Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (5): 651-658    DOI: 10.3724/zdxbyxb-2021-0167
综述     
GluN3亚基的N-甲基-D-天冬氨酸受体及其在中枢神经系统的功能
孙琦,曹蔚,罗建红()
浙江大学医学院脑科学与脑医学学院,浙江 杭州 310058
The roles of GluN3-containing N-methyl-D-aspartate receptor in central nerve system
SUN Qi,CAO Wei,LUO Jianhong()
School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2720 KB)   HTML( 13 )
摘要:

中枢神经系统N-甲基-D-天冬氨酸受体(NMDAR)主要由GluN1和GluN2亚基组成,这类经典NMDAR结构和功能已有深入研究。然而,含有GluN3亚基的非经典NMDAR表达量少,没有典型的通道特征,其功能也知之尚少。近年研究发现,GluN3可参与形成两种不同的NMDAR:谷氨酸门控的GluN1/GluN2/GluN3三异聚体NMDAR和甘氨酸门控的GluN1/GluN3二异聚体NMDAR。前者在调节突触成熟时间窗和修剪无用突触方面具有重要作用,成年时表达和活性增高则会导致突触结构和功能的紊乱并与某些神经精神疾病相关;后者表达于内侧僵核并参与负向情绪的调控。本文综述了含GluN3非经典NMDAR的表达、功能特征及其与生理和病理联系的研究进展。

关键词: N-甲基-D-天冬氨酸受体GluN3亚基突触修剪神经发育精神障碍综述    
Abstract:

The N-methyl-D-aspartate receptor (NMDAR) in central nerve system is mostly composed of GluN1 and GluN2 subunits. The classical NMDAR has been intensively studied. However, GluN3?containing NMDAR is much less expressed and have atypical channel properties. Recently, accumulating evidences have revealed two types of GluN3?containing NMDAR: glutamate-gated GluN1/GluN2/GluN3 NMDAR and glycine-gated GluN1/GluN3 NMDAR. The former may play important roles in regulating synapse maturation and pruning non-used synapses, and its elevated expression at the adult stage may alter synaptic reorganization in some neuropsychiatric disorders. The latter is expressed in the medial habenula and involves in control of aversion. This article reviews the recent progresses on the expression, functional properties of GluN3?containing atypical NMDARs and the physiological and pathological relevance.

Key words: N-methyl-D-aspartate receptor    GluN3 subunit    Synaptic pruning    Neural development    Mental disorder    Review
收稿日期: 2021-03-25 出版日期: 2021-12-29
:  R34  
基金资助: 广东省重点领域研发计划(2019B030335001);浙江省自然科学基金(D19H090004)
通讯作者: 罗建红     E-mail: luojianhong@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙琦
曹蔚
罗建红

引用本文:

孙琦,曹蔚,罗建红. 含GluN3亚基的N-甲基-D-天冬氨酸受体及其在中枢神经系统的功能[J]. 浙江大学学报(医学版), 2021, 50(5): 651-658.

SUN Qi,CAO Wei,LUO Jianhong. The roles of GluN3-containing N-methyl-D-aspartate receptor in central nerve system. J Zhejiang Univ (Med Sci), 2021, 50(5): 651-658.

链接本文:

https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0167        https://www.zjujournals.com/med/CN/Y2021/V50/I5/651

