综述 |
|
|
|
|
线粒体沉默信息调节因子家族在癫痫发生发展中的作用研究进展 |
朱锋1( ),项迎春2,曾玲晖1,*( ) |
1.浙大城市学院医学院,浙江 杭州 310015 2.浙江医院药剂科,浙江 杭州 310012 |
|
Progress on mitochondrial silence information regulator family in epilepsy |
ZHU Feng1( ),XIANG Yingchun2,ZENG Linghui1,*( ) |
1. School of Medicine, Zhejiang University City College, Hangzhou 310015, China; 2. Department of Pharmacy, Zhejiang Hospital, Hangzhou 310012 ,China |
1 |
KHANA U, AKRAMM, DANIYALM, et al.Awareness and current knowledge of epilepsy[J]Metab Brain Dis, 2020, 35( 1): 45-63.
doi: 10.1007/s11011-019-00494-1
|
2 |
TERRONEG, BALOSSOS, PAULETTIA, et al.Inflammation and reactive oxygen species as disease modifiers in epilepsy[J]Neuropharmacology, 2020, 107742.
doi: 10.1016/j.neuropharm.2019.107742
|
3 |
L?SCHERW, POTSCHKAH, SISODIYAS M, et al.Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options[J]Pharmacol Rev, 2020, 72( 3): 606-638.
doi: 10.1124/pr.120.019539
|
4 |
MANFORDM. Recent advances in epilepsy[J]J Neurol, 2017, 264( 8): 1811-1824.
doi: 10.1007/s00415-017-8394-2
|
5 |
PEARSON-SMITHJ N, PATELM. Metabolic dysfunction and oxidative stress in epilepsy[J]Int J Mol Sci, 2017, 18( 11): 2365.
doi: 10.3390/ijms18112365
|
6 |
SHEKH-AHMADT, KOVACS, ABRAMOVA Y, et al.Reactive oxygen species in status epilepticus[J]Epilepsy Behav, 2019, 106410.
doi: 10.1016/j.yebeh.2019.07.011
|
7 |
SHEKH-AHMADT, LIEBA, KOVACS, et al.Combination antioxidant therapy prevents epileptogenesis and modifies chronic epilepsy[J]Redox Biol, 2019, 101278.
doi: 10.1016/j.redox.2019.101278
|
8 |
FRYDZI?SKAZ, OWCZAREKA, WINIARSKAK. Sirtuins and their role in metabolism regulation[J]Postepy Biochem, 2019, 65( 1): 31-40.
doi: 10.18388/pb.2019_254
|
9 |
SINGHC K, CHHABRAG, NDIAYEM A, et al.The role of sirtuins in antioxidant and redox signaling[J]Antioxidants Redox Signal, 2018, 28( 8): 643-661.
doi: 10.1089/ars.2017.7290
|
10 |
ANAMIKA, KHANNAA, ACHARJEEP, et al.Mitochondrial SIRT3 and neurodegenerative brain disorders[J]J Chem Neuroanatomy, 2019, 43-53.
doi: 10.1016/j.jchemneu.2017.11.009
|
11 |
RAHMANS. Mitochondrial diseases and status epilepticus[J]Epilepsia, 2018, 70-77.
doi: 10.1111/epi.14485
|
12 |
WANGS, ZHANGJ, DENGX, et al.Advances in characterization of SIRT3 deacetylation targets in mitochondrial function[J]Biochimie, 2020, 1-13.
doi: 10.1016/j.biochi.2020.08.021
|
13 |
CARRICOC, MEYERJ G, HEW, et al.The mitochondrial acylome emerges: proteomics, regulation by sirtuins, and metabolic and disease implications[J]Cell Metab, 2018, 27( 3): 497-512.
doi: 10.1016/j.cmet.2018.01.016
|
14 |
SOLE M, WAGNERS A, WEINERTB T, et al.Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase Sirt3[J/OL]PLoS ONE, 2012, 7( 12): e50545.
doi: 10.1371/journal.pone.0050545
|
15 |
HALLOWSW C, YUW, SMITHB C, et al.Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction[J]Mol Cell, 2011, 41( 2): 139-149.
doi: 10.1016/j.molcel.2011.01.002
|
16 |
WUG, LIUJ, LIS, et al.Glycyrrhizic acid protects juvenile epileptic rats against hippocampal damage through activation of Sirtuin3[J]Brain Res Bull, 2020, 98-106.
doi: 10.1016/j.brainresbull.2020.08.008
|
17 |
GANOL B, LIANGL P, RYANK, et al.Altered mitochondrial acetylation profiles in a kainic acid model of temporal lobe epilepsy[J]Free Radical Biol Med, 2018, 116-124.
doi: 10.1016/j.freeradbiomed.2018.05.063
|
18 |
CHOI, JEONGK H, ZHUJ, et al.Sirtuin3 protected against neuronal damage and cycled into nucleus in status epilepticus model[J]Mol Neurobiol, 2019, 56( 7): 4894-4903.
doi: 10.1007/s12035-018-1399-8
|
19 |
CHENGA, YANGY, ZHOUY, et al.Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges[J]Cell Metab, 2016, 23( 1): 128-142.
doi: 10.1016/j.cmet.2015.10.013
|
20 |
CHENGA, WANGJ, GHENAN, et al.SIRT3 haploinsufficiency aggravates loss of GABAergic interneurons and neuronal network hyperexcitability in an alzheimer’s disease model[J]J Neurosci, 2020, 40( 3): 694-709.
