 2): 85-96.
doi: 10.1038/nrm1837
25 TOKARZ V L, MACDONALD P E, KLIP A. The cell biology of systemic insulin function[J]J Cell Biol, 2018, 217( 7): 2273-2289.
doi: 10.1083/jcb.201802095
26 PETERSEN M C, SHULMAN G I. Mechanisms of insulin action and insulin resistance[J]Physiol Rev, 2018, 98( 4): 2133-2223.
doi: 10.1152/physrev.00063.2017
27 CHENG P W, CHEN Y Y, CHENG W H, et al.Wnt signaling regulates blood pressure by downregulating a GSK-3β-mediated pathway to enhance insulin signaling in the central nervous system[J]Diabetes, 2015, 64( 10): 3413-3424.
doi: 10.2337/db14-1439
28 LI R, OU J, LI L, et al.The Wnt signaling pathway effector TCF7L2 mediates olanzapine-induced weight gain and insulin resistance[J]Front Pharmacol, 2018, 379.
doi: 10.3389/fphar.2018.00379
29 KARCZEWSKA-KUPCZEWSKA M, STEFANOWICZ M, MATULEWICZ N, et al.Wnt signaling genes in adipose tissue and skeletal muscle of humans with different degrees of insulin sensitivity[J]J Clin Endocrinol Metab, 2016, 101( 8): 3079-3087.
doi: 10.1210/jc.2016-1594
30 PALSGAARD J, EMANUELLI B, WINNAY J N, et al.Cross-talk between insulin and Wnt signaling in preadipocytes[J]J Biol Chem, 2012, 287( 15): 12016-12026.
doi: 10.1074/jbc.M111.337048
[1] 邹玉林,崔秀明,向巧,郭敏,梁应忠,曲媛,杨晓艳. 酱头抗胃溃疡的作用及机制研究[J]. 浙江大学学报(医学版), 2021, 50(5): 561-567.
[2] 苗路伟,赵彤,高迎春,景临林,黄琼,马慧萍. 7-羟乙基白杨素对低压性缺氧大鼠运动性疲劳具有保护作用[J]. 浙江大学学报(医学版), 2021, 50(5): 575-581.
[3] 刘俊霞,赵桂桂,牛岩,甘婷,闫震宇,张雅素. 电针疗法对脑卒中大鼠肢体痉挛的改善作用[J]. 浙江大学学报(医学版), 2021, 50(3): 361-368.
[4] 李扬,李伟光,冯泽国,宋杰,张成岗,黄连军,宋燕平. 手术创伤及多次丙泊酚麻醉对发育期大鼠神经发育和认知功能的影响[J]. 浙江大学学报(医学版), 2021, 50(3): 290-297.
[5] 张玉荣,王瑞忠,王莉,陈蕊. 母婴分离诱导子代抑郁大鼠肠道氨基酸代谢失调[J]. 浙江大学学报(医学版), 2021, 50(3): 298-304.
[6] 张冉,刘云,张翠,马梦尧,李曙,洪云. 盐诱导激酶2对脑缺血再灌注大鼠脑组织能量代谢的影响[J]. 浙江大学学报(医学版), 2021, 50(3): 352-360.
[7] 郑心甜,甘海燕,李琳,胡小伟,方燕,储利胜. 黄芪甲苷通过促进小胶质细胞/巨噬细胞M2型极化抑制大鼠脑缺血后炎症反应[J]. 浙江大学学报(医学版), 2020, 49(6): 679-686.
[8] 诸葛陆杰,方燕,金华倩,李琳,杨琰,胡小伟,储利胜. 补阳还五汤上调miR-199a-5p表达促进脑缺血大鼠神经发生和血管生成[J]. 浙江大学学报(医学版), 2020, 49(6): 687-696.
[9] 吴唯,徐键. 正五聚蛋白3在多囊卵巢综合征中的作用研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 637-643.
[10] 袁雪纯,向大伟,敏琼,丁怡丹,赵安鹏,王荣. 急进高原缺氧对大鼠肝脏孕烷X受体表达的影响[J]. 浙江大学学报(医学版), 2019, 48(6): 603-608.
[11] 邵佳乐,李志忠,周建,李凯,秦荣,陈克明. 低频脉冲电磁场通过IGF-1R/NO信号通路促进大鼠颅骨成骨细胞成熟及矿化[J]. 浙江大学学报(医学版), 2019, 48(2): 158-164.
[12] 吴超,陈国仙,赵刘阳,李曙,洪云. PeriCam PSI血流灌注成像系统在脑缺血再灌注动物模型中的应用及评价[J]. 浙江大学学报(医学版), 2018, 47(1): 51-56.
[13] 葸慧荣,高玉海,杨芳芳,李文苑,马慧萍,陈克明. 白藜芦醇对生长期大鼠峰值骨量的影响[J]. 浙江大学学报(医学版), 2017, 46(6): 578-584.
[14] 李文波,贾丁丁,王飞,张超,石杰,张洪,吴路加,高秋明. 外源性L-精氨酸对大鼠背部跨区皮瓣成活的影响[J]. 浙江大学学报(医学版), 2017, 46(6): 656-661.
[15] 傅晓华 等. 棕色脂肪组织及其与多囊卵巢综合征关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(3): 315-320.