图 1  N-甲基-D-天冬氨酸受体的装配、通道和分布特征A:经典NMDAR通道,由2个GluN1和2个GluN2组成,对钙离子具有高通透性,成簇定位于突触后致密区,静息状态下对镁离子阻滞作用敏感;B:GluN1/GluN2/GluN3三异聚体通道,含1个GluN3A/B亚基,表现出钙离子内流减少,并且对镁离子的电压依赖性阻滞不太敏感;C:GluN1/GluN3二异聚体NMDAR通道,含有2个GluN3A/B亚基,作为相对不透钙离子的兴奋性甘氨酸受体发挥作用,对通道阻滞剂镁离子不敏感. 含GluN3A亚基的NMDAR主要分布在突触外或突触周边. NMDAR:N-甲基-D-天冬氨酸受体.
1 PAOLETTIP, BELLONEC, ZHOUQ. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease[J]Nat Rev Neurosci, 2013, 14( 6): 383-400.
doi: 10.1038/nrn3504
2 SKRENKOVAK, HEMELIKOVAK, KOLCHEVAM, et al.Structural features in the glycine-binding sites of the GluN1 and GluN3A subunits regulate the surface delivery of NMDA receptors[J]Sci Rep, 2019, 9( 1): 12303.
doi: 10.1038/s41598-019-48845-3
3 ADELL A. Brain NMDA receptors in schizophrenia and depression[J]. Biomolecules, 2020, 10(6): 947
4 ZHUZ, YIF, EPPLINM P, et al.Negative allosteric modulation of GluN1/GluN3 NMDA receptors[J]Neuropharmacology, 2020, 108117.
doi: 10.1016/j.neuropharm.2020.108117
5 MUELLERH T, MEADOR-WOODRUFFJ H. NR3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder[J]Schizophr Res, 2004, 71( 2-3): 361-370.
doi: 10.1016/j.schres.2004.02.016
6 YUANT, MAMELIM, O’CONNORE C, et al.Expression of cocaine-evoked synaptic plasticity by GluN3A-containing NMDA receptors[J]Neuron, 2013, 80( 4): 1025-1038.
doi: 10.1016/j.neuron.2013.07.050
7 WESSELINGJ F, PéREZ-OTA?OI. Modulation of GluN3A expression in Huntington disease: a new n-methyl-D-aspartate receptor-based therapeutic approach?[J]JAMA Neurol, 2015, 72( 4): 468-473.
doi: 10.1001/jamaneurol.2014.3953
8 ROBERTSA C, DíEZ-GARCíAJ, RODRIGUIZR M, et al.Downregulation of NR3A-containing NMDARs is required for synapse maturation and memory consolidation[J]Neuron, 2009, 63( 3): 342-356.
doi: 10.1016/j.neuron.2009.06.016
9 MARCOS, GIRALTA, PETROVICM M, et al.Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington’s disease models[J]Nat Med, 2013, 19( 8): 1030-1038.
doi: 10.1038/nm.3246
10 KEHOEL A, BELLONEC, DE ROOM, et al.GluN3A promotes dendritic spine pruning and destabilization during postnatal development[J]J Neurosci, 2014, 34( 28): 9213-9221.
doi: 10.1523/JNEUROSCI.5183-13.2014
11 ERIKSSONM, NILSSONA, FROELICH-FABRES, et al.Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A[J]Neurosci Lett, 2002, 321( 3): 177-181.
doi: 10.1016/S0304-3940(01)02524-1
12 ANDERSSONO, STENQVISTA, ATTERSANDA, et al.Nucleotide sequence, genomic organization, and chromosomal localization of genes encoding the human NMDA receptor subunits NR3A and NR3B[J]Genomics, 2001, 78( 3): 178-184.
doi: 10.1006/geno.2001.6666
13 PACHERNEGGS, STRUTZ-SEEBOHMN, HOLLMANNM. GluN3 subunit-containing NMDA receptors: not just one-trick ponies[J]Trends Neuroscis, 2012, 35( 4): 240-249.
doi: 10.1016/j.tins.2011.11.010
14 MURILLOA, NAVARROA I, PUELLESE, et al.Temporal dynamics and neuronal specificity of GRIN3A expression in the mouse forebrain[J]Cereb Cortex, 2021, 31( 4): 1914-1926.
doi: 10.1093/cercor/bhaa330
15 MATSUDAK, FLETCHERM, KAMIYAY, et al.Specific assembly with the NMDA receptor 3B subunit controls surface expression and calcium permeability of NMDA receptors[J]J Neurosci, 2003, 23( 31): 10064-10073.
doi: 10.1523/JNEUROSCI.23-31-10064.2003