doi: 10.1523/JNEUROSCI.1446-19.2019
|
21 |
DIKALOVAA E, ITANIH A, NAZAREWICZR R, et al.Sirt3 impairment and SOD2 hyperacetylation in vascular oxidative stress and hypertension[J]Circ Res, 2017, 121( 5): 564-574.
doi: 10.1161/CIRCRESAHA.117.310933
|
22 |
SHUKLAS, SHARMAA, PANDEYV K, et al.Concurrent acetylation of FoxO1/3a and p53 due to sirtuins inhibition elicit Bim/PUMA mediated mitochondrial dysfunction and apoptosis in berberine-treated HepG2 cells[J]Toxicol Appl Pharmacol, 2016, 70-83.
doi: 10.1016/j.taap.2015.12.006
|
23 |
YINJ, NIELSENM, CARCIONET, et al.Apolipoprotein E regulates mitochondrial function through the PGC-1α-sirtuin 3 pathway[J]Aging, 2019, 11( 23): 11148-11156.
doi: 10.18632/aging.102516
|
24 |
HASAN-OLIVEM M, LAURITZENK H, ALIM, et al.A ketogenic diet improves mitochondrial biogenesis and bioenergetics via the PGC1α-SIRT3-UCP2 axis[J]Neurochem Res, 2019, 44( 1): 22-37.
doi: 10.1007/s11064-018-2588-6
|
25 |
HANY, ZHOUS, COETZEES, et al.SIRT4 and its roles in energy and redox metabolism in health, disease and during exercise[J]Front Physiol, 2019, 1006.
doi: 10.3389/fphys.2019.01006
|
26 |
LIY, ZHOUY, WANGF, et al.SIRT4 is the last puzzle of mitochondrial sirtuins[J]BioOrg Med Chem, 2018, 26( 14): 3861-3865.
doi: 10.1016/j.bmc.2018.07.031
|
27 |
SASAKIY. Metabolic aspects of neuronal degeneration: From a NAD+ point of view[J]Neurosci Res, 2019, 9-20.
doi: 10.1016/j.neures.2018.07.001
|
28 |
SHIHJ, LIUL, MASONA, et al.Loss of SIRT4 decreases GLT-1-dependent glutamate uptake and increases sensitivity to kainic acid[J]J Neurochem, 2014, 131( 5): 573-581.
doi: 10.1111/jnc.12942
|
29 |
BRINGMAN-RODENBARGERL R, GUOA H, LYSSIOTISC A, et al.Emerging roles for SIRT5 in metabolism and cancer[J]Antioxidants Redox Signal, 2018, 28( 8): 677-690.
doi: 10.1089/ars.2017.7264
|
30 |
DUY, HUH, HUAC, et al.Tissue distribution, subcellular localization, and enzymatic activity analysis of human SIRT5 isoforms[J]Biochem BioPhys Res Commun, 2018, 503( 2): 763-769.
doi: 10.1016/j.bbrc.2018.06.073
|
31 |
KUMARS, LOMBARDD B. Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology[J]Crit Rev Biochem Mol Biol, 2018, 53( 3): 311-334.
doi: 10.1080/10409238.2018.1458071
|
32 |
JESKOH, WENCELP, STROSZNAJDERR P, et al.Sirtuins and their roles in brain aging and neurodegenerative disorders[J]Neurochem Res, 2017, 42( 3): 876-890.
doi: 10.1007/s11064-016-2110-y
|
33 |
NAKAGAWAT, LOMBD J, HAIGISM C, et al.SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle[J]Cell, 2009, 137( 3): 560-570.
doi: 10.1016/j.cell.2009.02.026
|
34 |
POLLETTAL, VERNUCCIE, CARNEVALEI, et al.SIRT5 regulation of ammonia-induced autophagy and mitophagy[J]Autophagy, 2015, 11( 2): 253-270.
doi: 10.1080/15548627.2015.1009778
|
35 |
KORONOWSKIK B, KHOURYN, MORRIS-BLANCOK C, et al.Metabolomics based identification of SIRT5 and protein kinase C epsilon regulated pathways in brain[J]Front Neurosci, 2018, 32.
doi: 10.3389/fnins.2018.00032
|
36 |
LUK, ZIMMERMANNM, G?RGB, et al.Hepatic encephalopathy is linked to alterations of autophagic flux in astrocytes[J]EBioMedicine, 2019, 539-553.
doi: 10.1016/j.ebiom.2019.09.058
|
37 |
EID T, GRUENBAUM S E, DHAHER R, et al. The glutamate-glutamine cycle in epilepsy[J]. Adv Neurobiol, 2016, 13: 351-400
|
38 |
LIF, LIUL. SIRT5 deficiency enhances susceptibility to kainate-induced seizures and exacerbates hippocampal neurodegeneration not through mitochondrial antioxidant enzyme SOD2[J]Front Cell Neurosci, 2016, 171.
doi: 10.3389/fncel.2016.00171
|
39 |
NIKOLICL, NOBILIP, SHENW, et al.Role of astrocyte purinergic signaling in epilepsy[J]Glia, 2020, 68( 9): 1677-1691.
doi: 10.1002/glia.23747
|
40 |
WANGC H, WEIY H. Roles of mitochondrial sirtuins in mitochondrial function, redox homeostasis, insulin resistance and type 2 diabetes[J]Int J Mol Sci, 2020, 21( 15): 5266.
doi: 10.3390/ijms21155266
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|