16 WEEK S, ZHANGY, KHANNAS, et al.Immunolocalization of NMDA receptor subunit NR3B in selected structures in the rat forebrain, cerebellum, and lumbar spinal cord[J]J Comp Neurol, 2008, 509( 1): 118-135.
doi: 10.1002/cne.21747
17 WONGH K, LIUX B, MATOSM F, et al.Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain[J]J Comp Neurol, 2002, 450( 4): 303-317.
doi: 10.1002/cne.10314
18 HENSONM A, ROBERTSA C, PéREZ-OTA?OI, et al.Influence of the NR3A subunit on NMDA receptor functions[J]Prog NeuroBiol, 2010, 91( 1): 23-37.
doi: 10.1016/j.pneurobio.2010.01.004
19 LARSENR S, SMITHI T, MIRIYALAJ, et al.Synapse-specific control of experience-dependent plasticity by presynaptic NMDA receptors[J]Neuron, 2014, 83( 4): 879-893.
doi: 10.1016/j.neuron.2014.07.039
20 ISHIHAMAK, TURMAN J EJR. NR3 protein expression in trigeminal neurons during postnatal development[J]Brain Res, 2006, 1095( 1): 12-16.
doi: 10.1016/j.brainres.2006.04.010
21 WEEK S L, TANF C K, CHEONGY P, et al.Ontogenic profile and synaptic distribution of GLUN3 proteins in the rat brain and hippocampal neurons[J]Neurochem Res, 2016, 41( 1-2): 290-297.
doi: 10.1007/s11064-015-1794-8
22 PéREZ-OTA?OI, LUJáNR, TAVALINS J, et al.Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1[J]Nat Neurosci, 2006, 9( 5): 611-621.
doi: 10.1038/nn1680
23 RACCAC, STEPHENSONF A, STREITP, et al.NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area[J]J Neurosci, 2000, 20( 7): 2512-2522.
doi: 10.1523/JNEUROSCI.20-07-02512.2000
24 CHATTERTONJ E, AWOBULUYIM, PREMKUMARL S, et al.Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits[J]Nature, 2002, 415( 6873): 793-798.
doi: 10.1038/nature715
25 NISHIM, HINDSH, LUH P, et al.Motoneuron-specific expression of NR3B, a novel NMDA-type glutamate receptor subunit that works in a dominant-negative manner[J]J Neurosci, 2001, 21( 23): RC185.
doi: 10.1523/JNEUROSCI.21-23-j0003.2001
26 PéREZ-OTA?OI, SCHULTEISC T, CONTRACTORA, et al.Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors[J]J Neurosci, 2001, 21( 4): 1228-1237.
doi: 10.1523/JNEUROSCI.21-04-01228.2001
27 SASAKIY F, ROTHET, PREMKUMARL S, et al.Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons[J]J Neurophysiol, 2002, 87( 4): 2052-2063.
doi: 10.1152/jn.00531.2001
28 TONGG, TAKAHASHIH, TUS, et al.Modulation of NMDA receptor properties and synaptic transmission by the NR3A subunit in mouse hippocampal and cerebrocortical neurons[J]J Neurophysiol, 2008, 99( 1): 122-132.
doi: 10.1152/jn.01044.2006
29 BURZOMATOV, FRUGIERG, PéREZ-OTA?OI, et al.The receptor subunits generating NMDA receptor mediated currents in oligodendrocytes[J]J Physiol, 2010, 588( 18): 3403-3414.
doi: 10.1113/jphysiol.2010.195503
30 MCCLYMONTD W, HARRISJ, MELLORI R. Open-channel blockade is less effective on GluN3B than GluN3A subunit-containing NMDA receptors[J]Eur J Pharmacol, 2012, 686( 1-3): 22-31.
doi: 10.1016/j.ejphar.2012.04.036
31 SMOTHERSC T, WOODWARDJ J. Pharmacological characterization of glycine-activated currents in HEK 293 cells expressing N-methyl-D-aspartate NR1 and NR3 subunits[J]J Pharmacol Exp Ther, 2007, 322( 2): 739-748.
doi: 10.1124/jpet.107.123836
32 GRANDT, ABI GERGESS, DAVIDM, et al.Unmasking GluN1/GluN3A excitatory glycine NMDA receptors[J]Nat Commun, 2018, 9( 1): 4769.
doi: 10.1038/s41467-018-07236-4
33 SMOTHERSC T, WOODWARDJ J. Effect of the NR3 subunit on ethanol inhibition of recombinant NMDA receptors[J]Brain Res, 2003, 987( 1): 117-121.
doi: 10.1016/S0006-8993(03)03315-8
34 YAOY, MAYERM L. Characterization of a soluble ligand binding domain of the NMDA receptor regulatory subunit NR3A[J]J Neurosci, 2006, 26( 17): 4559-4566.
doi: 10.1523/JNEUROSCI.0560-06.2006
35 YAOY, HARRISONC B, FREDDOLINOP L, et al.Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors[J]EMBO J, 2008, 27( 15): 2158-2170.
doi: 10.1038/emboj.2008.140
36 YAOY, BELCHERJ, BERGERA J, et al.Conformational analysis of NMDA receptor GluN1, GluN2, and GluN3 ligand-binding domains reveals subtype-specific characteristics[J]Structure, 2013, 21( 10): 1788-1799.
doi: 10.1016/j.str.2013.07.011
37 KVISTT, GREENWOODJ R, HANSENK B, et al.Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors[J]Neuropharmacology, 2013, 324-336.
doi: 10.1016/j.neuropharm.2013.08.003
38 OTSUY, DARCQE, PIETRAJTISK, et al.Control of aversion by glycine-gated GluN1/GluN3A NMDA receptors in the adult medial habenula[J]Science, 2019, 366( 6462): 250-254.
doi: 10.1126/science.aax1522
39 HOLTMAATA J, TRACHTENBERGJ T, WILBRECHTL, et al.Transient and persistent dendritic spines in the neocortex in vivo[J]Neuron, 2005, 45( 2): 279-291.
doi: 10.1016/j.neuron.2005.01.003
40 ZUOY, LINA, CHANGP, et al.Development of long-term dendritic spine stability in diverse regions of cerebral cortex[J]Neuron, 2005, 46( 2): 181-189.
doi: 10.1016/j.neuron.2005.04.001
41 PéREZ-OTA?OI, EHLERSM D. Learning from NMDA receptor trafficking: clues to the development and maturation of glutamatergic synapses[J]Neurosignals, 2004, 13( 4): 175-189.
doi: 10.1159/000077524
42 GAMBRILLA C, BARRIAA. NMDA receptor subunit composition controls synaptogenesis and synapse stabilization[J]Proc Natl Acad Sci U S A, 2011, 108( 14): 5855-5860.
doi: 10.1073/pnas.1012676108
43 DASS, SASAKIY F, ROTHET, et al.Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A[J]Nature, 1998, 393( 6683): 377-381.
doi: 10.1038/30748
44 HENSONM A, LARSENR S, LAWSONS N, et al.Genetic deletion of NR3A accelerates glutamatergic synapse maturation[J/OL]PLoS One, 2012, 7( 8): e42327.
doi: 10.1371/journal.pone.0042327
45 SANESJ R, LICHTMANJ W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus[J]Nat Rev Neurosci, 2001, 2( 11): 791-805.
doi: 10.1038/35097557
46 MOHAMADO, SONGM, WEIL, et al.Regulatory roles of the NMDA receptor GluN3A subunit in locomotion, pain perception and cognitive functions in adult mice[J]J Physiol, 2013, 591( 1): 149-168.
doi: 10.1113/jphysiol.2012.239251
47 LEEJ H, ZHANGJ Y, WEIZ Z, et al.Impaired social behaviors and minimized oxytocin signaling of the adult mice deficient in the N-methyl-d-aspartate receptor GluN3A subunit[J]Exp Neurol, 2018, 1-12.
doi: 10.1016/j.expneurol.2018.02.015
48 N?GERLU V, EBERHORNN, CAMBRIDGES B, et al.Bidirectional activity-dependent morphological plasticity in hippocampal neurons[J]Neuron, 2004, 44( 5): 759-767.
doi: 10.1016/j.neuron.2004.11.016
49 ROGGEG A, SINGHH, DANGR, et al.HDAC3 is a negative regulator of cocaine-context-associated memory formation[J]J Neurosci, 2013, 33( 15): 6623-6632.
doi: 10.1523/JNEUROSCI.4472-12.2013
50 CHOWDHURYD, MARCOS, BROOKSI M, et al.Tyrosine phosphorylation regulates the endocytosis and surface expression of GluN3A-containing NMDA receptors[J]J Neurosci, 2013, 33( 9): 4151-4164.
doi: 10.1523/JNEUROSCI.2721-12.2013
51 LARSENR S, CORLEWR J, HENSONM A, et al.NR3A-containing NMDARs promote neurotransmitter release and spike timing-dependent plasticity[J]Nat Neurosci, 2011, 14( 3): 338-344.
doi: 10.1038/nn.2750
52 KáRADóTTIRR, CAVELIERP, BERGERSENL H, et al.NMDA receptors are expressed in oligodendrocytes and activated in ischaemia[J]Nature, 2005, 438( 7071): 1162-1166.
doi: 10.1038/nature04302
53 JANTZIEL L, TALOSD M, JACKSONM C, et al.Developmental expression of N-methyl-D-aspartate (NMDA) receptor subunits in human white and gray matter: potential mechanism of increased vulnerability in the immature brain[J]Cerebral Cortex, 2015, 25( 2): 482-495.
doi: 10.1093/cercor/bht246
54 LUNDGAARDI, LUZHYNSKAYAA, STOCKLEYJ H, et al.Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes[J/OL]PLoS Biol, 2013, 11( 12): e1001743.
doi: 10.1371/journal.pbio.1001743
55 MICUI, PLEMELJ R, LACHANCEC, et al.The molecular physiology of the axo-myelinic synapse[J]Exp Neurol, 2016, 41-50.
doi: 10.1016/j.expneurol.2015.10.006
56 GLANTZL A, LEWISD A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia[J]Arch Gen Psychiatry, 2000, 57( 1): 65-73.
doi: 10.1001/archpsyc.57.1.65
57 JIN Z, BHANDAGE A K, BAZOV I, et al. Selective increases of AMPA, NMDA, and kainate receptor subunit mRNAs in the hippocampus and orbitofrontal cortex but not in prefrontal cortex of human alcoholics. Front Cell Neurosci, 2014, 8: 11
58 MAHFOOZK, MARCOS, MARTíNEZ-TURRILLASR, et al.GluN3A promotes NMDA spiking by enhancing synaptic transmission in Huntington’s disease models[J]Neurobiol Dis, 2016, 47-56.
doi: 10.1016/j.nbd.2016.04.001
[1] 马丽娟,吴爽,张凯,田梅,张宏. 大麻素1型受体正电子发射断层显像在神经精神疾病中的应用进展[J]. 浙江大学学报(医学版), 2021, 50(5): 666-673.
[2] 宣自学,张轶雯,潘宗富,郑小卫,黄萍. 天然药物成分干预铁死亡抑制肿瘤的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(5): 601-606.
[3] 曲文政,庄英粮,李学坤. 表观遗传修饰在神经退行性变性疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(5): 642-650.
[4] 史建蓉,马望前,汤慧芳. 磷酸二酯酶抑制剂治疗炎性肠病的研究进展[J]. 浙江大学学报(医学版), 2021, 50(5): 659-665.
[5] 唐玥,孔元原. 遗传性酪氨酸血症Ⅰ型及其筛查和诊治进展[J]. 浙江大学学报(医学版), 2021, 50(4): 514-523.
[6] 刘飞,冯春月,毛建华,傅海东. 2019冠状病毒病疫苗接种相关新发及复发肾小球病研究进展[J]. 浙江大学学报(医学版), 2021, 50(4): 524-528.
[7] 韩连书. 新生儿遗传病基因筛查技术及相关疾病[J]. 浙江大学学报(医学版), 2021, 50(4): 429-435.
[8] 胡茫莎,韦树丽,周武源,王苹莉. 新生儿Fc受体基础研究和临床应用进展[J]. 浙江大学学报(医学版), 2021, 50(4): 537-544.
[9] 胡靖依,王青青,刘杨. 蛋白酶体亚基对肝细胞癌发生发展的调控作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 396-402.
[10] 葛瀛洲,刘欣梅,黄荷凤. 沉默信息调节因子家族参与病理妊娠的研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 335-344.
[11] 王锦涛,黄蕾,魏丽丽,陈炜. 重复经颅磁刺激治疗阿尔茨海默病患者的疗效影响因素[J]. 浙江大学学报(医学版), 2021, 50(3): 383-389.
[12] 庄文雯,杨咏琪,李洪亮,梁景岩. 动脉粥样硬化过程中核因子E2相关因子2对血管平滑肌细胞的调控作用[J]. 浙江大学学报(医学版), 2021, 50(3): 390-395.
[13] 朱锋,项迎春,曾玲晖. 线粒体沉默信息调节因子家族在癫痫发生发展中的作用研究进展[J]. 浙江大学学报(医学版), 2021, 50(3): 403-408.
[14] 旷文静,罗小波,王冏珂,曾昕. 梅–罗综合征患者的表征及其诊治[J]. 浙江大学学报(医学版), 2021, 50(2): 148-154.
[15] 王晨宇,王英男,汪存艺,施洁珺,王慧明. 组织工程修复颞下颌关节的关键因素研究进展[J]. 浙江大学学报(医学版), 2021, 50(2): 212-221.